Patent application title: Antigenic Complex for the Diagnosis and Treatment of Porphyromonas Gingivalis Infection
Inventors:
Eric Charles Reynolds (North Balwyn, AU)
Neil Martin O'Brien-Simpson (Brunswick, AU)
Rishi Delan Pathirana (Keysborough, AU)
Assignees:
THE UNIVERSITY OF MELBOURNE
IPC8 Class: AA61K39395FI
USPC Class:
4241641
Class name: Drug, bio-affecting and body treating compositions immunoglobulin, antiserum, antibody, or antibody fragment, except conjugate or complex of the same with nonimmunoglobulin material binds bacterium or component thereof or substance produced by said bacterium
Publication date: 2009-07-02
Patent application number: 20090169568
Claims:
1. A purified multimeric complex from P. gingivalis, the complex
comprising at least one domain from each of RgpA, Kgp and HagA, and
having a molecular weight greater than about 300 kDa.
2. A complex according to claim 1 wherein the complex has a molecular weight greater than about 500 kDa.
3. A complex according to claim 1 or claim 2 wherein the complex has a molecular weight greater than about 800 kDa.
4. The complex according to any on of claims 1 to 3 wherein the enzymatic activity of the complex is inactivated.
5. A method of obtaining a purified multimeric complex from P. gingivalis, the complex comprising at least one domain from each of RgpA, Kgp and HagA, and having a molecular weight greater than about 300 kDa the method comprising detergent extraction of the complex from whole Porphyromonas gingivalis cells.
6. A method according to claim 5 wherein the complex is subjected to further purification using ion exchange or ultrafiltration and diafiltration methods.
7. A method according to claim 5 or claim 6 wherein the detergent is Triton X114.
8. A method according to any one of claims 5 to 7 wherein the Porphyromonas gingivalis is a virulent strains.
9. A method according to any one of claims 5 to 8 wherein the P. gingivalis has high arginine and/or lysine proteolytic activity.
10. A method according to any one of claims 5 to 9 wherein the enzymatic activity of the complex is inactivated.
11. A method according to claim 10 wherein the inactivation is by oxidation.
12. A composition for use in eliciting an immune response directed against Porphyromonas gingivalis, the composition comprising an effective amount of the complex according to any one of claims 1 to 4 and a suitable adjuvant and/or acceptable carrier.
13. An antibody preparation comprising antibodies specifically directed against the complex according to any one of claims 1 to 4.
14. A method of treating a subject suffering from Porphyromonas gingivalis infection, the method comprising administering to the subject an amount of the antibody preparation according to claim 13.
15. A method of reducing the prospect of Porphyromonas gingivalis infection in an individual and/or severity of disease, the method comprising administering to the individual an amount of the composition according to claim 12 effective to induce an immune response in the individual directed against Porphyromonas gingivalis.
16. A method of treatment of a patient human and/or animal either suffering from Porphyromonas gingivalis infection, the method comprising active vaccination of said patient with a composition according to the claim 12.
17. A method of treatment of a patient human and/or animal either suffering from Porphyromonas gingivalis infection, the method comprising passive vaccination of said patient with an antibody preparation according to claim 13.
18. The use of the antibody preparation according to claim 13 in the preparation of a medicament for the treatment of Porphyromonas gingivalis infection.
Description:
FIELD OF INVENTION
[0001]This invention relates to a multimeric protein complex from Porphyromonas gingivalis. The present invention also provides methods of obtaining the multimeric complex and to pharmaceutical compositions and associated agents based on the complex and components thereof for the detection, prevention and treatment of periodontal disease associated with P. gingivalis.
BACKGROUND OF THE INVENTION
[0002]Periodontal diseases are bacterial-associated inflammatory diseases of the supporting tissues of the teeth and range from the relatively mild form of gingivitis, the non-specific, reversible inflammation of gingival tissue to the more aggressive forms of periodontitis which are characterised by the destruction of the tooth's supporting structures. Periodontitis is associated with a subgingival infection of a consortium of specific Gram-negative bacteria that leads to the destruction of the periodontium and is a major public health problem. One bacterium that has attracted considerable interest is P. gingivalis as the recovery of this microorganism from adult periodontitis lesions can be up to 50% of the subgingival anaerobically cultivable flora, whereas P. gingivalis is rarely recovered, and then in low numbers, from healthy sites. A proportional increase in the level of P. gingivalis in subgingival plaque has been associated with an increased severity of periodontitis and eradication of the microorganism from the cultivable subgingival microbial population is accompanied by resolution of the disease. The progression of periodontitis lesions in non-human primates has been demonstrated with the subgingival implantation of P. gingivalis. These findings in both animals and humans suggest a major role for P. gingivalis in the development of adult periodontitis.
[0003]P. gingivalis is a black-pigmented, anaerobic, asaccharolytic, proteolytic Gram-negative rod that obtains energy from the metabolism of specific amino acids. The microorganism has an absolute growth requirement for iron, preferentially in the form of haeme or its Fe(III) oxidation product haemin and when grown under conditions of excess hamin is highly virulent in experimental animals. A number of virulence factors have been implicated in the pathogenicity of P. gingivalis including the capsule, adhesins, cytotoxins and extracellular hydrolytic enzymes. In particular, proteases have received a great deal of attention for their ability to degrade a broad range of host proteins including, structural proteins and others involved in defence. The proteins that have been shown to be substrates for P. gingivalis proteolytic activity include collagen types I and IV, fibronectin, fibrinogen, laminin, complement and plasma clotting cascade proteins, α1-antitrypsin, α2-macroglobulin, antichymotrypsin, antithrombin III, antiplasmin, cystatin C, IgG and IgA. The major proteolytic activities associated with this organism have been defined by substrate specificity and are "trypsin-like", that is cleavage on the carboxyl side of arginyl and lysyl residues and collagenolytic although other minor activities have been reported.
[0004]P. gingivalis trypsin-like proteolytic activity has been shown to degrade complement, generating biologically active C5a, impair the phagocytic and other functions of neutrophils by modifying surface receptors, and abrogate the clotting potential of fibrinogen prolonging plasma clotting time. The trypsin-like proteolytic activity of P. gingivalis also generates Fc fragments from human IgG1 stimulating the release of pro-inflammatory cytokines from mononuclear cells and is associated with vascular disruption and enhanced vascular permeation through the activation of the kallikrein-kinin cascade. P. gingivalis spontaneous mutants with reduced trypsin-like activity as well as wild-type cells treated with the trypsin-like protease inhibitor N-p-tosyl-L-lysine chloromethyl ketone are avirulent in animal models. Further, it has been shown that P. gingivalis grown under controlled, haemin-excess conditions expressed more trypsin-like and less collagenolytic activity and were more virulent in mice relative to cells grown under haemin-limited but otherwise identical conditions.
[0005]There has been considerable endeavour to purify and characterise the trypsin-like proteases of P. gingivalis from cell-free culture fluids. Chen et al, (1992) [J Biol Chem 267:18896-18901] have purified and characterised a 50 kDa arginine-specific, thiol protease from the culture fluid of P. gingivalis H66 designated Arg-gingipain. A similar arginine-specific thiol protease has been disclosed in JP 07135973 and the amino acid sequence disclosed in WO 9507286 and in Kirszbaum et al, 1995 [Biochem Biophys Res Comm 207:424-431]. Pike et al (1994) [J Biol Chem 269:406-411] have characterised a 60 kDa lysine-specific cysteine proteinase from the culture fluid of P. gingivalis H66 designated Lys-gingipain and the partial gene sequence for this enzyme was disclosed in WO 9511298 and fully disclosed in WO 9617936. In addition, a cell surface protein complex of P. gingivalis comprising a 300 kDa complex of arginine-specific and lysine-specific proteases both containing adhesin domains is disclosed in U.S. Pat. No. 6,511,666.
SUMMARY OF THE INVENTION
[0006]The present inventors have extracted from P. gingivalis a cell surface associated complex comprising a multimeric complex of processed domains of RgpA, Kgp and HagA to form a high molecular weight (>300 kDa) proteinase-adhesin complex.
[0007]Accordingly in a first aspect the present invention consists in a purified multimeric complex from P. gingivalis, the complex comprising at least one domain from each of RgpA, Kgp and HagA, and having a molecular weight greater than about 300 kDa.
[0008]In a preferred embodiment the complex has a molecular weight greater than about 500 kDa, more preferably more than about 800 kDa.
[0009]In a second aspect of the present invention provides a method of obtaining a purified multimeric complex from P. gingivalis, the complex comprising at least one domain from each of RgpA, Kgp and HagA, and having a molecular weight greater than about 300 kDa the method comprising detergent extraction of the complex from whole Porphyromonas gingivalis cells.
[0010]In a preferred embodiment the complex is subjected to further purification using ion exchange or ultrafiltration and diafiltration methods.
[0011]In a further preferred embodiment the detergent is Triton X114.
[0012]In a preferred embodiment the Porphyromonas gingivalis is a virulent strains. It is also preferred that the P. gingivalis has high arginine and/or lysine proteolytic activity.
[0013]In a third aspect the present invention consists in a composition for use in eliciting an immune response directed against Porphyromonas gingivalis, the composition comprising an effective amount of the complex of the first aspect of the present invention and a suitable adjuvant and/or acceptable carrier.
[0014]In a fourth aspect the present invention consists in an antibody preparation comprising antibodies specifically directed against the complex of the first aspect of the present invention. The antibodies may be polyclonal antibodies or monoclonal antibodies.
[0015]In a fifth aspect the present invention consists in a method of treating a subject suffering from Porphyromonas gingivalis infection, the method comprising administering to the subject an amount of the antibody preparation of the fourth aspect of the present invention.
[0016]As will be recognised by those skilled in the art the antibody preparation may be administered by any of a number of well known routes, however, it is presently preferred that the preparation is administered orally.
[0017]In a sixth aspect the present invention consists in a method of reducing the prospect of Porphyromonas gingivalis infection in an individual and/or severity of disease, the method comprising administering to the individual an amount of the composition of the third aspect of the present invention effective to induce an immune response in the individual directed against Porphyromonas gingivalis.
[0018]In use the antibodies of the fourth aspect of the present invention may be blended into oral compositions such as toothpaste, mouthwash, toothpowders and liquid dentrifices, mouthwashes, trouches, chewing gums, dental pastes, gingival massage creams, gargle tablets, dairy products and other food stuffs.
[0019]In another aspect the invention provides a method of diagnosis for the presence of Porphyromonas gingivalis characterised by the use of the complex of the first aspect of the present invention or antibody of the fourth aspect of the present invention. These methods will involve known techniques including for example, enzyme linked immunosorbent assay.
[0020]The invention also provides diagnostic kits comprising the complex of the first aspect of the present invention or antibody of the fourth aspect of the present invention.
[0021]The invention also provides a method of treatment of a patient human and/or animal either suffering from Porphyromonas gingivalis infection comprising active vaccination of said patient with a composition according to the third aspect and/or passive vaccination of said patient with an antibody of the fourth aspect of the present invention.
BRIEF DESCRIPTION OF FIGURES
[0022]FIG. 1. Arg-Sepharose affinity chromatography of P. gingivalis cell Triton X-114 extract. P. gingivalis extracts were added to an Arg-Sepharose column and unbound proteins (peak A) were eluted at a flow rate of 1 mL/min. Non-specifically bound proteins (peak B) were eluted with a linear gradient of 0-40% TC 500 buffer (500 mM NaCl, 50 mM Tris/HCl, 5 mM CaCl2, pH 7.4) at a flow rate of 1.0 mL/min. The complex (peak C) was eluted with TC 50-Arg buffer (500 mM arginine, 50 mM NaCl, 50 mM Tris/HCl, 5 mM CaCl2, pH 7.4) at a flow rate of 1 ml/min. The arrows indicate the start of each step gradient.
[0023]FIG. 2. SDS-PAGE of Arg-affinity purified P. gingivalis Triton X114 extracted complex. Lane 1, Invitrogen molecular weight standards (kDa), lane 2, Triton X114 extracted complex. Gels stained with Coomassie blue. Protein bands (1 to 9) were excised or transferred onto PVDF membrane and identified by peptide mass finger printing analysis or N-terminal sequence analysis, respectively, as described.
[0024]FIG. 3. Diagrammatic representation of RgpA, Kgp and HagA showing the processed proteinase catalytic and adhesin domains and the N-terminal sequences of each domain. Shaded areas represent the mature, processed domains.
[0025]FIG. 4: Size exclusion chromatography of the Triton X114 extracted complex. Arginine-affinity purified Triton X114 extracted complex was applied to a size exclusion column (macrosphere 300 Å, 7 μm, 250×4.6 mm, Alltech, Australia). V0 indicates the void volume of the column (Dextran Blue>2 million Da, was used to determine the void volume). The elution volumes of the standard proteins A=thyroglobulin (667 kDa), B=ferritin (440 kDa) and C catalase (232 kDa) are marked.
[0026]FIG. 5. Murine lesion model of P. gingivalis infection; average lesion size of mice immunized with antigenic complex extracted by sonication or by Triton X-114 methodologies. BALB/C mice (10 mice per group) were immunized subcutaneously (s.c.) with complex extracted by Triton X114 and sonication for the primary and secondary immunisations and challenged s.c. 12 days after the second immunisation with P. gingivalis ATCC 33277 (1×109 viable cells). Animals were monitored over a period of 14 days for the development and size of lesions. Lesion sizes were statistically analyzed using Kruskal-Wallis test and Mann-Whitney U-Wilcoxon rank sum test with a Bonferroni correction for type 1 error. *, ** group significantly different (p<0.05, p<0.01, respectively) from the control (IFA/PBS) group.
[0027]FIG. 6. Murine periodontitis model of P. gingivalis-induced periodontal bone loss. Periodontal bone loss of mice immunised with the Triton X114 extracted complex, non-specific immunogenic protein (diphtheria toxoid) and adjuvant alone (Control, IFA/PBS) or unimnmunised orally infected (control, infected) mice. Measurement of bone loss is the mean area measured in mm2 from the cementoenamel junction (CEJ) to the alveolar bone crest (ABC) of the buccal side of each maxillary molar of both the left and right maxillae. Data was normally distributed as measured by Levene's homogeneity of variance and are presented as mean±SD (n=10) and were analyzed using the One-Way analysis of variance and Dunnett's T3 test and Cohen's Effect size. * group significantly different (p<0.001) from the orally infected control group and the orally infected control groups immunised with IFA/PBS or the non-specific immunogenic protein, diphtheria toxoid.
[0028]FIG. 7. Serum antibody subclass responses of immunised mice with the complex extracted using the Triton X114 and sonication methodologies. Sera from mice immunised with the Triton X114 (black bars) and sonication (white bars) extracted complex were used in the ELISA with the complex as the absorbed antigen. Antibody responses are expressed as the ELISA titre OD415 determined as the reciprocal of the dilution at which absorbance was double the background level, with each titre representing the mean±standard deviation of three values.
[0029]FIG. 8. Western blot analysis of the antigenic complex (Triton X114 extracted) and the RgpA-Kgp complex (sonication extracted) probed with antigenic complex or RgpA-Kgp complex antisera, respectively. The antigenic complex (Triton X114 extracted, lane 2) and RgpA-Kgp complex (sonication extracted, lane 1) were separated by SDS-PAGE, transferred onto PVDF membrane and probed with anti-complex antisera (1:50 TN buffer, lane 2), and anti-RgpA-Kgp complex antisera (1:50 TN buffer, lane 1). Molecular weight markers are shown in kilodaltons.
DETAILED DESCRIPTION OF THE INVENTION
[0030]The intra-oral bacterium Porphyromonas gingivalis possesses on its cell surface major trypsin-like proteinases as a >300 kDa multimeric protein complex of Arg-specific and Lys-specific thiol endopeptidases with hemagglutinins (adhesins) herein designated the RgpA-Kgp-HagA complex or antigenic complex. The antigenic complex can be purified from P. gingivalis cells by detergent extraction or ultrasonication followed by ultrafiltration/diafiltration or anion exchange and Lys-sepharose or Arg-sepharose chromatography. The extracted and purified complex is a >300 kDa multimeric protein aggregate.
[0031]The >300 kDa RgpA-Kgp-HagA proteinase-adhesin complex is referred to herein as the "antigenic complex". It is believed that the antigenic complex contains unique epitopes not displayed on the individual domains or processed proteins. The previously disclosed arginine-specific and lysine-specific thiol proteases discussed above do not exhibit a number of the features of the "antigenic complex" and have proven of limited application to date. However, in experiments conducted to date the antigenic complex has shown characteristics required for development of diagnostic and immunoprophylactic products. The cell surface extracted antigenic complex is accordingly of particular interest for diagnostics and neutralisation by passive immunity through oral compositions containing neutralising antibodies and by vaccine development.
[0032]Accordingly in a first aspect the present invention consists in a purified multimeric complex from P. gingivalis, the complex comprising at least one domain from each of RgpA, Kgp and HagA, and having a molecular weight greater than about 300 kDa.
[0033]In a preferred embodiment the complex has a molecular weight greater than about 500 kDa, more preferably more than about 800 kDa.
[0034]RgpA comprises the domains Rgpcat, RgpAA1, RgpAA2 and RgpAA3; Kgp comprises the domains Kgpcat, KgpA1 and KgpA2 and HagA comprises the domains HagAA1*, HagAA1**, HagAA2 and HagAA3. The sequence of these polyproteins and the locations of the domains in a type strain of P. gingivalis is as follows:
RgpA polyprotein from Porphyromonas gingivalis. Accession number; AAC18876.RgpA protein domains.
TABLE-US-00001 RgpA domain Residues (numbered from the initial methionine) RgpAcat 228-688 RgpAA1 720-1081 RgpAA2 1139-1257 RgpAA3 1274-1404 RgpAA4 1432-1706
RgpA protein sequence:
TABLE-US-00002 (SEQ ID No:1) 1 MKNLNKFVSI ALCSSLLGGM AFAQQTELGR NPNVRLLEST QQSVTKVQFR MDNLKFTEVQ 61 TPKGIGQVPT YTEGVNLSEK GMPTLPILSR SLAVSDTREM KVEVVSSKFI EKKNVLIAPS 121 KGMIMRNEDP KKIPYVYGKT YSQNKFFPGE IATLDDPFIL RDVRGQVVNF APLQYNPVTK 181 TLRIYTEITV AVSETSEQGK NILNKKGTFA GFEDTYKRMF MNYEPGRYTP VEEKQNGRMI 241 VIVAKKYEGD IKDFVDWKNQ RGLRTEVKVA EDIASPVTAN AIQQFVKQEY EKEGNDLTYV 301 LLIGDHKDIP AKITPGIKSD QVYGQIVGND HYNEVFIGRF SCESKEDLKT QIDRTIHYER 361 NITTEDKWLG QALCIASAEG GPSADNGESD IQHENVIANL LTQYGYTKII KCYDPGVTPK 421 NIIDAFNGGI SLANYTGHGS ETAWGTSHFG TTHVKQLTNS NQLPFIFDVA CVNGDFLFSM 481 PCFAEALMRA QKDGKPTGTV AIIASTINQS WASPMRGQDE MNEILCEKHP NNIKRTFGGV 541 TMNGMFAMVE KYKKDGEKML DTWTVFGDPS LLVRTLVPTK MQVTAPAQIN LTDASVNVSC 601 DYNGAIATIS ANGKMFGSAV VENGTATINL TGLTNESTLT LTVVGYNKET VIKTINTNGE 661 PNPYQPVSNL TATTQGQKVT LKWDAPSTKT NATTNTARSV DGIRELVLLS VSDAPELLRS 721 GQAEIVLEAH DVWNDGSGYQ ILLDADHDQY GQVIPSDTHT LWPNCSVPAN LFAPFEYTVP 781 ENADPSCSPT NMIMDGTASV NIPAGTYDFA IAAPQANAKI WIAGQGPTKE DDYVFEAGKK 841 YHFLMKKMGS GDGTELTISE GGGSDYTYTV YRDGTKIKEG LTATTFEEDG VATGNHEYCV 901 EVKYTAGVSP KVCKDVTVEG SNEFAPVQNL TGSAVGQKVT LKWDAPNGTP NPNPNPNPNP 961 NPGTTTLSES FENGIPASWK TIDADGDGHG WKPGNAPGIA GYNSNGCVYS ESFGLGGIGV 1021 LTPDNYLITP ALDLPNGGKL TFWVCAQDAN YASEHYAVYA SSTGNDASNF TNALLEETIT 1081 AKGVRSPEAM RGRIQGTWRQ KTVDLPAGTK YVAFRHFQST DMFYIDLDEV EIKANGKRAD 1141 FTETFESSTH GEAPAEWTTI DADGDGQGWL CLSSGQLDWL TAHGGTNVVS SFSWNGMALN 1201 PDNYLISKDV TGATKVKYYY AVNDGFPGDH YAVMISKTGT NAGDFTVVFE ETPNGINKGG 1261 ARFGLSTEAD GAKPQSVWIE RTVDLPAGTK YVAFRHYNCS DLNYILLDDI QFTMGGSPTP 1321 TDYTYTVYRD GTKIKEGLTE TTFEEDGVAT GNHEYCVEVK YTAGVSPKKC VNVTVNSTQF 1381 NPVKNLKAQP DGGDVVLKWE APSAKKTEGS REVKRIGDGL FVTIEPANDV RANEAKVVLA 1441 ADNVWGDNTG YQFLLDADHN TFGSVIPATG PLFTGTASSD LYSANFESLI PANADPVVTT 1501 QNIIVTGQGE VVIPGGVYDY CITNPEPASG KMWIAGDGGN QPARYDDFTF EAGKKYTFTM 1561 RRAGMGDGTD MEVEDDSPAS YTYTVYRDGT KIKEGLTETT YRDAGMSAQS HEYCVEVKYT 1621 AGVSPKVCVD YIPDGVADVT AQKPYTLTVV GKTITVTCQG EAMIYDMNGR RLAAGRNTVV 1681 YTAQGGYYAV MVVVDGKSYV EKLAIK
Kgp polyprotein from Porphyromonas gingivalis. Accession number; AAB60809.Kgp protein domains.
TABLE-US-00003 Kgp domain Residues (numbered from the initial methionine) Kgpcat 229-710 KgpA1 738-1099 KgpA2 1157-1275 KgpA3 1292-1424 KgpA4 1427-1546 KgpA5 1548-1732
Kgp protein seq20uence:
TABLE-US-00004 (SEQ ID No:2) 1 MRKLLLLIAA SLLGVGLYAQ SAKIKLDAPT TRTTCTNNSF KQFDASFSFN EVELTKVETK 61 GGTFASVSIP GAFPTGEVGS PEVPAVRKLI AVPVGATPVV RVKSFTEQVY SLNQYGSEKL 121 MPNQPSMSKS DDPEKVPFVY NAAAYARKGF VGQELTQVEM LGTMRGVRIA ALTINPVQYD 181 VVANQLKVRN NIEIEVSFQG ADEVATQRLY DASFSPYFET AYKQLFNRDV YTDHGDLYNT 241 PVRMLVVAGA KFKEALKPWL TWKAQKGFYL DVHYTDEAEV GTTNASIKAF IHKKYNDGLA 301 ASAAPVFLAL VGDTDVISGE KGKKTKKVTD LYYSAVDGDY FPEMYTFRMS ASSPEELTNI 361 IDKVLMYEKA TMPDKSYLEK VLLIAGADYS WNSQVGQPTI KYGMQYYYNQ EHGYTDVYNY 421 LKAPYTGCYS HLNTGVSFAN YTAHGSETAW ADPLLTTSQL KALTNKDKYF LAIGNCCITA 481 QFDYVQPCFG EVITRVKEKG AYAYIGSSPN SYWGEDYYWS VGANAVFGVQ PTFEGTSMGS 541 YDATFLEDSY NTVNSIMWAG NLAATHAGNI GNITHIGAHY YWEAYHVLGD GSVMPYRAMP 601 KTNTYTLPAS LPQNQASYSI QASAGSYVAI SKDGVLYGTG VANASGVATV SMTKQITENG 661 NYDVVITRSN YLPVIKQIQV GEPSPYQPVS NLTATTQGQK VTLKWEAPSA KKAEGSREVK 721 RIGDGLFVTI EPANDVRANE AKVVLAADNV WGDNTGYQFL LDADHNTFGS VIPATGPLFT 781 GTASSNLYSA NFEYLIPANA DPVVTTQNII VTGQGEVVIP GGVYDYCITN PEPASGKMWI 841 AGDGGNQPAR YDDFTFEAGK KYTFTMRRAG MGDGTDMEVE DDSPASYTYT VYRDGTKIKE 901 GLTATTFEED GVAAGNHEYC VEVKYTAGVS PKVCKDVTVE GSNEFAPVQN LTGSSVGQKV 961 TLKWDAPNGT PNPNPNPNPN PGTTLSESFE NGIPASWKTI DADGDGHGWK PGNAPGIAGY 1021 NSNGCVYSES FGLGGIGVLT PDNYLITPAL DLPNGGKLTF WVCAQDANYA SEHYAVYASS 1081 TGNDASNFTN ALLEETITAK GVRSPKAIRG RIQGTWRQKT VDLPAGTKYV AFRHFQSTDM 1141 FYIDLDEVEI KANGKRADFT ETFESSTHGE APAEWTTIDA DGDGQGWLCL SSGQLDWLTA 1201 HGGSNVVSSF SWNGMALNPD NYLISKDVTG ATKVKYYYAV NDGFPGDHYA VMISKTGTNA 1261 GDFTVVFEET PNGINKGGAR FGLSTEANGA KPQSVWIERT VDLPAGTKYV AFRHYNCSDL 1321 NYILLDDIQF TMGGSPTPTD YTYTVYRDGT KIKEGLTETT FEEDGVATGN HEYCVEVKYT 1381 AGVSPKKCVN VTVNSTQFNP VQNLTAEQAP NSMDAILKWN APASKRAEVL NEDFENGIPA 1441 SWKTIDADGD GNNWTTTPPP GGSSFAGHNS AICVSSASYI NFEGPQNPDN YLVTPELSLP 1501 GGGTLTFWVC AQDANYASEH YAVYASSTGN DASNFANALL EEVLTAKTVV TAPEAIRGTR 1561 AQGTWYQKTV QLPAGTKYVA FRHFGCTDFF WINLDDVVIT SGNAPSYTYT IYRNNTQIAS 1621 GVTETTYRDP DLATGFYTYG VKVVYPNGES AIETATLNIT SLADVTAQKP YTLTVVGKTI 1681 TVTCQGEAMI YDMNGRRLAA GRNTVVYTAQ GGHYAVMVVV DGKSYVEKLA VK
HagA polyprotein from Porphyromonas gingivalis. Accession number; P59915.HagA protein domains.
TABLE-US-00005 HagA domain Residues (numbered from the initial methionine) HagAA1 26-351 HagAA1* 366-625 HagAA1** 820-1077 and 1272-1529 HagAA2 685-803 and 1137-1255 and 1589-1707 HagAA3 1724-1856 HagAA4 1859-1978 HagAA5 1980-2164
HagA protein sequence:
TABLE-US-00006 (SEQ ID No:3) 1 MRKLNSLFSL AVLLSLLCWG QTAAAQGGPK TAPSVTHQAV QKGIRTSKAK DLRDPIPAGM 61 ARIILEAHDV WEDGTGYQML WDADHNQYGA SIPEESFWFA NGTIPAGLYD PFEYKVPVNA 121 DASFSPTNFV LDGTASADIP AGTYDYVIIN PNPGIIYIVG EGVSKGNDYV VEAGKTYHFT 181 VQRQGPGDAA SVVVTGEGGN EFAPVQNLQW SVSGQTVTLT WQAPASDKRT YVLNESFDTQ 241 TLPNGWTMID ADGDGHNWLS TINVYNTATH TGDGAMFSKS WTASSGAKID LSPDNYLVTP 301 KFTVPENGKL SYWVSSQEPW TNEHYGVFLS TTGNEAANFT IKLLEETLGS GKPAPMNLVK 361 SEGVKAPAPY QERTIDLSAY AGQQVYLAFR HFGCTGIFRL YLDDVAVSGE GSSNDYTYTV 421 YRDNVVIAQN LTATTFNQEN VAPGQYNYCV EVKYTAGVSP KVCKDVTVEG SNEFAPVQNL 481 TGSAVGQKVT LKWDAPNGTP NPNPGTTTLS ESFENGIPAS WKTIDADGDG NNWTTTPPPG 541 GSSFAGHNSA ICVSSASYIN FEGPQNPDNY LVTPELSLPN GGTLTFWVCA QDANYASEHY 601 AVYASSTGND ASNFANALLE EVLTAKTVVT APEAIRGTRV QGTWYQKTVQ LPAGTKYVAF 661 RHFGCTDFFW INLDDVEIKA NGKRADFTET FESSTHGEAP AEWTTIDADG DGQGWLCLSS 721 GQLGWLTAHG GTNVVASFSW NGMALNPDNY LISKDVTGAT KVKYYYAVND GFPGDNYAVM 781 ISKTGTNAGD FTVVFEETPN GINKGGARFG LSTEANGAKP QSVWIERTVD LPAGTKYVAF 841 RHYNCSDLNY ILLDDIQFTM GGSPTPTDYT YTVYRDGTKI KEGLTETTFE EDGVATGNHE 901 YCVEVKYTAG VSPKECVNVT VDPVQPNPVQ NLTGSAVGQK VTLKWDAPNG TPNPNPGTTT 961 LSESFENGIP ASWKTIDADG DGNNWTTTPP PGGTSFAGHN SAICVSSASY INFEGPQNPD 1021 NYLVTPELSL PNGGTLTFWV CAQDANYASE HYAVYASSTG NDASNFANAL LEEVLTAKTV 1081 VTAPEAIRGT RVQGTWYQKT VQLPAGTKYV AFRHFGCTDF FWINLDDVEI KANGKRADFT 1141 ETFESSTHGE APAEWTTIDA DGDGQGWLCL SSGQLDWLTA HGGTNVVASF SWNGMALNPD 1201 NYLISKDVTG ATKVKYYYAV NDGFPGDHYA VMISKTGTNA GDFTVVFEET PNGINKGGAR 1261 FGLSTEANGA KPQSVWIERT VDLPAGTKYV AFRHYNCSDL NYILLDDIQF TMGGSPTPTD 1321 YTYTVYRDGT KIKEGLTETT FEEDGVATGN HEYCVEVKYT AGVSPKECVN VTVDPVQFNP 1381 VQNLTGSAVG QKVTLKWDAP NGTPNPNPGT TTLSESFENG IPASWKTIDA DGDGNNWTTT 1441 PPPGGTSFAG HNSAICVSSA SYINFEGPQN PDNYLVTPEL SLPNGGTLTF WVCAQDANYA 1501 SEHYAVYASS TGNDASNFAN ALLEEVLTAK TVVTAPEAIR GTRVQGTWYQ KTVQLPAGTK 1561 YVAFRHFGCT DFFWINLDDV EIKANGKRAD FTETFESSTH GEAPAEWTTI DADGDGQGWL 1621 CLSSGQLGWL TAHGGTNVVA SFSWNGMALN PDNYLISKDV TGATKVKYYY AVNDGFPGDH 1681 YAVMISKTGT NAGDFTVVFE ETPNGINKGG ARFGLSTEAN GAKPQSVWIE RTVDLPAGTK 1741 YVAFRHYNCS DLNYILLDDI QFTMGGSPTP TDYTYTVYRD GTKIKEGLTE TTFEEDGVAT 1801 GNHEYCVEVK YTAGVSPKEC VNVTINPTQF NPVQNLTAEQ APNSMDAILK WNAPASKRAE 1861 VLNEDFENGI PASWKTIDAD GDGNNWTTTP PPGGSSFAGH NSAICVSSAS YINFEGPQNP 1921 DNYLVTPELS LPGGGTLTFW VCAQDANYAS EHYAVYASST GNDASNFANA LLEEVLTAKT 1981 VVTAPEAIRG TRVQGTWYQK TVQLPAGTKY VAFRHFGCTD FFWINLDDVV ITSGNAPSYT 2041 YTIYRNNTQI ASGVTETTYR DPDLATGFYT YGVKVVYPNG ESAIETATLN ITSLADVTAQ 2101 KPYTLTVVGK TITVTCQGEA MIYDMNGRRL AAGRNTVVYT AQGGHYAVMV VVDGKSYVEK 2161 LAVK
[0035]In a preferred embodiment at least seven proteins are present in the complex. In a preferred embodiment these proteins are selected from the group consisting of Kgpcat, RgpAcat, RgpAA1, KgpA1, RgpAA3, KgpA3, HagAA3, HagAA1**, RgpAA2, KgpA2, HagAA2 and HagAA1.
[0036]As the purified antigenic complex normally has enzymatic activity it is preferred in a number of uses the thiol proteinases are rendered inactive. This may be achieved in a number of ways, for example by oxidation, mutation or by small molecular weight inhibitors. It is presently preferred that inactivation is by oxidation.
[0037]As used herein the term "purified" means that the antigenic complex has been removed from its natural surrounds in that the antigenic complex is substantially free of P. gingivalis cells.
[0038]As will be understood by those skilled in this field in order for the antigenic complex to have the preferred molecular weight the antigenic complex is made up of multiple copies of various domains from RgpA, KgpA and HagA. It is believed that the antigenic complex has a core molecular weight of about 223 to about 294 kDa which forms large aggregates >300 kDa.
[0039]The antigenic complex can be used to generate antibodies using standard techniques. The animals used for antibody generation can be rabbits, goats, chickens, sheep, horses, cows etc. When a high antibody titre against the complex is detected by immunoassay the animals are bled or eggs or milk are collected and the serum prepared and/or antibody purified using standard techniques or monoclonal antibodies produced by fusing spleen cells with myeloma cells using standard techniques. The antibody (immunoglobulin fraction) may be separated from the culture or ascites fluid, serum, milk or egg by salting out, gel filtration, ion exchange and/or affinity chromatography, and the like, with salting out being preferred. In the salting out method the antiserum or the milk is saturated with ammonium sulphate to produce a precipitate, followed by dialyzing the precipitate against physiological saline to obtain the purified immunoglobulin fraction with the specific anti-complex antibodies. The preferred antibody is obtained from the equine antiserum and the bovine antiserum and milk. In this invention the antibody contained in the antiserum and milk obtained by immunising the animal with the inactivated complex is blended into the oral composition. In this case the antiserum and milk as well as the antibody separated and purified from the antiserum and milk may be used. Each of these materials may be used alone or in combination of two or more. Antibodies against the complex can be used in oral compositions such as toothpaste and mouthwash to neutralise the complex and thus prevent disease. The anti-complex antibodies can also be used for the early detection of P. gingivalis in subgingival plaque samples by a chair-side Enzyme Linked Immunosorbent Assay (ELISA).
[0040]For oral compositions it is preferred that the amount of the above antibodies administered is 0.0001-50 g/kg/day and that the content of the above antibodies is 0.0002-10% by weight preferably 0.002-5% by weight of the composition. The oral composition of this invention which contains the above-mentioned serum or milk antibody may be prepared and used in various forms applicable to the mouth such as dentifrice including toothpastes, toothpowders and liquid dentifrices, mouthwashes, troches, periodontal pocket irrigating devices, chewing gums, dental pastes, gingival massage creams, gargle tablets, dairy products and other foodstuffs. The oral composition according to this invention may further include additional well known ingredients depending on the type and form of a particular oral composition.
[0041]In certain highly preferred forms of the invention the oral composition may be substantially liquid in character, such as a mouthwash or rinse. In such a preparation the vehicle is typically a water-alcohol mixture desirably including a humectant as described below. Generally, the weight ratio of water to alcohol is in the range of from about 1:1 to about 20:1. The total amount of water-alcohol mixture in this type of preparation is typically in the range of from about 70 to about 99.9% by weight of the preparation. The alcohol is typically ethanol or isopropanol. Ethanol is preferred.
[0042]The pH of such liquid and other preparations of the invention is generally in the range of from about 4.5 to about 9 and typically from about 5.5 to 8. The pH is preferably in the range of from about 6 to about 8.0, preferably 7.4. The pH can be controlled with acid (e.g. citric acid or benzoic acid) or base (e.g. sodium hydroxide) or buffered (as with sodium citrate, benzoate, carbonate, or bicarbonate, disodium hydrogen phosphate, sodium dihydrogen phosphate, etc).
[0043]Other desirable forms of this invention, the oral composition may be substantially solid or pasty in character, such as toothpowder, a dental tablet or a dentifrice, that is a toothpaste (dental cream) or gel dentifrice. The vehicle of such solid or pasty oral preparations generally contains dentally acceptable polishing material. Examples of polishing materials are water-insoluble sodium metaphosphate, potassium metaphosphate, tricalcium phosphate, dihydrated calcium phosphate, anhydrous dicalcium phosphate, calcium pyrophosphate, magnesium orthophosphate, trimagnesium phosphate, calcium carbonate, hydrated alumina, calcined alumina, aluminium silicate, zirconium silicate, silica, bentonite, and mixtures thereof. Other suitable polishing material include the particulate thermosetting resins such as melamine-, phenolic, and urea-formaldehydes, and cross-linked polyepoxides and polyesters. Preferred polishing materials include crystalline silica having particle sized of up to about 5 microns, a mean particle size of up to about 1.1 microns, and a surface area of up to about 50,000 cm2/gm., silica gel or colloidal silica, and complex amorphous alkali metal aluminosilicate.
[0044]When visually clear gels are employed, a polishing agent of colloidal silica, such as those sold under the trademark SYLOID as Syloid 72 and Syloid 74 or under the trademark SANTOCEL as Santocel 100, alkali metal alumino-silicate complexes are particularly useful since they have refractive indices close to the refractive indices of gelling agent-liquid (including water and/or humectant) systems commonly used in dentifrices.
[0045]Many of the so-called "water insoluble" polishing materials are anionic in character and also include small amounts of soluble material. Thus, insoluble sodium metaphosphate may be formed in any suitable manner as illustrated by Thorpe's Dictionary of Applied Chemistry, Volume 9, 4th Edition, pp. 510-511. The forms of insoluble sodium metaphosphate known as Madrell's salt and Kurrol's salt are further examples of suitable materials. These metaphosphate salts exhibit only a minute solubility in water, and therefore are commonly referred to as insoluble metaphosphates (IMP). There is present therein a minor amount of soluble phosphate material as impurities, usually a few percent such as up to 4% by weight. The amount of soluble phosphate material, which is believed to include a soluble sodium trimetaphosphate in the case of insoluble metaphosphate, may be reduced or eliminated by washing with water if desired. The insoluble alkali metal metaphosphate is typically employed in powder form of a particle size such that no more than 1% of the material is larger than 37 microns.
[0046]The polishing material is generally present in the solid or pasty compositions in weight concentrations of about 10% to about 99%. Preferably, it is present in amounts from about 10% to about 75% in toothpaste, and from about 70% to about 99% in toothpowder. In toothpastes, when the polishing material is silicious in nature, it is generally present in amount of about 10-30% by weight. Other polishing materials are typically present in amount of about 30-75% by weight.
[0047]In a toothpaste, the liquid vehicle may comprise water and humectant typically in an amount ranging from about 10% to about 80% by weight of the preparation. Glycerine, propylene glycol, sorbitol and polypropylene glycol exemplify suitable humectants/carriers. Also advantageous are liquid mixtures of water, glycerine and sorbitol. In clear gels where the refractive index is an important consideration, about 2.5-30% w/w of water, 0 to about 70% w/w of glycerine and about 20-80% w/w of sorbitol are preferably employed.
[0048]Toothpaste, creams and gels typically contain a natural or synthetic thickener or gelling agent in proportions of about 0.1 to about 10, preferably about 0.5 to about 5% w/w. A suitable thickener is synthetic hectorite, a synthetic colloidal magnesium alkali metal silicate complex clay available for example as Laponite (e.g. CP, SP 2002, D) marketed by Laporte Industries Limited. Laponite D is, approximately by weight 58.00% SiO2, 25.40% MgO, 3.05% Na2O, 0.98% Li2O, and some water and trace metals. Its true specific gravity is 2.53 and it has an apparent bulk density of 1.0 g/ml at 8% moisture.
[0049]Other suitable thickeners include Irish moss, iota carrageenan, gum tragacanth, starch, polyvinylpyrrolidone, hydroxyethylpropylcellulose, hydroxybutyl methyl-cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose (e.g. available as Natrosol), sodium carboxymethyl cellulose, and colloidal silica such as finely ground Syloid (e.g. 244). Solubilizing agents may also be included such as humectant polyols such propylene glycol, dipropylene glycol and hexylene glycol, cellosolves such as methyl cellosolve and ethyl cellosolve, vegetable oils and waxes containing at least about 12 carbons in a straight chain such as olive oil, castor oil and petrolatum and esters such as amyl acetate, ethyl acetate and benzyl benzoate.
[0050]It will be understood that, as is conventional, the oral preparations are to be sold or otherwise distributed in suitable labelled packages. Thus, a jar of mouthrinse will have a label describing it, in substance, as a mouthrinse or mouthwash and having directions for its use; and a toothpaste, cream or gel will usually be in a collapsible tube, typically aluminium, lined lead or plastic, or other squeeze, pump or pressurized dispenser for metering out the contents, having a label describing it, in substance, as a toothpaste, gel or dental cream.
[0051]Organic surface-active agents are used in the compositions of the present invention to achieve increased prophylactic action, assist in achieving thorough and complete dispersion of the active agent throughout the oral cavity, and render the instant compositions more cosmetically acceptable. The organic surface-active material is preferably anionic, nonionic or ampholytic in nature which does not denature the antibody of the invention, and it is preferred to employ as the surface-active agent a detersive material which imparts to the composition detersive and foaming properties while not denaturing the antibody. Suitable examples of anionic surfactants are water-soluble salts of higher fatty acid monoglyceride monosulfates, such as the sodium salt of the monosulfated monoglyceride of hydrogenated coconut oil fatty acids, higher alkyl sulfates such as sodium lauryl sulfate, alkyl aryl sulfonates such as sodium dodecyl benzene sulfonate, higher alkylsulfo-acetates, higher fatty acid esters of 1,2-dihydroxy propane sulfonate, and the substantially saturated higher aliphatic acyl amides of lower aliphatic amino carboxylic acid compounds, such as those having 12 to 16 carbons in the fatty acid, alkyl or acyl radicals, and the like. Examples of the last mentioned amides are N-lauroyl sarcosine, and the sodium, potassium, and ethanolamine salts of N-lauroyl, N-myristoyl, or N-palmitoyl sarcosine which should be substantially free from soap or similar higher fatty acid material. The use of these sarconite compounds in the oral compositions of the present invention is particularly advantageous since these materials exhibit a prolonged marked effect in the inhibition of acid formation in the oral cavity due to carbohydrates breakdown in addition to exerting some reduction in the solubility of tooth enamel in acid solutions. Examples of water-soluble nonionic surfactants suitable for use with antibodies are condensation products of ethylene oxide with various reactive hydrogen-containing compounds reactive therewith having long hydrophobic chains (e.g. aliphatic chains of about 12 to 20 carbon atoms), which condensation products ("ethoxamers") contain hydrophilic polyoxyethylene moieties, such as condensation products of poly (ethylene oxide) with fatty acids, fatty alcohols, fatty amides, polyhydric alcohols (e.g. sorbitan monostearate) and polypropyleneoxide (e.g. Pluronic materials).
[0052]Surface active agent is typically present in amount of about 0.1-5% by weight. It is noteworthy, that the surface active agent may assist in the dissolving of the antibody of the invention and thereby diminish the amount of solubilizing humectant needed.
[0053]Various other materials may be incorporated in the oral preparations of this invention such as whitening agents, preservatives, silicones, chlorophyll compounds and/or ammoniated material such as urea, diammonium phosphate, and mixtures thereof. These adjuvants, where present, are incorporated in the preparations in amounts which do not substantially adversely affect the properties and characteristics desired.
[0054]Any suitable flavouring or sweetening material may also be employed. Examples of suitable flavouring constituents are flavouring oils, e.g. oil of spearmint, peppermint, wintergreen, sassafras, clove, sage, eucalyptus, marjoram, cinnamon, lemon, and orange, and methyl salicylate. Suitable sweetening agents include sucrose, lactose, maltose, sorbitol, xylitol, sodium cyclamate, perillartine, AMP (aspartyl phenyl alanine, methyl ester), saccharine, and the like. Suitably, flavour and sweetening agents may each or together comprise from about 0.1% to 5% more of the preparation.
[0055]In the preferred practice of this invention an oral composition according to this invention such as mouthwash or dentifrice containing the composition of the present invention is preferably applied regularly to the gums and teeth, such as every day or every second or third day or preferably from 1 to 3 times daily, at a pH of about 4.5 to about 9, generally about 5.5 to about 8, preferably about 6 to 8, for at least 2 weeks up to 8 weeks or more up to a lifetime.
[0056]The compositions of this invention can be incorporated in lozenges, or in chewing gum or other products, e.g. by stirring into a warm gum base or coating the outer surface of a gum base, illustrative of which may be mentioned jelutong, rubber latex, vinylite resins, etc., desirably with conventional plasticizers or softeners, sugar or other sweeteners or such as glucose, sorbitol and the like.
[0057]The composition of this invention also includes targeted delivery vehicles such as periodontal pocket irrigation devices, collagen, elastin, or synthetic sponges, membranes or fibres placed in the periodontal pocket or used as a barrier membrane or applied directly to the tooth root.
[0058]Another important form of the invention is a vaccine based on the inactivated complex and suitable adjuvant delivered by nasal spray, orally or by injection to produce a specific immune response against the complex thereby reducing colonisation of P. gingivalis and neutralising the complex thereby preventing disease. A vaccine can also be based upon a recombinant component of the complex incorporated into an appropriate vector and expressed in a suitable transformed host (eg. E. coli, Bacillus subtilis, Saccharomyces cerevisiae, COS cells, CHO cells and HeLa cells) containing the vector. Unlike whole P. gingivalis cells or other previously prepared antigens based on fimbriae or the capsule the complex is a safe and effective antigens for the preparation of a composition for use in the prevention of P. gingivalis-associated periodontal disease. The complex can be produced using recombinant DNA methods as illustrated herein, or can be synthesized chemically from the amino acid sequence disclosed in the present invention. Additionally, according to the present invention, the complex may be used to generate P. gingivalis antisera useful for passive immunization against periodontal disease and infections caused by P. gingivalis.
[0059]Various adjuvants are used in conjunction with vaccine formulations. The adjuvants aid by modulating the immune response and in attaining a more durable and higher level of immunity using smaller amounts of vaccine antigen or fewer doses than if the vaccine antigen were administered alone. Examples of adjuvants include incomplete Freunds adjuvant (IFA), Adjuvant 65 (containing peanut oil, mannide monooleate and aluminium monostrearate), oil emulsions, Ribi adjuvant, the pluronic polyols, polyamines, Avridine, Quil A, saponin, MPL, QS-21, and mineral gels such as aluminium salts. Other examples include oil in water emulsions such as SAF-1, SAF-0, MF59, Seppic ISA720, and other particulate adjuvants such as ISCOMs and ISCOM matrix. An extensive but exhaustive list of other examples of adjuvants are listed in Cox and Coulter 1992 [In: Wong W K (ed.) Animals parasite control utilising technology. Bocca Raton; CRC press, 1992; 49-112]. In addition to the adjuvant the vaccine may include conventional pharmaceutically acceptable carriers, excipients, fillers, buffers or diluents as appropriate. One or more doses of the vaccine containing adjuvant may be administered prophylactically to prevent periodontitis or therapeutically to treat already present periodontitis.
[0060]In another preferred composition the preparation is combined with a mucosal adjuvant and administered via the oral or nasal route. Examples of mucosal adjuvants are cholera toxin and heat labile E. coli toxin, the non-toxic B sub-units of these toxins, genetic mutants of these toxins which have reduced toxicity. Other methods which may be utilised to deliver the complex orally or nasally include incorporation of the complex into particles of biodegradable polymers (such as acrylates or polyesters) by micro-encapsulation to aid uptake of the microspheres from the gastrointestinal tract or nasal cavity and to protect degradation of the proteins. Liposomes, ISCOMs, hydrogels are examples of other potential methods which may be further enhanced by the incorporation of targeting molecules such as LTB, CTB or lectins (mannan, chitin, and chitosan) for delivery of the complex to the mucosal immune system. In addition to the vaccine and the mucosal adjuvant or delivery system the vaccine may include conventional pharmaceutically acceptable carriers, excipients, fillers, coatings, dispersion media, antibacterial and antifungal agents, buffers or diluents as appropriate.
[0061]Another mode of this embodiment provides for either, a live recombinant viral vaccine, recombinant bacterial vaccine, recombinant attenuated bacterial vaccine, or an inactivated recombinant viral vaccine which is used to protect against infections caused by P. gingivalis. Vaccinia virus is the best known example, in the art, of an infectious virus that is engineered to express vaccine antigens derived from other organisms. The recombinant live vaccinia virus, which is attenuated or otherwise treated so that it does not caused disease by itself, is used to immunise the host. Subsequent replication of the recombinant virus within the host provides a continual stimulation of the immune system with the vaccine antigens such as the antigenic complex, thereby providing long lasting immunity.
[0062]Other live vaccine vectors include: adenovirus, cytomegalovirus, and preferably the poxviruses such as vaccinia (Paoletti and Panicali, U.S. Pat. No. 4,603,112) and attenuated salmonella strains (Stocker et al., U.S. Pat. Nos. 5,210,035; 4,837,151; and 4,735,801; and Curtis et al., 1988, Vaccine 6: 155-160). Live vaccines are particularly advantageous because they continually stimulate the immune system which can confer substantially long-lasting immunity. When the immune response is protective against subsequent P. gingivalis infection, the live vaccine itself may be used in a protective vaccine against P. gingivalis. In particular, the live vaccine can be based on a bacterium that is a commensal inhabitant of the oral cavity. This bacterium can be transformed with a vector carrying a recombinant inactivated complex and then used to colonise the oral cavity, in particular the oral mucosa. Once colonised the oral mucosa, the expression of the recombinant protein will stimulate the mucosal associated lymphoid tissue to produce neutralising antibodies. For example, using molecular biological techniques the genes encoding the complex may be inserted into the vaccinia virus genomic DNA at a site which allows for expression of epitopes but does not negatively affect the growth or replication of the vaccinia virus vector. The resultant recombinant virus can be used as the immunogen in a vaccine formulation. The same methods can be used to construct an inactivated recombinant viral vaccine formulation except the recombinant virus is inactivated, such as by chemical means known in the art, prior to use as an immunogen and without substantially affecting the immunogenicity of the expressed immunogen.
[0063]As an alternative to active immunisation, immunisation may be passive, i.e. immunisation comprising administration of purified immunoglobulin containing antibody against the complex.
[0064]In the context of this disclosure, the terms "adhesin" and "hemagglutinin" may be considered to be synonymous.
[0065]Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
[0066]All publications mentioned in this specification are herein incorporated by reference. Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed in Australia or elsewhere before the priority date of each claim of this application.
[0067]It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
[0068]In order that the nature of the present invention may be more clearly understood preferred forms thereof will now be described with reference to the following Examples.
Example 1
(1) Preparation of Antigenic Complex
A. Triton X-114 Extraction and Affinity Chromatography.
[0069]Porphyromonas gingivalis was grown in an anaerobic chamber (MK3 anaerobic workstation; Don Whitley Scientific Ltd., Shipley, England) at 37° C. on horse blood agar plates supplemented with 10% (v/v) lysed horse blood. Bacterial colonies were used to inoculate brain heart infusion media containing 5 μg/ml of hemin and 0.5 μg/ml of cysteine for batch culture growth. Batch culture growth was monitored at 650 nm using a spectrophotometer (Perkin-Elmer model 295E). Culture purity was routinely checked by Gram stain, microscopic examination and using a variety of biochemical tests. Stocks were maintained as lyophilised cultures. P. gingivalis cells (2L) were grown to late exponential phase and harvested by centrifugation (7500 g, 30 min, 4° C.) and washed twice with PG buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM CaCl2, and 5 mM cysteine-HCl, pH 8.0) in the anaerobic workstation. Cells were resuspended in PG buffer, total volume 60 mL, containing 0.5% v/v Triton X114 and gently mixed at either (a) room temperature for 45 min or (b) 4° C. overnight. For comparison cells were resuspended in PG buffer, total volume 60 mL and subjected to mild sonication using a Branson sonifier 250 with an output control of 3 and a 50% duty cycle. The cell extract was centrifuged (7500 g, 30 min, 4° C.) and the collected supernatant centrifuged (40,000 g, 30 min. 4° C.). The supernatant was then filtered (0.2 μm) and the complex purified by arginine affinity chromatography. Fast protein liquid chromatography (FPLC) was performed at room temperature at a flow rate of 1.0 mL/min. P. gingivalis cell supernatant was applied to an Arg-Sepharose column (Hiload XK 16/10 Q, Pharmacia), installed in a Pharmacia GP-250 FPLC system, in TC 50 buffer (buffer A) (50 mM Tris/HCl, 50 mM NaCl, 5 mM CaCl2, pH 7.4) at a flow rate of 1 mL/min. Non-specifically bound proteins were eluted with a linear gradient of 0-40% TC 50 buffer containing, 500 mM NaCl, 50 mM Tris/HCl, 5 mM CaCl2, pH 7.4 (buffer B) at a flow rate of 1.0 ml/min. The column was re-equilibrated with buffer A and bound proteins eluted with TC 50 buffer containing 500 mM arginine, pH 7.4 at a flow rate of 1 mL/min. The eluent was monitored at 280 nm. All fractions were collected at 4° C. and stored at -70° C. before further processing. A typical affinity chromatogram of the complex is shown in FIG. 1. Arginine eluted FPLC fractions were concentrated using Vivaspin 20 concentrator (10,000 MWCO) (Sartorius, NSW, Australia) by centrifugation at 3000×g for 15 min periods at 4° C. until the eluant was reduced to a volume of approximately 1 mL. The filter membrane of the Vivaspin 20-concentrator was then rinsed with 1 mL of TC 50 buffer. This procedure purifies and inactivates by oxidation the complex which is then stored frozen (-70° C.) and used as an immunogen.
[0070]Benzoyl-L-Arg-p-nitroanilide (Bz-L-Arg-pNA) Sigma, NSW, Australia) and benzyloxycarbonyl-L-Lys-p-nitroanilide (z-L-Lys-p-NA) (Novabiochem, NSW, Australia) were used to assay FPLC fractions for Arg- and Lys proteolytic activity, respectively. Samples of each chromatographic fraction were diluted in TC 150 buffer (total volume of 360 μL) and incubated for 10 minutes at 37° C. with 40 μL of 100 mM cysteine, pH 8. After incubation, 400 μL of either Bz-L-Arg-pNA or z-L-Lys-p-NA substrate [2 mM Bz-L-Arg-pNA or 2 mM z-L-Lys-p-NA dissolved in 3 mL isopropan-2-ol and mixed with 7 ml of enzyme buffer (400 mM Tris-HCl, 100 mM NaCl and 20 mM cysteine), pH 8] was added and the proteolytic activity determined by measuring the absorbance at 410 nm using a diode Array spectrophotometer (model 8452A, Hewlett Packard, Germany) over 3 minutes. The proteolytic activity is expressed in U, where U-μmol substrate converted min-1 at 37° C. The protein concentration of FPLC fractions and purified samples was determined using the Bradford protein assay (BioRad) with BSA as a standard. The protein concentration and proteolytic activity of the complex extracted via the Triton X114 method or sonication method and purified by affinity chromatography is shown in Table 1. The Triton X114 extraction method produced the antigenic complex in a higher yield and higher purity compared to the traditional sonication method, Table 1.
TABLE-US-00007 TABLE 1 Purification of the antigenic complex using Triton X114 and sonication methodologies. Arg Lys Arg Lys Proteolytic Proteolytic Purification Protein Proteolytic Proteolytic activity activity (-fold) (mg) activity (U)* activity (U)# (U mg-1) (U mg-1) Arg Lys Crude cell sonicate{circumflex over ( )} 10.34 ± 2.52 13.60 ± 2.30 1.89 ± 0.78 1.30 ± 0.62 0.18 ± 0.09 1 1 Complex 0.72 ± 0.15 1.23 ± 0.24 0.09 ± 0.02 1.72 ± 0.84 0.12 ± 0.06 1.3 0.68 Purified from the cell sonicate Crude 70.14 ± 9.23 35.62 ± 4.32 4.56 ± 1.35 0.51 ± 0.22 0.07 ± 0.01 1 1 Triton X114 extract{circumflex over ( )} Antigenic 0.63 ± 0.12 2.45 ± 0.68 1.19 ± 0.86 4.11 ± 1.40 1.97 ± 0.56 8.16 30.35 Complex Purified from the Triton X114 extract *Amidolytic activity using 2.0 mM Bz-L-Arg-pNA: 1 unit (U) = 1 μmol min - 1 at 37° C. #Amidolytic activity using 2.0 mM z-L-Lys-pNA: 1 unit (U) = 1 μmol min - 1 at 37° C. {circumflex over ( )}330 ml of TX-114 treated and sonicated P. gingivalis extracts were used for complex purification.
[0071]Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) was performed on FPLC fractions by using a Novex® electrophoresis system (Novex, San Diego, Calif.) with Novex 12% Tris-glycine pre-cast mini gels (Invitrogen, NSW, Australia). RgpA-Kgp complex proteins samples (20 μg) were precipitated by addition of trichloroacetic acid (TCA) to a final concentration of 10% v/v and incubated for 20 min at 4° C. Precipitated proteins were collected by centrifugation (10 min, 13,000 g) and re-suspended in 20 μl of reducing sample buffer (10% w/v SDS, 0.05% w/v bromophenol blue, 25% v/v glycerol and 0.05% v/v 2-Mercaptoehtanol) and the pH adjusted with the addition of 10 μL of 1.5 M Tris/HCl, pH 8.0 and then heated for 5 min at 100° C. Samples were loaded onto the gels and electrophoresis was performed using a current of 30-50 mA and a potential difference of 125 V. After completion of electrophoresis the gels were fixed in destain (methanol/water/acetic acid (45:45:10, v/v) for three minutes at room temperature. For Coomassie blue staining, gels were placed in Coomassie brilliant blue (CBB) (0.2% w/v CBB R250, 30% v/v ethanol, 0.5% v/v acetic acid) and heated in a microwave until boiling and then allowed to cool for five minutes. The stain was removed and destain was added and heated in a microwave until boiling and allowed to cool for five minutes. Protein bands were visualised by rinsing gels in Milli Q water overnight. A typical SDS-PAGE Coomassie blue stained gel of the Triton X114 extracted complex is shown in FIG. 2. Fourteen distinct bands (1 to 14) corresponding to approximate molecular masses of 75, 62, 57, 48, 45, 44, 39, 37, 34, 31, 27, 26, 17 and 15 kDa, respectively, were found. The proteins within these bands were identified using N-terminal sequencing and peptide mass fingerprinting techniques.
[0072]For N-terminal sequence analysis and Western blotting, proteins were transferred onto a PVDF membrane (Problott, Applied Biosystems) using a transblot cell (Bio-Rad). The PVDF membrane was wetted in 100% methanol and soaked in transfer buffer (10 mM CAPS, 10% v/v methanol, pH 11.5). Transfer was performed using a potential difference of 60 V for 90 min. For N-terminal sequencing membranes were stained with 0.1% (w/v) Coomassie brilliant blue R250 in methanol/water/acetic acid for 30 sec and destained in 50% v/v methanol. Protein bands were excised and N-terminal sequences determined using a Hewlett Packard 10005A protein sequencer. For peptide mass fingerprinting analysis; Coomassie blue stained protein bands from SDS-PAGE were excised and subjected to in-gel trypsin digestion and subsequent peptide extraction. Protein bands were excised from the Coomassie Blue stained SDS-PAGE gel and gel pieces were washed in 50 mM NH4HCO3/ethanol 1:1, reduced and alkylated with DTT and iodoacetamide, respectively and digested with sequencing grade modified trypsin (Promega) overnight at 37° C. as previously published Mortz et al. (1996). Electrophoresis 17:925-31]. The peptide extract containing 25 mM NH4HCO3 was then analysed by MALDI-TOF MS using an Ultraflex TOF/TOF instrument (Bruker Daltonics) in positive ion and reflectron mode. A saturated solution of 4-hydroxy-α-cyanocinnamic acid (HCCA) was prepared in 97:3 v/v acetone/0.1% v/v aqueous TFA. A thin layer was prepared by pipetting and immediately removing 2 μL of this solution onto the 600 μn anchorchips of the target plate. Sample (0.5 μL) was deposited on the thin layers with 2.5 μL of 0.1% v/v aqueous TFA, and allowed to adsorb for 5 min, after which the sample solution was removed, and the thin layers washed once with 10 μL of ice-cold 0.1% v/v aqueous TFA for 1 min. Spectra were calibrated by close external calibration using a standard peptide mix. Proteins were identified by peptide mass fingerprinting against the P. gingivalis database (available from www.tigr.org) using an in-house Mascot search engine. Table 2 shows the peptide sequences used to identify the SDS-PAGE separated protein bands of the antigenic complex. The SDS-PAGE of the complex (FIG. 2) is annotated with the designation of the proteins identified by N-terminal sequencing and peptide mass fingerprinting.
[0073]The complex was found to consist of: Kgpcat, RgpAcat, RgpAA1, KgpA1, RgpAA3, RgpAA2, KgpA2, HagAA1*, HagAA1*, HagAA3 and HagAA2 as well as partially processed Kgp (residues 1 to 700 and residues 136 to 700). A schematic of the processed domains of RgpA, Kgp and HagA are shown in FIG. 3.
[0074]The Triton X114 extracted complex was analysed by size exclusion chromatography. Size exclusion chromatography was performed using a macrosphere GPC 300 Å column (7 μm, 250×4.6 mm, with exclusion limits of 7,500-1,200,000 Daltons; Alltech, NSW, Australia) installed in a Waters Delta 600 HPLC system (Waters, Australia). Chromatography was performed at a flow rate of 0.5 mL/min in 0.05 M KH2PO4 containing 0.15 M Na2SO4 (pH 7.0). Material eluted from the column was detected by determining absorbance at 280 nm. A standard curve using molecular mass gel filtration standards (Amersham Pharmacia Biotech, Uppsala, Sweden) was used to determine the molecular mass of the eluted fractions. A typical size exclusion chromatogram of the purified Triton X114 extracted complex is shown in FIG. 4. The major peak (peak 1) eluted in the void volume of the column (>300 kDa; antigenic complex) and a second peak (peak 2) eluted with an average molecular mass of 223 kDa (the 223 kDa RgpA-Kgp complex).
TABLE-US-00008 TABLE 2 Identification Data for the proteins in the Arg-affinity purified Triton X114 extracted antigenic complex. Protein Assigned Observed Band designation Identifying peptide mass 1 Kgp (42-700) 42QFDASFSFNEVELTK56 1761.86 (SEQ ID No:4) 61GGTFASVSIPGAFPTGEVGSPEVPAVRK87 2286.3 (SEQ ID No:5) 88KLIAVPVGATPVVR101 1419.93 (SEQ ID No:6) 89LIAVPVGATPVVR101 1291.83 (SEQ ID No:7) 104SFTEQVYSLNQYGSEK119 1879.89 (SEQ ID No:8) 130SDDPEKVPFVYNAAAYAR147 2012.99 (SEQ ID No:9) 148KGFVGQELTQVEMLGTMR165 2024.03 (SEQ ID No:10) 169IAALTINPVQYDVVANQLK187 2070.17 (SEQ ID No:11) 190NNIEIEVSFQGADEVATQR208 2120.03 (SEQ ID No:12) 209LYDASFSPYFETAYK223 1801.85 (SEQ ID No:13) 229DVYTDHGDLYNTPVR243 1764.84 (SEQ ID No:14) 254EALKPWLTWK263 1271.73 (SEQ ID No:15) 267GFYLDVHYTDEAEVGTTNASIK288 2430.15 (SEQ ID No:16) 295YNDGLAASAAPVFLALVGDTDVISGEK321 2693.38 (SEQ ID No:17) 328VTDLYYSAVDGDYFPEMYTFR348 2552.11 (SEQ ID No:18) 383VLLIAGADYSWNSQVGQPTIK401 2260.21 (SEQ ID No:19) 402YGMQYYYNQEHGYTDVYNYLK422 2712.18 (SEQ ID No:20) 602TNTYTLPASLPQNQASYSIQASAGSYVAISK632 3231.66 (SEQ ID No:21) 633DGVLYGTGVANASGVATVSMTK654 2098.07 (SEQ ID No:22) 655QITENGNYDVVITR668 1621.83 (SEQ ID No:23) 677QIQVGEPSPYQPVSNLTATTQGQK700 2571.31 (SEQ ID No:24) 2 Kgp (136-700) 136VPFVYNAAAYAR147 1341.77 (SEQ ID No:25) 149GFVGQELTQVEMLGTMR165 1896.02 (SEQ ID No:26) 169IAALTINPVQYDWANQLK187 2070.27 (SEQ ID No:11) 190NNIEIEVSFQGADEVATQR208 2120.13 (SEQ ID No:12) 209LYDASFSPYFETAYK223 1801.93 (SEQ ID No:13) 229DVYTDHGDLYNTPVR243 1764.91 (SEQ ID No:14) 254EALKPWLTWK263 1271.78 (SEQ ID No:15) 267GFYLDVHYTDEAEVGTTNASIK288 2430.28 (SEQ ID No:16) 295YNDGLAASAAPVFLALVGDTDVISGEK321 2693.54 (SEQ ID No:17) 328VTDLYYSAVDGDYFPEMYTFR349 2552.25 (SEQ ID No:18) 349MSASSPEELTNIIDK363 1634.88 (SEQ ID No:27) 381VLLIAGADYSWNSQVGQPTIK401 2260.32 (SEQ ID No:19) 402YGMQYYYNQENGYTDVYNYLK422 2712.38 (SEQ ID No:20) 633DGVLYGTGVANASGVATVSMTK654 2098.16 (SEQ ID No:22) 655QITENGNYDVVITR668 1621.9 (SEQ ID No:23) 677QIQVGEPSPYQPVSNLTATTQGQK700 2571.47 (SEQ ID No:24) 3 Kgpcat 1DVYTDHGDLYNTPVR15 1765.02 (SEQ ID No:14) 26EALKPWLTWK35 1271.86 (SEQ ID No:15) 39GFYLDVHYTDEAEVGTTNASIK60 2430.44 (SEQ ID No:16) 67YNDGLAASAAPVFLALVGDTDVISGEK93 2693.71 (SEQ ID No:17) 100VTDLYYSAVDGDYFPEMYTFR120 2552.43 (SEQ ID No:18) 125MSASSPEELTNIIDK135 1635 (SEQ ID No:27) 153VLLIAGADYSWNSQVGQPTIK173 2260.47 (SEQ ID No:19) 174YGMQYYYNQEHGYTDVYNYLK194 2712.57 (SEQ ID No:20) 374TNTYTLPASLPQNQASYSIQASAGSYVAISK404 3232.08 (SEQ ID No:21) 405DGVLYGTGVANASGVATVSMTK426 2098.30 (SEQ ID No:22) 427QITENGNYDVVITR440 1621.99 (SEQ ID No:23) 449QIQVGEPSPYQPVSNLTATTQGQK472 2571.62 (SEQ ID No:24) 4 RgpAcat 228YTPVEEK234 865.44 (SEQ ID No:28) 269VAEDIASPVTANAIQQFVK287 2001.19 (SEQ ID No:29) 293EGNDLTYVLLIGDHK307 1686.98 (SEQ ID No:30) 319SDQVYGQIVGNDHYNEVFIGR339 2410.24 (SEQ ID No:31) 412CYDPGVTPK420 1036.53 (SEQ ID No:32) 421NIIDAFNGGISLANYTGHGSETAWGTSHFGTTHVK455 3661.11 (SEQ ID No:33) 493DGKPTGTVAIIASTINQSWASPMR516 2501.4 (SEQ ID No:34) 517GQDEMNEILCEK528 1465.73 (SEQ ID No:35) 536TFGGVTMNGMFAMVEK551 1719.9 (SEQ ID No:36) 559MLDTWTVFGDPSLLVR574 1850.06 (SEQ ID No:37) 5 RgpAA1 101IWIAGQGPTK110 1070.69 (SEQ ID No:38) 122YHFLMKK128 966 (SEQ ID No:39) 111EDDYVFEAGK120 1172.62 (SEQ ID No:40) 129MGSGDGTELTISEGGGSDYTYTVYR153 2616.31 (SEQ ID No:41) 160EGLTATTFEEDGVAAGNHEYCVEVK184 2726.43 (SEQ ID No:42) 195DVTVEGSNEFAPVQNLTGSAVGQK219 2447.39 (SEQ ID No:43) 6 KgpA1 101MWIAGDGGNQPAR113 1372.8 (SEQ ID No:44) 114YDDFTFEAGK123 1192.65 (SEQ ID No:45) 114YDDFTFEAGKK124 1320.77 (SEQ ID No:46) 124KYTFTMR130 946.57 (SEQ ID No:47) 132AGMGDGTDMEVEDDSPASYTYTVYR155 2730 (SEQ ID No:48) 161IKEGLTATTFEEDGVAAGNHEYCVEVK187 2967.7 (SEQ ID No:49) 163EGLTATTFEEDGVAAGNHEYCVEVK187 2726.54 (SEQ ID No:42) 199DVTVEGSNEFAPVQNLTGSSVGQK222 2463.48 (SEQ ID No:43) 373GRIQGTWRQK382 1230.6 (SEQ ID No:50) 7 HagAA1*/A1** 112HFGCTGIFR120 (HagAA1* peptide 1094.56 confirmed by LIFT ms/ms) (SEQ ID No:51) 95TIDLSAYAGQQVYLAFR111 1916.57 (HagAA1* sequence) (SEQ ID No:52) 186DVTVEGSNEFAPVQNLTGSAVGQK209 2447.92 (HagAA1* sequence) (SEQ ID No:43) 121LYLDDVAVSGEGSSNDYTYTVYR143 2587.85 (HagAA1* sequence) (SEQ ID No:53) 820/1272PQSVWIER827/1279 1013.56 (HagAA1** sequence) (SEQ ID No:54) 1079/1531TVVTAPEAIRGTR1091/1543 1370.73 (HagAA1** sequence) (SEQ ID No:55) 8 RgPAA2/KgpA2/ 100TGTNAGDFTVVFEETPNGIN119 2083 HagAA2 (2083) (SEQ ID No:56) 80YYYAVNDGFPGDHYAVMISK99 2310.23 (2310) (SEQ ID No:57) 9 RgpAA3 1PQSVWIER8 1014.59 (SEQ ID No:54) 61IKEGLTETTFEEDGVATGNHEYCVEVK87 3055.65 (SEQ ID No:49) 97CVNVTVNSTQFNPVK111 1706.97 (confirmed BY LIFT ms/ms) (SEQ ID No:58) 96KCVNVTVNSTQFNPVK111 1835.09 (SEQ ID No:59) 63EGLTETTFEEDGVATGNHEYCVEVK87 2814.46 (SEQ ID No:42) KgpA3/HagAA3 1PQSVWIER8 1014.59 (SEQ ID No:54) 63EGLTETTFEEDGVATGNHEYCVEVK87 2814.46 (SEQ ID No:42) 61IKEGLTETTFEEDGVATGNHEYCVEVK87 3055.65 (SEQ ID No:49)
(2) Preparation of Antibodies
[0075]Polyclonal antiserum to the complex was raised in mice by immunising with the O2-inactivated complex subcutaneously. The mice were immunised at day 0 with 25 μg of protein in incomplete Freund's adjuvant and day 30 with 25 μg of protein in incomplete Freund's adjuvant. Immunisations were carried out using standard procedures. Polyclonal antisera having a high titre against P. gingivalis was obtained. If desired the antibodies directed specifically against P. gingivalis can be obtained using standard procedures.
Example 2
Methods and Compounds for Vaccine Formulations Related to Antigenic Complex
[0076]This embodiment of the present invention is to provide complex protein to be used in as an immunogen in a prophylactic and/or therapeutic vaccine for active immunisation to protect against or treat infections caused by P. gingivalis. For vaccine purposes, an antigen of P. gingivalis comprising a bacterial protein should be immunogenic, and induce functional antibodies directed to one or more surface-exposed epitopes on intact bacteria, wherein the epitope(s) are conserved amongst strains of P. gingivalis.
Protective Efficacy of Immunisation with the Antigenic Complex in Animal Models
[0077]The protective efficacy of the antigenic complex was evaluated in two internationally accepted animal models of P. gingivalis-infection i.e the lesion model and the periodontitis model. For the lesion model of disease, the maximum sizes of the lesions developed were statistically analyzed using the Kruskal-Wallis test and Mann-Whitney U-Wilcoxon rank sum test with a Bonferroni correction for type 1 error [Norusis M J (1993). SPPS for Windows: Base systems user's guide. Release 6.0 Chicago, Il, USA: SPSS Inc]. For the periodontitis model, the bone loss (mm2) data were statistically analyzed using One-Way analysis of variance and Dunnett's T3 test [Norusis M J (1993). SPPS for Windows: Base systems user's guide. Release 6.0 Chicago, Ill., USA: SPSS Inc]. Effect sizes, represented as Cohen's d were calculated using the effect size calculator provided on-line by Evidence-Based Education UK web site at http://www.cemcentre.org/ebeuk/research/effectsize/default.htm. According to Cohen [Cohen J (1969). Statistical Power Analysis for the Behavioural Sciences. New York: Academic Press] a small effect size is d≧0.2 and <0.5, moderate d≧0.5<0.8 and large d≧0.8
(1). Murine Lesion Model of P. Gingivalis Infection.
[0078]This model is loosely based on the methods described by Kesavalu et al (1992) [Infect Immun 60:1455-1464]. A typical experiment is outlined below. The murine lesion model protocols were approved by the University of Melbourne Ethics Committee for Animal Experimentation. BALB/c mice 6-8 weeks old (10 mice/group) were immunized subcutaneously (scruff of the neck, 100 μL) with 25 μg of the Triton X114 extracted antigenic complex, 25 μg of sonication extracted RgpA-Kgp complex or phosphate buffered saline (pH 7.4) emulsified in Freund's adjuvant (IFA). After 30 days mice were boosted with antigen or PBS (subcutaneous injection, emulsified in IFA) and then 12 days later bled from the retrobulbar plexus. Two days after bleeding, mice were challenged with 7.5×109 viable cells of P. gingivalis strain ATCC 33277 by subcutaneous injection (100 μl) in the abdomen, and the lesions sizes measured over 14 days.
[0079]The P. gingivalis inocula were prepared in PG buffer in the anaerobic workstation as described by O'Brien-Simpson et al [O'Brien-Simpson N et al. (2000). Infect Immun 68:4055-4063]. The number of viable cells in the inocula was verified by enumeration on horse blood agar plates. Lesion sizes were statistically analyzed using the Kruskal-Wallis test and the Mann-Whitney U-Wilcoxon rank sum test with a Bonferroni correction for type 1 error. The average lesion size of mice immunized with the antigenic complex extracted via Triton X114 or sonication was significantly (p<0.01; p<0.05, respectively) smaller than that of the PBS/EFA control group, indicating that immunization of mice with complex protects against P. gingivalis infection (FIG. 5). Furthermore, the Triton X114 extracted complex was more effective in protecting mice against P. gingivalis-induced lesions as indicated by the larger effect size of d=-1.85 (99.9% CI: -3.18, -0.32) compared to d=-1.32 (95% CI: -2.08, -0.10). Although, there was no significant difference in the lesion sizes of mice immunised with the Triton X114 or sonication extracted complex, the Triton X114 extracted complex when used as a vaccine was more effective in providing protection with an effect size of d=-0.42 (95% CI: -1.37, 0.49) compared to the sonication extracted complex. Moreover, only fifty percent of the mice immunised with the Triton X114 extracted complex developed P. gingivalis-induced lesions, whereas 70% of the mice immunised with sonication extracted complex developed lesions.
(2). Murine Periodontitis Model of P. Gingivalis Infection.
[0080]The murine periodontitis experiments were based on the model of Baker et al 1994 [Arch Oral Biol 39:1035-40] and were approved by the University of Melbourne Ethics Committee for Animal Experimentation. BALB/c mice 6-8 weeks old (10 mice per group) were immunized subcutaneously (s.c. 100 mL) with either 25 μg of the Triton X114 extracted complex or phosphate buffered saline (PBS), pH 7.4 emulsified in incomplete Freund's adjuvant (IFA). After 30 days the mice were boosted with antigen (s.c. injection, emulsified in IFA) and then bled 12 days later from the retrobulbar plexus. After bleeding mice received kanamycin (Sigma, New South Wales, Australia) at 1 mg/mL in deionised water ad libitum for 7 days. Three days after the antibiotic treatment mice were orally inoculated four times, two days apart with 1×1010 viable P. gingivalis W50 cells (25 μL) in PG buffer containing 2% wt/vol carboxymethylcellulose (CMC, Sigma, New South Wales, Australia), a control group was sham-infected with PG buffer containing 2% wt/vol CMC alone. Two weeks later mice received another four doses (2 days apart) of 1×1010 viable P. gingivalis W50 cells (25 μL) in PG buffer containing 2% wt/vol CMC. The number of viable cells in each inoculum was verified by enumeration on HB agar. Twenty-eight days after the second oral challenge mice were killed and the maxillae removed.
[0081]Maxillae were boiled (1 min) in deionised water, mechanically defleshed and immersed in 2% wt/vol potassium hydroxide (16 hours, 25° C.). The maxillae were then washed (2× deionised water) and immersed in 3% wt/vol hydrogen peroxide (6 hours, 25° C.). After washing (2× deionised water) the maxillae were stained with 0.1% wt/vol aqueous methylene blue and a digital image of the buccal side was captured with a Sound and Vision digital camera (Scitech Pty. Ltd, Melbourne, Australia) mounted on a dissecting microscope using Adobe Photoshop version 4.0 to assess horizontal bone loss. Horizontal bone loss is loss occurring in a horizontal plane, perpendicular to the alveolar bone crest that results in a reduction of the crest height. Maxillae were aligned so that the buccal and lingual molar cusps were superimposed. A micrometer scale in plane with the maxillae was digitally imaged at the same time so that measurements could be standardised for each image. The area from the cementoenamel junction (CEJ) to the alveolar bone crest (ABC) for each tooth was measured using Scion Image Beta 4.02 (Scion Corporation, Frederick, Md.) imaging software downloaded from the Scion Corporation website (http://www.scioncorp.com/index.htm). Bone loss measurements were determined twice in a random and blinded protocol by two standardised examiners. FIG. 6 shows that the Triton X114 extracted complex provided significant (p<0.001) protection from P. gingivalis-induced bone loss compared to control infected group, as well as, being significantly more effective (d=-2.45, 99.9% CI: -4.73, -0.93) in providing protection against P. gingivalis-induced periodontitis compared to the non-specific highly immunogenic protein diphtheria toxoid.
[0082]These data show clearly that the antigenic complex extracted using the Triton X114 methodology is far superior to the sonication extraction method in providing protection against P. gingivalis-induced lesions and that the Triton X114 extracted complex also confers protection against bone loss in animal models of disease.
Example 3
[0083]In one illustration of the antigenic complex having the properties desirable of a vaccine antigen, the protein was purified from P. gingivalis using the method described herein in Example 1. Mice were immunized with the purified inactivated Triton X114 and sonication extracted complex (25 μg) with adjuvant (IFA) two times at four week intervals. The purified complex was inactivated by air oxidation. Blood from the immunized mice was drawn 32 days after the last immunization and the immune sera were pooled. The pooled immune sera were assayed against the complex by an enzyme linked immunosorbent assay (ELISA) and a Western blot. ELISAs were performed in triplicate in wells of flat-bottom polyvinyl microtitre plates (Dynatech laboratories, McLean, Va.) coated with 10 μg/ml of P. gingivalis whole cells in 0.1 M phosphate-buffered saline (PBS), pH 7.4, overnight at 4° C. After removal of coating solution, 2% (w/v) skim milk powder in PBS, pH 7.4, containing 0.1% (v/v) Tween 20 was added to wells to block the uncoated plastic for 1 h at room temperature. After washing four times with PBS, pH 7.4 containing 0.1% v/v Tween 20 (PBST), serial dilutions of mouse sera in PBS, pH 7.4 containing 0.5% v/v skim milk (SK-PBS) were added to each well and incubated for 16 h at room temperature. After washing six times (PBST), a 1/2000 dilution of goat antisera to mouse IgM, IgA, IgG1, IgG2a, IgG2b, or IgG3 (Sigma, NSW, Australia) were added in SK-PBS and allowed to bind for 2 h at room temperature. Plates were washed six times (PBST) and a 1/5,000 dilution of horseradish peroxidase-conjugated rabbit anti-goat immunoglobulin in SK-PBS was added to each well. After washing (6 times, PBST), 100 μl of ABTS substrate [(0.9 mM 2,2'-azino-bis(3-ethylbenz-thiazoline-6) sulfonic acid) in 80 mM citric acid containing 0.005% (v/v) hydrogen peroxide, pH 4.0] was added to each well. The optical density at 415 nm (OD415) was measured using a BioRad microplate reader (BioRad microplate reader, model 450). ELISA titers were determined as the reciprocal of the dilution at which absorbance was double the background level, with each titer representing the mean±standard deviation of three values. The results, shown in FIG. 7, demonstrate that immunisation with inactivated complex extracted using the Triton X114 methodology elicit higher titer antibodies compared to the sonication extraction method. The Triton X114 extracted complex induced higher IgG, IgG1, IgG2a, IgG2b and IgG3 antibodies compared to the sonication extracted complex, with the predominant antibody being IgG1 (equivalent to IgG4 in humans), which has been shown to be the antibody that is involved in a protective immune response [O'Brien-Simpson et al. (2000). Infect Immun 68:4055-406; O'Brien-Simpson et al (2000) Infect Immun 68: 2704-2712].
[0084]The purified Triton X114 extracted complex and the sonication extracted RgpA-Kgp complex were subjected to SDS-PAGE and electrophorectically transferred onto PVDF membrane as described above. After sectioning the membrane the molecular weight standards were stained with 0.1% wt/vol CBB R250. The remaining sections were blocked for 1 hour at 20° C. with 5% wt/vol non-fat skim milk powder in TN buffer (50mM Tris-HCl, pH 7.4, 100mM NaCl). Sections were subsequently incubated with either anti-complex (Triton X114 extracted) antisera or anti-RgpA-Kgp complex (sonication extracted) antisera diluted 1:50 with TN buffer. After 16 hours at 20° C. the sections were washed (4×TN buffer containing 0.05% vol/vol Tween 20, 10 mins) and then incubated for an hour at 20° C. with horseradish peroxidase-conjugated goat immunoglobulin (Ig) directed against mouse Ig (1/400 dilution) (Sigma, NSW, Australia). After washing (4×TN buffer containing 0.05% vol/vol Tween 20, 10 mins) bound antibody was detected with 0.05% wt/vol 4-chloro-1-napthol in TN buffer containing 16.6% vol/vol methanol and 0.015% wt/vol H2O2. Colour development was stopped by rinsing the membranes with Milli Q water. The anti-complex antisera (Triton X114 extracted) had a strong immunoreactive response to proteins of molecular weights 44, 39 and 30 kDa corresponding to the antigenic complex proteins RgpAA1, KgpA1 and HagAA1*/** (FIG. 8). The anti-RgpA-Kgp complex antisera (sonication extracted) also had a strong immunoreactive response to proteins of molecular weights 44, and 39 kDa corresponding to the antigenic complex proteins RgpAA1 and KgpA1 but had a very weak response to the HagAA1*/** adhesin (FIG. 8). The immunoreactive 45 kDa protein band was found not to be the RgpAcat proteinase domain as the complex antisera did not recognise the RgpB proteinase, which has 97% sequence identity to the RgpA proteinase, suggesting that the immunoreactive band detected at 45 kDa was also derived from the adhesins. These data indicate that the complex extracted using the Triton X±14 method produces a strong antibody response directed towards the A1 adhesins of RgpA; Kgp and HagA polyproteins. These protein share a high degree of sequence similarity and each contain the previously described protective peptide epitopes ABM1, ABM2 and ABM3 (WO 98/49192). These results suggest that the large cell surface complexes on P. gingivalis are composed of non-covalently associated, processed domains of all three polyproteins, RgpA, Kgp and HagA. The superiority of the Triton X114-extracted complex in protection may, therefore, relate to the vaccine antigen more closely resembling the form of the proteins on the cell surface.
[0085]Additional evidence supporting the immunogenicity of the antigenic complex comes from a study of the human immune response in which 86% of 43 patients with adult periodontitis had specific IgG in their sera to the complex.
Example 4
[0086]The following is an example of a proposed toothpaste formulation containing anti-(complex) antibodies.
TABLE-US-00009 Ingredient % w/w Dicalcium phosphate dihydrate 50.0 Glycerol 20.0 Sodium carboxymethyl cellulose 1.0 Sodium lauryl sulphate 1.5 Sodium lauroyl sarconisate 0.5 Flavour 1.0 Sodium saccharin 0.1 Chlorhexidine gluconate 0.01 Dextranase 0.01 Goat serum containing anti-Antigenic Complex antibodies 0.2 Water balance
Example 5
[0087]The following is an example of a proposed toothpaste formulation.
TABLE-US-00010 Ingredient % w/w Dicalcium phosphate dihydrate 50.0 Sorbitol 10.0 Glycerol 10.0 Sodium carboxymethyl cellulose 1.0 Sodium lauryl sulphate 1.5 Sodium lauroyl sarconisate 0.5 Flavour 1.0 Sodium saccharin 0.1 Sodium monofluorophosphate 0.3 Chlorhexidine gluconate 0.01 Dextranase 0.01 Bovine serum containing anti-Antigenic Complex antibodies 0.2 Water balance
Example 6
[0088]The following is an example of a proposed toothpaste formulation.
TABLE-US-00011 Ingredient % w/w Dicalcium phosphate dihydrate 50.0 Sorbitol 10.0 Glycerol 10.0 Sodium carboxymethyl cellulose 1.0 Lauroyl diethanolamide 1.0 Sucrose monolaurate 2.0 Flavour 1.0 Sodium saccharin 0.1 Sodium monofluorophosphate 0.3 Chlorhexidine gluconate 0.01 Dextranase 0.01 Bovine milk Ig containing anti-Antigenic Complex antibodies 0.1 Water balance
Example 7
[0089]The following is an example of a proposed toothpaste formulation.
TABLE-US-00012 Ingredient % w/w Sorbitol 22.0 Irish moss 1.0 Sodium Hydroxide (50%) 1.0 Gantrez 19.0 Water (deionised) 2.69 Sodium Monofluorophosphate 0.76 Sodium saccharine 0.3 Pyrophosphate 2.0 Hydrated alumina 48.0 Flavour oil 0.95 anti-Antigenic Complex mouse monoclonal antibody 0.3 sodium lauryl sulphate 2.00
Example 8
[0090]The following is an example of a proposed liquid toothpaste formulation.
TABLE-US-00013 Ingredient % w/w Sodium polyacrylate 50.0 Sorbitol 10.0 Glycerol 20.0 Flavour 1.0 Sodium saccharin 0.1 Sodium monofluorophosphate 0.3 Chlorhexidine gluconate 0.01 Ethanol 3.0 Equine Ig containing anti-Antigenic Complex antibodies 0.2 Linolic acid 0.05 Water balance
Example 9
[0091]The following is an example of a proposed mouthwash formulation.
TABLE-US-00014 Ingredient % w/w Ethanol 20.0 Flavour 1.0 Sodium saccharin 0.1 Sodium monofluorophosphate 0.3 Chlorhexidine gluconate 0.01 Lauroyl diethanolamide 0.3 Rabbit Ig containing anti-Antigenic Complex antibodies 0.2 Water balance
Example 10
[0092]The following is an example of a proposed mouthwash formulation.
TABLE-US-00015 Ingredient % w/w Gantrez S-97 2.5 Glycerine 10.0 Flavour oil 0.4 Sodium monofluorophosphate 0.05 Chlorhexidine gluconate 0.01 Lauroyl diethanolamide 0.2 Anti-Antigenic Complex mouse monoclonal antibody 0.3 Water balance
Example 11
[0093]The following is an example of a proposed lozenge formulation.
TABLE-US-00016 Ingredient % w/w Sugar 75-80 Corn syrup 1-20 Flavour oil 1-2 NaF 0.01-0.05 Anti-Antigenic Complex mouse monoclonal antibody 0.3 Mg stearate 1-5 Water balance
Example 12
[0094]The following is an example of a proposed gingival massage cream formulation.
TABLE-US-00017 Ingredient % w/w White petrolatum 8.0 Propylene glycol 4.0 Stearyl alcohol 8.0 Polyethylene Glycol 4000 25.0 Polyethylene Glycol 400 37.0 Sucrose monostearate 0.5 Chlorhexidine gluconate 0.1 Anti-Antigenic Complex mouse monoclonal antibody 0.3 Water balance
Example 13
[0095]The following is an example of a proposed chewing gum formulation.
TABLE-US-00018 Ingredient % w/w Gum base 30.0 Calcium carbonate 2.0 Crystalline sorbitol 53.0 Glycerine 0.5 Flavour oil 0.1 Anti-Antigenic Complex mouse monoclonal antibody 0.3 Water balance
[0096]It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Sequence CWU
1
7011706PRTPorphyromonas gingivalis 1Met Lys Asn Leu Asn Lys Phe Val Ser
Ile Ala Leu Cys Ser Ser Leu1 5 10
15Leu Gly Gly Met Ala Phe Ala Gln Gln Thr Glu Leu Gly Arg Asn
Pro20 25 30Asn Val Arg Leu Leu Glu Ser
Thr Gln Gln Ser Val Thr Lys Val Gln35 40
45Phe Arg Met Asp Asn Leu Lys Phe Thr Glu Val Gln Thr Pro Lys Gly50
55 60Ile Gly Gln Val Pro Thr Tyr Thr Glu Gly
Val Asn Leu Ser Glu Lys65 70 75
80Gly Met Pro Thr Leu Pro Ile Leu Ser Arg Ser Leu Ala Val Ser
Asp85 90 95Thr Arg Glu Met Lys Val Glu
Val Val Ser Ser Lys Phe Ile Glu Lys100 105
110Lys Asn Val Leu Ile Ala Pro Ser Lys Gly Met Ile Met Arg Asn Glu115
120 125Asp Pro Lys Lys Ile Pro Tyr Val Tyr
Gly Lys Thr Tyr Ser Gln Asn130 135 140Lys
Phe Phe Pro Gly Glu Ile Ala Thr Leu Asp Asp Pro Phe Ile Leu145
150 155 160Arg Asp Val Arg Gly Gln
Val Val Asn Phe Ala Pro Leu Gln Tyr Asn165 170
175Pro Val Thr Lys Thr Leu Arg Ile Tyr Thr Glu Ile Thr Val Ala
Val180 185 190Ser Glu Thr Ser Glu Gln Gly
Lys Asn Ile Leu Asn Lys Lys Gly Thr195 200
205Phe Ala Gly Phe Glu Asp Thr Tyr Lys Arg Met Phe Met Asn Tyr Glu210
215 220Pro Gly Arg Tyr Thr Pro Val Glu Glu
Lys Gln Asn Gly Arg Met Ile225 230 235
240Val Ile Val Ala Lys Lys Tyr Glu Gly Asp Ile Lys Asp Phe
Val Asp245 250 255Trp Lys Asn Gln Arg Gly
Leu Arg Thr Glu Val Lys Val Ala Glu Asp260 265
270Ile Ala Ser Pro Val Thr Ala Asn Ala Ile Gln Gln Phe Val Lys
Gln275 280 285Glu Tyr Glu Lys Glu Gly Asn
Asp Leu Thr Tyr Val Leu Leu Ile Gly290 295
300Asp His Lys Asp Ile Pro Ala Lys Ile Thr Pro Gly Ile Lys Ser Asp305
310 315 320Gln Val Tyr Gly
Gln Ile Val Gly Asn Asp His Tyr Asn Glu Val Phe325 330
335Ile Gly Arg Phe Ser Cys Glu Ser Lys Glu Asp Leu Lys Thr
Gln Ile340 345 350Asp Arg Thr Ile His Tyr
Glu Arg Asn Ile Thr Thr Glu Asp Lys Trp355 360
365Leu Gly Gln Ala Leu Cys Ile Ala Ser Ala Glu Gly Gly Pro Ser
Ala370 375 380Asp Asn Gly Glu Ser Asp Ile
Gln His Glu Asn Val Ile Ala Asn Leu385 390
395 400Leu Thr Gln Tyr Gly Tyr Thr Lys Ile Ile Lys Cys
Tyr Asp Pro Gly405 410 415Val Thr Pro Lys
Asn Ile Ile Asp Ala Phe Asn Gly Gly Ile Ser Leu420 425
430Ala Asn Tyr Thr Gly His Gly Ser Glu Thr Ala Trp Gly Thr
Ser His435 440 445Phe Gly Thr Thr His Val
Lys Gln Leu Thr Asn Ser Asn Gln Leu Pro450 455
460Phe Ile Phe Asp Val Ala Cys Val Asn Gly Asp Phe Leu Phe Ser
Met465 470 475 480Pro Cys
Phe Ala Glu Ala Leu Met Arg Ala Gln Lys Asp Gly Lys Pro485
490 495Thr Gly Thr Val Ala Ile Ile Ala Ser Thr Ile Asn
Gln Ser Trp Ala500 505 510Ser Pro Met Arg
Gly Gln Asp Glu Met Asn Glu Ile Leu Cys Glu Lys515 520
525His Pro Asn Asn Ile Lys Arg Thr Phe Gly Gly Val Thr Met
Asn Gly530 535 540Met Phe Ala Met Val Glu
Lys Tyr Lys Lys Asp Gly Glu Lys Met Leu545 550
555 560Asp Thr Trp Thr Val Phe Gly Asp Pro Ser Leu
Leu Val Arg Thr Leu565 570 575Val Pro Thr
Lys Met Gln Val Thr Ala Pro Ala Gln Ile Asn Leu Thr580
585 590Asp Ala Ser Val Asn Val Ser Cys Asp Tyr Asn Gly
Ala Ile Ala Thr595 600 605Ile Ser Ala Asn
Gly Lys Met Phe Gly Ser Ala Val Val Glu Asn Gly610 615
620Thr Ala Thr Ile Asn Leu Thr Gly Leu Thr Asn Glu Ser Thr
Leu Thr625 630 635 640Leu
Thr Val Val Gly Tyr Asn Lys Glu Thr Val Ile Lys Thr Ile Asn645
650 655Thr Asn Gly Glu Pro Asn Pro Tyr Gln Pro Val
Ser Asn Leu Thr Ala660 665 670Thr Thr Gln
Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro Ser Thr675
680 685Lys Thr Asn Ala Thr Thr Asn Thr Ala Arg Ser Val
Asp Gly Ile Arg690 695 700Glu Leu Val Leu
Leu Ser Val Ser Asp Ala Pro Glu Leu Leu Arg Ser705 710
715 720Gly Gln Ala Glu Ile Val Leu Glu Ala
His Asp Val Trp Asn Asp Gly725 730 735Ser
Gly Tyr Gln Ile Leu Leu Asp Ala Asp His Asp Gln Tyr Gly Gln740
745 750Val Ile Pro Ser Asp Thr His Thr Leu Trp Pro
Asn Cys Ser Val Pro755 760 765Ala Asn Leu
Phe Ala Pro Phe Glu Tyr Thr Val Pro Glu Asn Ala Asp770
775 780Pro Ser Cys Ser Pro Thr Asn Met Ile Met Asp Gly
Thr Ala Ser Val785 790 795
800Asn Ile Pro Ala Gly Thr Tyr Asp Phe Ala Ile Ala Ala Pro Gln Ala805
810 815Asn Ala Lys Ile Trp Ile Ala Gly Gln
Gly Pro Thr Lys Glu Asp Asp820 825 830Tyr
Val Phe Glu Ala Gly Lys Lys Tyr His Phe Leu Met Lys Lys Met835
840 845Gly Ser Gly Asp Gly Thr Glu Leu Thr Ile Ser
Glu Gly Gly Gly Ser850 855 860Asp Tyr Thr
Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly865
870 875 880Leu Thr Ala Thr Thr Phe Glu
Glu Asp Gly Val Ala Thr Gly Asn His885 890
895Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val900
905 910Cys Lys Asp Val Thr Val Glu Gly Ser
Asn Glu Phe Ala Pro Val Gln915 920 925Asn
Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp930
935 940Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Asn
Pro Asn Pro Asn Pro945 950 955
960Asn Pro Gly Thr Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile
Pro965 970 975Ala Ser Trp Lys Thr Ile Asp
Ala Asp Gly Asp Gly His Gly Trp Lys980 985
990Pro Gly Asn Ala Pro Gly Ile Ala Gly Tyr Asn Ser Asn Gly Cys Val995
1000 1005Tyr Ser Glu Ser Phe Gly Leu Gly Gly
Ile Gly Val Leu Thr Pro Asp1010 1015
1020Asn Tyr Leu Ile Thr Pro Ala Leu Asp Leu Pro Asn Gly Gly Lys Leu1025
1030 1035 1040Thr Phe Trp Val
Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr1045 1050
1055Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe
Thr Asn1060 1065 1070Ala Leu Leu Glu Glu
Thr Ile Thr Ala Lys Gly Val Arg Ser Pro Glu1075 1080
1085Ala Met Arg Gly Arg Ile Gln Gly Thr Trp Arg Gln Lys Thr Val
Asp1090 1095 1100Leu Pro Ala Gly Thr Lys
Tyr Val Ala Phe Arg His Phe Gln Ser Thr1105 1110
1115 1120Asp Met Phe Tyr Ile Asp Leu Asp Glu Val Glu
Ile Lys Ala Asn Gly1125 1130 1135Lys Arg
Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His Gly Glu1140
1145 1150Ala Pro Ala Glu Trp Thr Thr Ile Asp Ala Asp Gly
Asp Gly Gln Gly1155 1160 1165Trp Leu Cys
Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala His Gly1170
1175 1180Gly Thr Asn Val Val Ser Ser Phe Ser Trp Asn Gly
Met Ala Leu Asn1185 1190 1195
1200Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val1205
1210 1215Lys Tyr Tyr Tyr Ala Val Asn Asp Gly
Phe Pro Gly Asp His Tyr Ala1220 1225
1230Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val1235
1240 1245Phe Glu Glu Thr Pro Asn Gly Ile Asn
Lys Gly Gly Ala Arg Phe Gly1250 1255
1260Leu Ser Thr Glu Ala Asp Gly Ala Lys Pro Gln Ser Val Trp Ile Glu1265
1270 1275 1280Arg Thr Val Asp
Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His1285 1290
1295Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile
Gln Phe1300 1305 1310Thr Met Gly Gly Ser
Pro Thr Pro Thr Asp Tyr Thr Tyr Thr Val Tyr1315 1320
1325Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr Phe
Glu1330 1335 1340Glu Asp Gly Val Ala Thr
Gly Asn His Glu Tyr Cys Val Glu Val Lys1345 1350
1355 1360Tyr Thr Ala Gly Val Ser Pro Lys Lys Cys Val
Asn Val Thr Val Asn1365 1370 1375Ser Thr
Gln Phe Asn Pro Val Lys Asn Leu Lys Ala Gln Pro Asp Gly1380
1385 1390Gly Asp Val Val Leu Lys Trp Glu Ala Pro Ser Ala
Lys Lys Thr Glu1395 1400 1405Gly Ser Arg
Glu Val Lys Arg Ile Gly Asp Gly Leu Phe Val Thr Ile1410
1415 1420Glu Pro Ala Asn Asp Val Arg Ala Asn Glu Ala Lys
Val Val Leu Ala1425 1430 1435
1440Ala Asp Asn Val Trp Gly Asp Asn Thr Gly Tyr Gln Phe Leu Leu Asp1445
1450 1455Ala Asp His Asn Thr Phe Gly Ser Val
Ile Pro Ala Thr Gly Pro Leu1460 1465
1470Phe Thr Gly Thr Ala Ser Ser Asp Leu Tyr Ser Ala Asn Phe Glu Ser1475
1480 1485Leu Ile Pro Ala Asn Ala Asp Pro Val
Val Thr Thr Gln Asn Ile Ile1490 1495
1500Val Thr Gly Gln Gly Glu Val Val Ile Pro Gly Gly Val Tyr Asp Tyr1505
1510 1515 1520Cys Ile Thr Asn
Pro Glu Pro Ala Ser Gly Lys Met Trp Ile Ala Gly1525 1530
1535Asp Gly Gly Asn Gln Pro Ala Arg Tyr Asp Asp Phe Thr Phe
Glu Ala1540 1545 1550Gly Lys Lys Tyr Thr
Phe Thr Met Arg Arg Ala Gly Met Gly Asp Gly1555 1560
1565Thr Asp Met Glu Val Glu Asp Asp Ser Pro Ala Ser Tyr Thr Tyr
Thr1570 1575 1580Val Tyr Arg Asp Gly Thr
Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr1585 1590
1595 1600Tyr Arg Asp Ala Gly Met Ser Ala Gln Ser His
Glu Tyr Cys Val Glu1605 1610 1615Val Lys
Tyr Thr Ala Gly Val Ser Pro Lys Val Cys Val Asp Tyr Ile1620
1625 1630Pro Asp Gly Val Ala Asp Val Thr Ala Gln Lys Pro
Tyr Thr Leu Thr1635 1640 1645Val Val Gly
Lys Thr Ile Thr Val Thr Cys Gln Gly Glu Ala Met Ile1650
1655 1660Tyr Asp Met Asn Gly Arg Arg Leu Ala Ala Gly Arg
Asn Thr Val Val1665 1670 1675
1680Tyr Thr Ala Gln Gly Gly Tyr Tyr Ala Val Met Val Val Val Asp Gly1685
1690 1695Lys Ser Tyr Val Glu Lys Leu Ala Ile
Lys1700 170521732PRTPorphyromonas gingivalis 2Met Arg Lys
Leu Leu Leu Leu Ile Ala Ala Ser Leu Leu Gly Val Gly1 5
10 15Leu Tyr Ala Gln Ser Ala Lys Ile Lys
Leu Asp Ala Pro Thr Thr Arg20 25 30Thr
Thr Cys Thr Asn Asn Ser Phe Lys Gln Phe Asp Ala Ser Phe Ser35
40 45Phe Asn Glu Val Glu Leu Thr Lys Val Glu Thr
Lys Gly Gly Thr Phe50 55 60Ala Ser Val
Ser Ile Pro Gly Ala Phe Pro Thr Gly Glu Val Gly Ser65 70
75 80Pro Glu Val Pro Ala Val Arg Lys
Leu Ile Ala Val Pro Val Gly Ala85 90
95Thr Pro Val Val Arg Val Lys Ser Phe Thr Glu Gln Val Tyr Ser Leu100
105 110Asn Gln Tyr Gly Ser Glu Lys Leu Met Pro
His Gln Pro Ser Met Ser115 120 125Lys Ser
Asp Asp Pro Glu Lys Val Pro Phe Val Tyr Asn Ala Ala Ala130
135 140Tyr Ala Arg Lys Gly Phe Val Gly Gln Glu Leu Thr
Gln Val Glu Met145 150 155
160Leu Gly Thr Met Arg Gly Val Arg Ile Ala Ala Leu Thr Ile Asn Pro165
170 175Val Gln Tyr Asp Val Val Ala Asn Gln
Leu Lys Val Arg Asn Asn Ile180 185 190Glu
Ile Glu Val Ser Phe Gln Gly Ala Asp Glu Val Ala Thr Gln Arg195
200 205Leu Tyr Asp Ala Ser Phe Ser Pro Tyr Phe Glu
Thr Ala Tyr Lys Gln210 215 220Leu Phe Asn
Arg Asp Val Tyr Thr Asp His Gly Asp Leu Tyr Asn Thr225
230 235 240Pro Val Arg Met Leu Val Val
Ala Gly Ala Lys Phe Lys Glu Ala Leu245 250
255Lys Pro Trp Leu Thr Trp Lys Ala Gln Lys Gly Phe Tyr Leu Asp Val260
265 270His Tyr Thr Asp Glu Ala Glu Val Gly
Thr Thr Asn Ala Ser Ile Lys275 280 285Ala
Phe Ile His Lys Lys Tyr Asn Asp Gly Leu Ala Ala Ser Ala Ala290
295 300Pro Val Phe Leu Ala Leu Val Gly Asp Thr Asp
Val Ile Ser Gly Glu305 310 315
320Lys Gly Lys Lys Thr Lys Lys Val Thr Asp Leu Tyr Tyr Ser Ala
Val325 330 335Asp Gly Asp Tyr Phe Pro Glu
Met Tyr Thr Phe Arg Met Ser Ala Ser340 345
350Ser Pro Glu Glu Leu Thr Asn Ile Ile Asp Lys Val Leu Met Tyr Glu355
360 365Lys Ala Thr Met Pro Asp Lys Ser Tyr
Leu Glu Lys Val Leu Leu Ile370 375 380Ala
Gly Ala Asp Tyr Ser Trp Asn Ser Gln Val Gly Gln Pro Thr Ile385
390 395 400Lys Tyr Gly Met Gln Tyr
Tyr Tyr Asn Gln Glu His Gly Tyr Thr Asp405 410
415Val Tyr Asn Tyr Leu Lys Ala Pro Tyr Thr Gly Cys Tyr Ser His
Leu420 425 430Asn Thr Gly Val Ser Phe Ala
Asn Tyr Thr Ala His Gly Ser Glu Thr435 440
445Ala Trp Ala Asp Pro Leu Leu Thr Thr Ser Gln Leu Lys Ala Leu Thr450
455 460Asn Lys Asp Lys Tyr Phe Leu Ala Ile
Gly Asn Cys Cys Ile Thr Ala465 470 475
480Gln Phe Asp Tyr Val Gln Pro Cys Phe Gly Glu Val Ile Thr
Arg Val485 490 495Lys Glu Lys Gly Ala Tyr
Ala Tyr Ile Gly Ser Ser Pro Asn Ser Tyr500 505
510Trp Gly Glu Asp Tyr Tyr Trp Ser Val Gly Ala Asn Ala Val Phe
Gly515 520 525Val Gln Pro Thr Phe Glu Gly
Thr Ser Met Gly Ser Tyr Asp Ala Thr530 535
540Phe Leu Glu Asp Ser Tyr Asn Thr Val Asn Ser Ile Met Trp Ala Gly545
550 555 560Asn Leu Ala Ala
Thr His Ala Gly Asn Ile Gly Asn Ile Thr His Ile565 570
575Gly Ala His Tyr Tyr Trp Glu Ala Tyr His Val Leu Gly Asp
Gly Ser580 585 590Val Met Pro Tyr Arg Ala
Met Pro Lys Thr Asn Thr Tyr Thr Leu Pro595 600
605Ala Ser Leu Pro Gln Asn Gln Ala Ser Tyr Ser Ile Gln Ala Ser
Ala610 615 620Gly Ser Tyr Val Ala Ile Ser
Lys Asp Gly Val Leu Tyr Gly Thr Gly625 630
635 640Val Ala Asn Ala Ser Gly Val Ala Thr Val Ser Met
Thr Lys Gln Ile645 650 655Thr Glu Asn Gly
Asn Tyr Asp Val Val Ile Thr Arg Ser Asn Tyr Leu660 665
670Pro Val Ile Lys Gln Ile Gln Val Gly Glu Pro Ser Pro Tyr
Gln Pro675 680 685Val Ser Asn Leu Thr Ala
Thr Thr Gln Gly Gln Lys Val Thr Leu Lys690 695
700Trp Glu Ala Pro Ser Ala Lys Lys Ala Glu Gly Ser Arg Glu Val
Lys705 710 715 720Arg Ile
Gly Asp Gly Leu Phe Val Thr Ile Glu Pro Ala Asn Asp Val725
730 735Arg Ala Asn Glu Ala Lys Val Val Leu Ala Ala Asp
Asn Val Trp Gly740 745 750Asp Asn Thr Gly
Tyr Gln Phe Leu Leu Asp Ala Asp His Asn Thr Phe755 760
765Gly Ser Val Ile Pro Ala Thr Gly Pro Leu Phe Thr Gly Thr
Ala Ser770 775 780Ser Asn Leu Tyr Ser Ala
Asn Phe Glu Tyr Leu Ile Pro Ala Asn Ala785 790
795 800Asp Pro Val Val Thr Thr Gln Asn Ile Ile Val
Thr Gly Gln Gly Glu805 810 815Val Val Ile
Pro Gly Gly Val Tyr Asp Tyr Cys Ile Thr Asn Pro Glu820
825 830Pro Ala Ser Gly Lys Met Trp Ile Ala Gly Asp Gly
Gly Asn Gln Pro835 840 845Ala Arg Tyr Asp
Asp Phe Thr Phe Glu Ala Gly Lys Lys Tyr Thr Phe850 855
860Thr Met Arg Arg Ala Gly Met Gly Asp Gly Thr Asp Met Glu
Val Glu865 870 875 880Asp
Asp Ser Pro Ala Ser Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr885
890 895Lys Ile Lys Glu Gly Leu Thr Ala Thr Thr Phe
Glu Glu Asp Gly Val900 905 910Ala Ala Gly
Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly915
920 925Val Ser Pro Lys Val Cys Lys Asp Val Thr Val Glu
Gly Ser Asn Glu930 935 940Phe Ala Pro Val
Gln Asn Leu Thr Gly Ser Ser Val Gly Gln Lys Val945 950
955 960Thr Leu Lys Trp Asp Ala Pro Asn Gly
Thr Pro Asn Pro Asn Pro Asn965 970 975Pro
Asn Pro Asn Pro Gly Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly980
985 990Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp
Gly Asp Gly His Gly995 1000 1005Trp Lys
Pro Gly Asn Ala Pro Gly Ile Ala Gly Tyr Asn Ser Asn Gly1010
1015 1020Cys Val Tyr Ser Glu Ser Phe Gly Leu Gly Gly Ile
Gly Val Leu Thr1025 1030 1035
1040Pro Asp Asn Tyr Leu Ile Thr Pro Ala Leu Asp Leu Pro Asn Gly Gly1045
1050 1055Lys Leu Thr Phe Trp Val Cys Ala Gln
Asp Ala Asn Tyr Ala Ser Glu1060 1065
1070His Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe1075
1080 1085Thr Asn Ala Leu Leu Glu Glu Thr Ile
Thr Ala Lys Gly Val Arg Ser1090 1095
1100Pro Lys Ala Ile Arg Gly Arg Ile Gln Gly Thr Trp Arg Gln Lys Thr1105
1110 1115 1120Val Asp Leu Pro
Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gln1125 1130
1135Ser Thr Asp Met Phe Tyr Ile Asp Leu Asp Glu Val Glu Ile
Lys Ala1140 1145 1150Asn Gly Lys Arg Ala
Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His1155 1160
1165Gly Glu Ala Pro Ala Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp
Gly1170 1175 1180Gln Gly Trp Leu Cys Leu
Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala1185 1190
1195 1200His Gly Gly Ser Asn Val Val Ser Ser Phe Ser
Trp Asn Gly Met Ala1205 1210 1215Leu Asn
Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr1220
1225 1230Lys Val Lys Tyr Tyr Tyr Ala Val Asn Asp Gly Phe
Pro Gly Asp His1235 1240 1245Tyr Ala Val
Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr1250
1255 1260Val Val Phe Glu Glu Thr Pro Asn Gly Ile Asn Lys
Gly Gly Ala Arg1265 1270 1275
1280Phe Gly Leu Ser Thr Glu Ala Asn Gly Ala Lys Pro Gln Ser Val Trp1285
1290 1295Ile Glu Arg Thr Val Asp Leu Pro Ala
Gly Thr Lys Tyr Val Ala Phe1300 1305
1310Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile1315
1320 1325Gln Phe Thr Met Gly Gly Ser Pro Thr
Pro Thr Asp Tyr Thr Tyr Thr1330 1335
1340Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr1345
1350 1355 1360Phe Glu Glu Asp
Gly Val Ala Thr Gly Asn His Glu Tyr Cys Val Glu1365 1370
1375Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Lys Cys Val Asn
Val Thr1380 1385 1390Val Asn Ser Thr Gln
Phe Asn Pro Val Gln Asn Leu Thr Ala Glu Gln1395 1400
1405Ala Pro Asn Ser Met Asp Ala Ile Leu Lys Trp Asn Ala Pro Ala
Ser1410 1415 1420Lys Arg Ala Glu Val Leu
Asn Glu Asp Phe Glu Asn Gly Ile Pro Ala1425 1430
1435 1440Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly
Asn Asn Trp Thr Thr1445 1450 1455Thr Pro
Pro Pro Gly Gly Ser Ser Phe Ala Gly His Asn Ser Ala Ile1460
1465 1470Cys Val Ser Ser Ala Ser Tyr Ile Asn Phe Glu Gly
Pro Gln Asn Pro1475 1480 1485Asp Asn Tyr
Leu Val Thr Pro Glu Leu Ser Leu Pro Gly Gly Gly Thr1490
1495 1500Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr
Ala Ser Glu His1505 1510 1515
1520Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala1525
1530 1535Asn Ala Leu Leu Glu Glu Val Leu Thr
Ala Lys Thr Val Val Thr Ala1540 1545
1550Pro Glu Ala Ile Arg Gly Thr Arg Ala Gln Gly Thr Trp Tyr Gln Lys1555
1560 1565Thr Val Gln Leu Pro Ala Gly Thr Lys
Tyr Val Ala Phe Arg His Phe1570 1575
1580Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp Val Val Ile Thr1585
1590 1595 1600Ser Gly Asn Ala
Pro Ser Tyr Thr Tyr Thr Ile Tyr Arg Asn Asn Thr1605 1610
1615Gln Ile Ala Ser Gly Val Thr Glu Thr Thr Tyr Arg Asp Pro
Asp Leu1620 1625 1630Ala Thr Gly Phe Tyr
Thr Tyr Gly Val Lys Val Val Tyr Pro Asn Gly1635 1640
1645Glu Ser Ala Ile Glu Thr Ala Thr Leu Asn Ile Thr Ser Leu Ala
Asp1650 1655 1660Val Thr Ala Gln Lys Pro
Tyr Thr Leu Thr Val Val Gly Lys Thr Ile1665 1670
1675 1680Thr Val Thr Cys Gln Gly Glu Ala Met Ile Tyr
Asp Met Asn Gly Arg1685 1690 1695Arg Leu
Ala Ala Gly Arg Asn Thr Val Val Tyr Thr Ala Gln Gly Gly1700
1705 1710His Tyr Ala Val Met Val Val Val Asp Gly Lys Ser
Tyr Val Glu Lys1715 1720 1725Leu Ala Val
Lys173032164PRTPorphyromonas gingivalis 3Met Arg Lys Leu Asn Ser Leu Phe
Ser Leu Ala Val Leu Leu Ser Leu1 5 10
15Leu Cys Trp Gly Gln Thr Ala Ala Ala Gln Gly Gly Pro Lys
Thr Ala20 25 30Pro Ser Val Thr His Gln
Ala Val Gln Lys Gly Ile Arg Thr Ser Lys35 40
45Ala Lys Asp Leu Arg Asp Pro Ile Pro Ala Gly Met Ala Arg Ile Ile50
55 60Leu Glu Ala His Asp Val Trp Glu Asp
Gly Thr Gly Tyr Gln Met Leu65 70 75
80Trp Asp Ala Asp His Asn Gln Tyr Gly Ala Ser Ile Pro Glu
Glu Ser85 90 95Phe Trp Phe Ala Asn Gly
Thr Ile Pro Ala Gly Leu Tyr Asp Pro Phe100 105
110Glu Tyr Lys Val Pro Val Asn Ala Asp Ala Ser Phe Ser Pro Thr
Asn115 120 125Phe Val Leu Asp Gly Thr Ala
Ser Ala Asp Ile Pro Ala Gly Thr Tyr130 135
140Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly Ile Ile Tyr Ile Val Gly145
150 155 160Glu Gly Val Ser
Lys Gly Asn Asp Tyr Val Val Glu Ala Gly Lys Thr165 170
175Tyr His Phe Thr Val Gln Arg Gln Gly Pro Gly Asp Ala Ala
Ser Val180 185 190Val Val Thr Gly Glu Gly
Gly Asn Glu Phe Ala Pro Val Gln Asn Leu195 200
205Gln Trp Ser Val Ser Gly Gln Thr Val Thr Leu Thr Trp Gln Ala
Pro210 215 220Ala Ser Asp Lys Arg Thr Tyr
Val Leu Asn Glu Ser Phe Asp Thr Gln225 230
235 240Thr Leu Pro Asn Gly Trp Thr Met Ile Asp Ala Asp
Gly Asp Gly His245 250 255Asn Trp Leu Ser
Thr Ile Asn Val Tyr Asn Thr Ala Thr His Thr Gly260 265
270Asp Gly Ala Met Phe Ser Lys Ser Trp Thr Ala Ser Ser Gly
Ala Lys275 280 285Ile Asp Leu Ser Pro Asp
Asn Tyr Leu Val Thr Pro Lys Phe Thr Val290 295
300Pro Glu Asn Gly Lys Leu Ser Tyr Trp Val Ser Ser Gln Glu Pro
Trp305 310 315 320Thr Asn
Glu His Tyr Gly Val Phe Leu Ser Thr Thr Gly Asn Glu Ala325
330 335Ala Asn Phe Thr Ile Lys Leu Leu Glu Glu Thr Leu
Gly Ser Gly Lys340 345 350Pro Ala Pro Met
Asn Leu Val Lys Ser Glu Gly Val Lys Ala Pro Ala355 360
365Pro Tyr Gln Glu Arg Thr Ile Asp Leu Ser Ala Tyr Ala Gly
Gln Gln370 375 380Val Tyr Leu Ala Phe Arg
His Phe Gly Cys Thr Gly Ile Phe Arg Leu385 390
395 400Tyr Leu Asp Asp Val Ala Val Ser Gly Glu Gly
Ser Ser Asn Asp Tyr405 410 415Thr Tyr Thr
Val Tyr Arg Asp Asn Val Val Ile Ala Gln Asn Leu Thr420
425 430Ala Thr Thr Phe Asn Gln Glu Asn Val Ala Pro Gly
Gln Tyr Asn Tyr435 440 445Cys Val Glu Val
Lys Tyr Thr Ala Gly Val Ser Pro Lys Val Cys Lys450 455
460Asp Val Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val Gln
Asn Leu465 470 475 480Thr
Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro485
490 495Asn Gly Thr Pro Asn Pro Asn Pro Gly Thr Thr
Thr Leu Ser Glu Ser500 505 510Phe Glu Asn
Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly515
520 525Asp Gly Asn Asn Trp Thr Thr Thr Pro Pro Pro Gly
Gly Ser Ser Phe530 535 540Ala Gly His Asn
Ser Ala Ile Cys Val Ser Ser Ala Ser Tyr Ile Asn545 550
555 560Phe Glu Gly Pro Gln Asn Pro Asp Asn
Tyr Leu Val Thr Pro Glu Leu565 570 575Ser
Leu Pro Asn Gly Gly Thr Leu Thr Phe Trp Val Cys Ala Gln Asp580
585 590Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr
Ala Ser Ser Thr Gly595 600 605Asn Asp Ala
Ser Asn Phe Ala Asn Ala Leu Leu Glu Glu Val Leu Thr610
615 620Ala Lys Thr Val Val Thr Ala Pro Glu Ala Ile Arg
Gly Thr Arg Val625 630 635
640Gln Gly Thr Trp Tyr Gln Lys Thr Val Gln Leu Pro Ala Gly Thr Lys645
650 655Tyr Val Ala Phe Arg His Phe Gly Cys
Thr Asp Phe Phe Trp Ile Asn660 665 670Leu
Asp Asp Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr675
680 685Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala
Pro Ala Glu Trp Thr690 695 700Thr Ile Asp
Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys Leu Ser Ser705
710 715 720Gly Gln Leu Gly Trp Leu Thr
Ala His Gly Gly Thr Asn Val Val Ala725 730
735Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn Tyr Leu Ile740
745 750Ser Lys Asp Val Thr Gly Ala Thr Lys
Val Lys Tyr Tyr Tyr Ala Val755 760 765Asn
Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met Ile Ser Lys Thr770
775 780Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe
Glu Glu Thr Pro Asn785 790 795
800Gly Ile Asn Lys Gly Gly Ala Arg Phe Gly Leu Ser Thr Glu Ala
Asn805 810 815Gly Ala Lys Pro Gln Ser Val
Trp Ile Glu Arg Thr Val Asp Leu Pro820 825
830Ala Gly Thr Lys Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu835
840 845Asn Tyr Ile Leu Leu Asp Asp Ile Gln
Phe Thr Met Gly Gly Ser Pro850 855 860Thr
Pro Thr Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile865
870 875 880Lys Glu Gly Leu Thr Glu
Thr Thr Phe Glu Glu Asp Gly Val Ala Thr885 890
895Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val
Ser900 905 910Pro Lys Glu Cys Val Asn Val
Thr Val Asp Pro Val Gln Phe Asn Pro915 920
925Val Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys930
935 940Trp Asp Ala Pro Asn Gly Thr Pro Asn
Pro Asn Pro Gly Thr Thr Thr945 950 955
960Leu Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys
Thr Ile965 970 975Asp Ala Asp Gly Asp Gly
Asn Asn Trp Thr Thr Thr Pro Pro Pro Gly980 985
990Gly Thr Ser Phe Ala Gly His Asn Ser Ala Ile Cys Val Ser Ser
Ala995 1000 1005Ser Tyr Ile Asn Phe Glu
Gly Pro Gln Asn Pro Asp Asn Tyr Leu Val1010 1015
1020Thr Pro Glu Leu Ser Leu Pro Asn Gly Gly Thr Leu Thr Phe Trp
Val1025 1030 1035 1040Cys Ala
Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala1045
1050 1055Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala Asn
Ala Leu Leu Glu1060 1065 1070Glu Val Leu
Thr Ala Lys Thr Val Val Thr Ala Pro Glu Ala Ile Arg1075
1080 1085Gly Thr Arg Val Gln Gly Thr Trp Tyr Gln Lys Thr
Val Gln Leu Pro1090 1095 1100Ala Gly Thr
Lys Tyr Val Ala Phe Arg His Phe Gly Cys Thr Asp Phe1105
1110 1115 1120Phe Trp Ile Asn Leu Asp Asp
Val Glu Ile Lys Ala Asn Gly Lys Arg1125 1130
1135Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro1140
1145 1150Ala Glu Trp Thr Thr Ile Asp Ala Asp
Gly Asp Gly Gln Gly Trp Leu1155 1160
1165Cys Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala His Gly Gly Thr1170
1175 1180Asn Val Val Ala Ser Phe Ser Trp Asn
Gly Met Ala Leu Asn Pro Asp1185 1190 1195
1200Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val
Lys Tyr1205 1210 1215Tyr Tyr Ala Val Asn
Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met1220 1225
1230Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe
Glu1235 1240 1245Glu Thr Pro Asn Gly Ile
Asn Lys Gly Gly Ala Arg Phe Gly Leu Ser1250 1255
1260Thr Glu Ala Asn Gly Ala Lys Pro Gln Ser Val Trp Ile Glu Arg
Thr1265 1270 1275 1280Val Asp
Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Tyr Asn1285
1290 1295Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile
Gln Phe Thr Met1300 1305 1310Gly Gly Ser
Pro Thr Pro Thr Asp Tyr Thr Tyr Thr Val Tyr Arg Asp1315
1320 1325Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr
Phe Glu Glu Asp1330 1335 1340Gly Val Ala
Thr Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr1345
1350 1355 1360Ala Gly Val Ser Pro Lys Glu
Cys Val Asn Val Thr Val Asp Pro Val1365 1370
1375Gln Phe Asn Pro Val Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys1380
1385 1390Val Thr Leu Lys Trp Asp Ala Pro Asn
Gly Thr Pro Asn Pro Asn Pro1395 1400
1405Gly Thr Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser1410
1415 1420Trp Lys Thr Ile Asp Ala Asp Gly Asp
Gly Asn Asn Trp Thr Thr Thr1425 1430 1435
1440Pro Pro Pro Gly Gly Thr Ser Phe Ala Gly His Asn Ser Ala
Ile Cys1445 1450 1455Val Ser Ser Ala Ser
Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp1460 1465
1470Asn Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Asn Gly Gly Thr
Leu1475 1480 1485Thr Phe Trp Val Cys Ala
Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr1490 1495
1500Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala
Asn1505 1510 1515 1520Ala Leu
Leu Glu Glu Val Leu Thr Ala Lys Thr Val Val Thr Ala Pro1525
1530 1535Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr Trp
Tyr Gln Lys Thr1540 1545 1550Val Gln Leu
Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gly1555
1560 1565Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp Val
Glu Ile Lys Ala1570 1575 1580Asn Gly Lys
Arg Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His1585
1590 1595 1600Gly Glu Ala Pro Ala Glu Trp
Thr Thr Ile Asp Ala Asp Gly Asp Gly1605 1610
1615Gln Gly Trp Leu Cys Leu Ser Ser Gly Gln Leu Gly Trp Leu Thr Ala1620
1625 1630His Gly Gly Thr Asn Val Val Ala Ser
Phe Ser Trp Asn Gly Met Ala1635 1640
1645Leu Asn Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr1650
1655 1660Lys Val Lys Tyr Tyr Tyr Ala Val Asn
Asp Gly Phe Pro Gly Asp His1665 1670 1675
1680Tyr Ala Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp
Phe Thr1685 1690 1695Val Val Phe Glu Glu
Thr Pro Asn Gly Ile Asn Lys Gly Gly Ala Arg1700 1705
1710Phe Gly Leu Ser Thr Glu Ala Asn Gly Ala Lys Pro Gln Ser Val
Trp1715 1720 1725Ile Glu Arg Thr Val Asp
Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe1730 1735
1740Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp
Ile1745 1750 1755 1760Gln Phe
Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr Thr Tyr Thr1765
1770 1775Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu
Thr Glu Thr Thr1780 1785 1790Phe Glu Glu
Asp Gly Val Ala Thr Gly Asn His Glu Tyr Cys Val Glu1795
1800 1805Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Glu Cys
Val Asn Val Thr1810 1815 1820Ile Asn Pro
Thr Gln Phe Asn Pro Val Gln Asn Leu Thr Ala Glu Gln1825
1830 1835 1840Ala Pro Asn Ser Met Asp Ala
Ile Leu Lys Trp Asn Ala Pro Ala Ser1845 1850
1855Lys Arg Ala Glu Val Leu Asn Glu Asp Phe Glu Asn Gly Ile Pro Ala1860
1865 1870Ser Trp Lys Thr Ile Asp Ala Asp Gly
Asp Gly Asn Asn Trp Thr Thr1875 1880
1885Thr Pro Pro Pro Gly Gly Ser Ser Phe Ala Gly His Asn Ser Ala Ile1890
1895 1900Cys Val Ser Ser Ala Ser Tyr Ile Asn
Phe Glu Gly Pro Gln Asn Pro1905 1910 1915
1920Asp Asn Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Gly Gly
Gly Thr1925 1930 1935Leu Thr Phe Trp Val
Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His1940 1945
1950Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe
Ala1955 1960 1965Asn Ala Leu Leu Glu Glu
Val Leu Thr Ala Lys Thr Val Val Thr Ala1970 1975
1980Pro Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr Trp Tyr Gln
Lys1985 1990 1995 2000Thr Val
Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe2005
2010 2015Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp
Val Val Ile Thr2020 2025 2030Ser Gly Asn
Ala Pro Ser Tyr Thr Tyr Thr Ile Tyr Arg Asn Asn Thr2035
2040 2045Gln Ile Ala Ser Gly Val Thr Glu Thr Thr Tyr Arg
Asp Pro Asp Leu2050 2055 2060Ala Thr Gly
Phe Tyr Thr Tyr Gly Val Lys Val Val Tyr Pro Asn Gly2065
2070 2075 2080Glu Ser Ala Ile Glu Thr Ala
Thr Leu Asn Ile Thr Ser Leu Ala Asp2085 2090
2095Val Thr Ala Gln Lys Pro Tyr Thr Leu Thr Val Val Gly Lys Thr Ile2100
2105 2110Thr Val Thr Cys Gln Gly Glu Ala Met
Ile Tyr Asp Met Asn Gly Arg2115 2120
2125Arg Leu Ala Ala Gly Arg Asn Thr Val Val Tyr Thr Ala Gln Gly Gly2130
2135 2140His Tyr Ala Val Met Val Val Val Asp
Gly Lys Ser Tyr Val Glu Lys2145 2150 2155
2160Leu Ala Val Lys415PRTPorphyromonas gingivalis 4Gln Phe
Asp Ala Ser Phe Ser Phe Asn Glu Val Glu Leu Thr Lys1 5
10 15528PRTPorphyromonas gingivalis 5Gly
Gly Thr Phe Ala Ser Val Ser Ile Pro Gly Ala Phe Pro Thr Gly1
5 10 15Glu Val Gly Ser Pro Glu Val
Pro Ala Val Arg Lys20 25614PRTPorphyromonas gingivalis
6Lys Leu Ile Ala Val Pro Val Gly Ala Thr Pro Val Val Arg1 5
10713PRTPorphyromonas gingivalis 7Leu Ile Ala Val Pro
Val Gly Ala Thr Pro Val Val Arg1 5
10816PRTPorphyromonas gingivalis 8Ser Phe Thr Glu Gln Val Tyr Ser Leu Asn
Gln Tyr Gly Ser Glu Lys1 5 10
15918PRTPorphyromonas gingivalis 9Ser Asp Asp Pro Glu Lys Val Pro
Phe Val Tyr Asn Ala Ala Ala Tyr1 5 10
15Ala Arg1018PRTPorphyromonas gingivalis 10Lys Gly Phe Val
Gly Gln Glu Leu Thr Gln Val Glu Met Leu Gly Thr1 5
10 15Met Arg1119PRTPorphyromonas gingivalis
11Ile Ala Ala Leu Thr Ile Asn Pro Val Gln Tyr Asp Val Val Ala Asn1
5 10 15Gln Leu
Lys1219PRTPorphyromonas gingivalis 12Asn Asn Ile Glu Ile Glu Val Ser Phe
Gln Gly Ala Asp Glu Val Ala1 5 10
15Thr Gln Arg1315PRTPorphyromonas gingivalis 13Leu Tyr Asp Ala
Ser Phe Ser Pro Tyr Phe Glu Thr Ala Tyr Lys1 5
10 151415PRTPorphyromonas gingivalis 14Asp Val Tyr
Thr Asp His Gly Asp Leu Tyr Asn Thr Pro Val Arg1 5
10 151510PRTPorphyromonas gingivalis 15Glu Ala
Leu Lys Pro Trp Leu Thr Trp Lys1 5
101622PRTPorphyromonas gingivalis 16Gly Phe Tyr Leu Asp Val His Tyr Thr
Asp Glu Ala Glu Val Gly Thr1 5 10
15Thr Asn Ala Ser Ile Lys201727PRTPorphyromonas gingivalis 17Tyr
Asn Asp Gly Leu Ala Ala Ser Ala Ala Pro Val Phe Leu Ala Leu1
5 10 15Val Gly Asp Thr Asp Val Ile
Ser Gly Glu Lys20 251821PRTPorphyromonas gingivalis
18Val Thr Asp Leu Tyr Tyr Ser Ala Val Asp Gly Asp Tyr Phe Pro Glu1
5 10 15Met Tyr Thr Phe
Arg201921PRTPorphyromonas gingivalis 19Val Leu Leu Ile Ala Gly Ala Asp
Tyr Ser Trp Asn Ser Gln Val Gly1 5 10
15Gln Pro Thr Ile Lys202021PRTPorphyromonas gingivalis 20Tyr
Gly Met Gln Tyr Tyr Tyr Asn Gln Glu His Gly Tyr Thr Asp Val1
5 10 15Tyr Asn Tyr Leu
Lys202131PRTPorphyromonas gingivalis 21Thr Asn Thr Tyr Thr Leu Pro Ala
Ser Leu Pro Gln Asn Gln Ala Ser1 5 10
15Tyr Ser Ile Gln Ala Ser Ala Gly Ser Tyr Val Ala Ile Ser
Lys20 25 302222PRTPorphyromonas
gingivalis 22Asp Gly Val Leu Tyr Gly Thr Gly Val Ala Asn Ala Ser Gly Val
Ala1 5 10 15Thr Val Ser
Met Thr Lys202314PRTPorphyromonas gingivalis 23Gln Ile Thr Glu Asn Gly
Asn Tyr Asp Val Val Ile Thr Arg1 5
102424PRTPorphyromonas gingivalis 24Gln Ile Gln Val Gly Glu Pro Ser Pro
Tyr Gln Pro Val Ser Asn Leu1 5 10
15Thr Ala Thr Thr Gln Gly Gln Lys202512PRTPorphyromonas
gingivalis 25Val Pro Phe Val Tyr Asn Ala Ala Ala Tyr Ala Arg1
5 102617PRTPorphyromonas gingivalis 26Gly Phe Val Gly
Gln Glu Leu Thr Gln Val Glu Met Leu Gly Thr Met1 5
10 15Arg2715PRTPorphyromonas gingivalis 27Met
Ser Ala Ser Ser Pro Glu Glu Leu Thr Asn Ile Ile Asp Lys1 5
10 15287PRTPorphyromonas gingivalis
28Tyr Thr Pro Val Glu Glu Lys1 52919PRTPorphyromonas
gingivalis 29Val Ala Glu Asp Ile Ala Ser Pro Val Thr Ala Asn Ala Ile Gln
Gln1 5 10 15Phe Val
Lys3015PRTPorphyromonas gingivalis 30Glu Gly Asn Asp Leu Thr Tyr Val Leu
Leu Ile Gly Asp His Lys1 5 10
153121PRTPorphyromonas gingivalis 31Ser Asp Gln Val Tyr Gly Gln Ile
Val Gly Asn Asp His Tyr Asn Glu1 5 10
15Val Phe Ile Gly Arg20329PRTPorphyromonas gingivalis 32Cys
Tyr Asp Pro Gly Val Thr Pro Lys1 53335PRTPorphyromonas
gingivalis 33Asn Ile Ile Asp Ala Phe Asn Gly Gly Ile Ser Leu Ala Asn Tyr
Thr1 5 10 15Gly His Gly
Ser Glu Thr Ala Trp Gly Thr Ser His Phe Gly Thr Thr20 25
30His Val Lys353424PRTPorphyromonas gingivalis 34Asp Gly
Lys Pro Thr Gly Thr Val Ala Ile Ile Ala Ser Thr Ile Asn1 5
10 15Gln Ser Trp Ala Ser Pro Met
Arg203512PRTPorphyromonas gingivalis 35Gly Gln Asp Glu Met Asn Glu Ile
Leu Cys Glu Lys1 5 103616PRTPorphyromonas
gingivalis 36Thr Phe Gly Gly Val Thr Met Asn Gly Met Phe Ala Met Val Glu
Lys1 5 10
153716PRTPorphyromonas gingivalis 37Met Leu Asp Thr Trp Thr Val Phe Gly
Asp Pro Ser Leu Leu Val Arg1 5 10
153810PRTPorphyromonas gingivalis 38Ile Trp Ile Ala Gly Gln Gly
Pro Thr Lys1 5 10397PRTPorphyromonas
gingivalis 39Tyr His Phe Leu Met Lys Lys1
54010PRTPorphyromonas gingivalis 40Glu Asp Asp Tyr Val Phe Glu Ala Gly
Lys1 5 104125PRTPorphyromonas gingivalis
41Met Gly Ser Gly Asp Gly Thr Glu Leu Thr Ile Ser Glu Gly Gly Gly1
5 10 15Ser Asp Tyr Thr Tyr Thr
Val Tyr Arg20 254225PRTPorphyromonas gingivalis 42Glu
Gly Leu Thr Ala Thr Thr Phe Glu Glu Asp Gly Val Ala Ala Gly1
5 10 15Asn His Glu Tyr Cys Val Glu
Val Lys20 254324PRTPorphyromonas gingivalis 43Asp Val
Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val Gln Asn Leu1 5
10 15Thr Gly Ser Ala Val Gly Gln
Lys204413PRTPorphyromonas gingivalis 44Met Trp Ile Ala Gly Asp Gly Gly
Asn Gln Pro Ala Arg1 5
104510PRTPorphyromonas gingivalis 45Tyr Asp Asp Phe Thr Phe Glu Ala Gly
Lys1 5 104611PRTPorphyromonas gingivalis
46Tyr Asp Asp Phe Thr Phe Glu Ala Gly Lys Lys1 5
10477PRTPorphyromonas gingivalis 47Lys Tyr Thr Phe Thr Met Arg1
54825PRTPorphyromonas gingivalis 48Ala Gly Met Gly Asp Gly Thr
Asp Met Glu Val Glu Asp Asp Ser Pro1 5 10
15Ala Ser Tyr Thr Tyr Thr Val Tyr Arg20
254927PRTPorphyromonas gingivalis 49Ile Lys Glu Gly Leu Thr Ala Thr Thr
Phe Glu Glu Asp Gly Val Ala1 5 10
15Ala Gly Asn His Glu Tyr Cys Val Glu Val Lys20
255010PRTPorphyromonas gingivalis 50Gly Arg Ile Gln Gly Thr Trp Arg Gln
Lys1 5 10519PRTPorphyromonas gingivalis
51His Phe Gly Cys Thr Gly Ile Phe Arg1
55217PRTPorphyromonas gingivalis 52Thr Ile Asp Leu Ser Ala Tyr Ala Gly
Gln Gln Val Tyr Leu Ala Phe1 5 10
15Arg5323PRTPorphyromonas gingivalis 53Leu Tyr Leu Asp Asp Val
Ala Val Ser Gly Glu Gly Ser Ser Asn Asp1 5
10 15Tyr Thr Tyr Thr Val Tyr Arg20548PRTPorphyromonas
gingivalis 54Pro Gln Ser Val Trp Ile Glu Arg1
55513PRTPorphyromonas gingivalis 55Thr Val Val Thr Ala Pro Glu Ala Ile
Arg Gly Thr Arg1 5 105620PRTPorphyromonas
gingivalis 56Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu Glu Thr
Pro1 5 10 15Asn Gly Ile
Asn205720PRTPorphyromonas gingivalis 57Tyr Tyr Tyr Ala Val Asn Asp Gly
Phe Pro Gly Asp His Tyr Ala Val1 5 10
15Met Ile Ser Lys205815PRTPorphyromonas gingivalis 58Cys Val
Asn Val Thr Val Asn Ser Thr Gln Phe Asn Pro Val Lys1 5
10 155916PRTPorphyromonas gingivalis 59Lys
Cys Val Asn Val Thr Val Asn Ser Thr Gln Phe Asn Pro Val Lys1
5 10 15608PRTPorphyromonas gingivalis
60Tyr Thr Pro Val Glu Glu Lys Gln1 5618PRTPorphyromonas
gingivalis 61Ser Gly Gln Ala Glu Ile Val Leu1
5628PRTPorphyromonas gingivalis 62Ala Asp Phe Thr Glu Thr Phe Glu1
5638PRTPorphyromonas gingivalis 63Ala Asn Glu Ala Lys Val Val Leu1
5648PRTPorphyromonas gingivalis 64Asp Val Tyr Thr Asp His
Gly Asp1 5658PRTPorphyromonas gingivalis 65Ala Glu Val Leu
Asn Glu Asp Phe1 5668PRTPorphyromonas gingivalis 66Thr Val
Val Thr Ala Pro Glu Ala1 5678PRTPorphyromonas gingivalis
67Gly Gly Pro Lys Thr Ala Pro Ser1 5688PRTPorphyromonas
gingivalis 68Ala Pro Ala Pro Tyr Gln Glu Arg1
5698PRTPorphyromonas gingivalis 69Ala Glu Leu Leu Asn Glu Asp Phe1
5707PRTPorphyromonas gingivalis 70Thr Val Val Thr Ala Pro Glu1
5
User Contributions:
Comment about this patent or add new information about this topic: