Patent application title: PLANTS HAVING ALTERED AGRONOMIC CHARACTERISTICS UNDER NITROGEN LIMITING CONDITIONS AND RELATED CONSTRUCTS AND METHODS INVOLVING GENES ENCODING LNT2 POLYPEPTIDES AND HOMOLOGS THEREOF
Inventors:
Milo Aukerman (Newark, DE, US)
Stephen M. Allen (Wilmington, DE, US)
Dale Loussaert (Clive, IA, US)
Stanley Luck (Wilmington, DE, US)
Hajime Sakai (Newark, DE, US)
Scott V. Tingey (Wilmington, DE, US)
Assignees:
EI AND PIONEER HI-BRED INTERNATIONAL
IPC8 Class: AA01H100FI
USPC Class:
800312
Class name: Plant, seedling, plant seed, or plant part, per se higher plant, seedling, plant seed, or plant part (i.e., angiosperms or gymnosperms) soybean
Publication date: 2009-05-07
Patent application number: 20090119804
Claims:
1. A plant comprising in its genome a recombinant DNA construct comprising
a polynucleotide operably linked to at least one regulatory element,
wherein said polynucleotide encodes a polypeptide having an amino acid
sequence of at least 50% sequence identity, based on the Clustal V method
of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or
32,and wherein said plant exhibits increased nitrogen stress tolerance
when compared to a control plant not comprising said recombinant DNA
construct.
2. The plant of claim 1, wherein the plant is a maize plant or a soybean plant.
3. A plant comprising in its genome a recombinant DNA construct comprising:(a) a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 18, 20, 24, 26, 28, 30, or 32; or(b) a suppression DNA construct comprising at least one regulatory element operably linked to:(i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 18, 20, 24, 26, 28, 30, or 32, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or(ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 polypeptide,and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
4. The plant of claim 3, wherein the plant is a maize plant or a soybean plant.
5. The plant of claim 3, wherein said plant exhibits said alteration of said at least one agronomic characteristic when compared, under nitrogen limiting conditions, to said control plant not comprising said recombinant DNA construct.
6. The plant of claim 5, wherein the plant is a maize plant or a soybean plant.
7. The plant of claim 3, wherein said at least one agronomic characteristic is selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in vegetative tissue, whole plant amino acid content, vegetative tissue free amino acid content, fruit free amino acid content, seed free amino acid content, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, resistance to root lodging, harvest index, stalk lodging, plant height, ear height, and ear length.
8. The plant of claim 7, wherein the plant is a maize plant or a soybean plant.
9. The plant of claim 3, wherein said plant exhibits an increase of said at least one agronomic characteristic when compared to said control plant.
10. The plant of claim 9, wherein the plant is a maize plant or a soybean plant.
11. A method of increasing nitrogen stress tolerance in a plant, comprising:(a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 18, 20, 24, 26, 28, 30, or 32; and(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct.
12. The method of claim 11, further comprising:(c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct.
13. A method of evaluating nitrogen stress tolerance in a plant, comprising:(a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 18, 20, 24, 26, 28, 30, or 32;(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and(c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
14. The method of claim 13, further comprising:(d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and(e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
15. A method of evaluating nitrogen stress tolerance in a plant, comprising:(a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 18, 20, 24, 26, 28, 30, or 32;(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct;(c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and(d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
16. A method of determining an alteration of an agronomic characteristic in a plant, comprising:(a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 18, 20, 24, 26, 28, 30, or 32;(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and(c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
17. The method of claim 16, further comprising:(d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and(e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
18. The method of claim 16, wherein said determining step (c) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
19. The method of claim 17, wherein said determining step (e) comprises determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
20. A method of determining an alteration of an agronomic characteristic in a plant, comprising:(a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 18, 20, 24, 26, 28, 30, or 32;(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct;(c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and(d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
21. The method of claim 20, wherein said determining step (d) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
22. A method of determining an alteration of an agronomic characteristic in a plant, comprising:(a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to:(i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or(ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 polypeptide;(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and(c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct.
23. The method of claim 22, wherein said determining step (c) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
24. The method of claim 22, further comprising:(d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and(e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct.
25. The method of claim 24, wherein said determining step (e) comprises determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
26. A method of determining an alteration of an agronomic characteristic in a plant, comprising:(a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to:(i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 18, 20, 24, 26, 28, 30, or 32, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or(ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 polypeptide;(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits an alteration of at least one agronomic trait when compared to a control plant not comprising the suppression DNA construct;(c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and(d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct.
27. The method of claim 26, wherein said determining step (d) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
28. An isolated polynucleotide comprising:(i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 85% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 24, or 26; or(ii) a full complement of the nucleic acid sequence of (i).
29. The isolated polynucleotide of claim 28, wherein said polypeptide has an amino acid sequence of at least 90% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 24, or 26.
30. The isolated polynucleotide of claim 28, wherein said polypeptide has an amino acid sequence of at least 95% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 24, or 26.
31. The isolated polynucleotide of claim 28, wherein the polypeptide sequence comprises SEQ ID NO:18, 24, or 26.
32. The isolated polynucleotide of claim 28, wherein the nucleic acid sequence comprises SEQ ID NO:17, 23, or 25.
Description:
FIELD OF THE INVENTION
[0001]The field of invention relates to plant breeding and genetics and, in particular, relates to recombinant DNA constructs useful in plants for conferring nitrogen use efficiency and/or tolerance to nitrogen limiting conditions.
BACKGROUND OF THE INVENTION
[0002]Abiotic stressors significantly limit crop production worldwide. Cumulatively, these factors are estimated to be responsible for an average 70% reduction in agricultural production. Plants are sessile and have to adjust to the prevailing environmental conditions of their surroundings. This has led to their development of a great plasticity in gene regulation, morphogenesis, and metabolism. Adaptation and defense strategies involve the activation of genes encoding proteins important in the acclimation or defense towards the different stressors.
[0003]The absorption of nitrogen by plants plays an important role in their growth (Gallais et al., J. Exp. Bot. 55(396):295-306 (2004)). Plants synthesize amino acids from inorganic nitrogen in the environment. Consequently, nitrogen fertilization has been a powerful tool for increasing the yield of cultivated plants, such as maize and soybean. Today farmers desire to reduce the use of nitrogen fertilizer, in order to avoid pollution by nitrates and to maintain a sufficient profit margin. If the nitrogen assimilation capacity of a plant can be increased, then increases in plant growth and yield increase are also expected. In summary, plant varieties that have a better nitrogen use efficiency (NUE) are desirable.
[0004]Activation tagging can be utilized to identify genes with the ability to affect a trait. This approach has been used in the model plant species Arabidopsis thaliana (Weigel et al., Plant Physiol. 122:1003-1013 (2000)). Insertions of transcriptional enhancer elements can dominantly activate and/or elevate the expression of nearby endogenous genes. This method can be used to identify genes of interest for a particular trait (e.g. nitrogen use efficiency in a plant), genes that when placed in an organism as a transgene can alter that trait.
SUMMARY OF THE INVENTION
[0005]The present invention includes:
[0006]In one embodiment, a plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32, and wherein said plant exhibits increased nitrogen stress tolerance when compared to a control plant not comprising said recombinant DNA construct.
[0007]In another embodiment, a plant comprising in its genome a recombinant DNA construct comprising:
[0008](a) a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or
[0009](b) a suppression DNA construct comprising at least one regulatory element operably linked to: (i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or (ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
[0010]In another embodiment, a method of increasing nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct; and optionally, (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct.
[0011]In another embodiment, a method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct; and optionally, (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and optionally, (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
[0012]In another embodiment, a method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
[0013]In another embodiment, a method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct; and optionally, (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and optionally, (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
[0014]In another embodiment, a method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared optionally under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
[0015]In another embodiment, a method of determining an alteration of an agronomic characteristic in a plant, comprising:
[0016](a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to: [0017](i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or [0018](ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide;
[0019](b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and
[0020](c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct;
[0021]and optionally, (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct;
[0022]and optionally, (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
[0023]In another embodiment, a method of determining an alteration of an agronomic characteristic in a plant, comprising:
[0024](a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to: [0025](i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or [0026](ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide;
[0027](b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits an alteration of at least one agronomic trait when compared to a control plant not comprising the suppression DNA construct;
[0028](c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and
[0029](d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct;
[0030]and optionally, (e) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, optionally, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
[0031]In another embodiment, the present invention concerns an isolated polynucleotide comprising: (a) a nucleotide sequence encoding a polypeptide, wherein the amino acid sequence of the polypeptide and the amino acid sequence of SEQ ID NO:18, 24, or 26 have at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity based on the Clustal V alignment method, or (b) the complement of the nucleotide sequence, wherein the complement and the nucleotide sequence contain the same number of nucleotides and are 100% complementary. The polypeptide In an embodiment comprises the amino acid sequence of SEQ ID NO:18, 24, or 26, and the nucleotide sequence comprises the nucleotide sequence of SEQ ID NO:17, 23, or 25.
BRIEF DESCRIPTION OF THE FIGURES AND SEQUENCE LISTINGS
[0032]The invention can be more fully understood from the following detailed description and the accompanying drawings and Sequence Listing which form a part of this application.
[0033]FIG. 1 shows a schematic of the pHSbarENDs2 activation tagging construct used to make the Arabidopsis populations (SEQ ID NO:1).
[0034]FIG. 2 shows a schematic of the vector pDONR®Zeo (SEQ ID NO:2), GATEWAY® donor vector. The attP1 site is at nucleotides 570-801; the attP2 site is at nucleotides 2754-2985 (complementary strand).
[0035]FIG. 3 shows a schematic of the vector pDONR®221 (SEQ ID NO:3), GATEWAY® donor vector. The attP1 site is at nucleotides 570-801; the attP2 site is at nucleotides 2754-2985 (complementary strand).
[0036]FIG. 4 shows a schematic of the vector pBC-yellow (SEQ ID NO:4), a destination vector for use in construction of expression vectors for Arabidopsis. The attR1 site is at nucleotides 11276-11399 (complementary strand); the attR2 site is at nucleotides 9695-9819 (complementary strand).
[0037]FIG. 5 shows a schematic of the vector PHP27840 (SEQ ID NO:5), a destination vector for use in construction of expression vectors for soybean. The attR1 site is at nucleotides 7310-7434; the attR2 site is at nucleotides 8890-9014.
[0038]FIG. 6 shows a schematic of the vector PHP23236 (SEQ ID NO:6), a destination vector for use in construction of expression vectors for Gaspe Flint derived maize lines. The attR1 site is at nucleotides 2006-2130; the attR2 site is at nucleotides 2899-3023.
[0039]FIG. 7 shows a schematic of the vector PHP10523 (SEQ ID NO:7), a plasmid DNA present in Agrobacterium strain LBA4404 (Komari et al., Plant J. 10:165-174 (1996); NCBI General Identifier No. 59797027).
[0040]FIG. 8 shows a schematic of the vector PHP23235 (SEQ ID NO:8), a vector used to construct the destination vector PHP23236.
[0041]FIG. 9 shows a schematic of the vector PHP20234 (SEQ ID NO:9).
[0042]FIG. 10 shows a schematic of the destination vector PHP22655 (SEQ ID NO:10).
[0043]FIG. 11 shows a typical grid pattern for five lines (labeled 1 through 5--eleven individuals for each line), plus wild-type control C1 (nine individuals), used in screens.
[0044]FIG. 12 shows a graph showing the effect of several different potassium nitrate concentrations on plant color as determined by image analysis. The response of the green color bin (hues 50 to 66) to nitrate dosage demonstrates that this bin can be used as an indicator of nitrogen assimilation.
[0045]FIG. 13 shows the growth medium used for semi-hydroponics maize growth in Example 18.
[0046]FIGS. 14A and 14B show the multiple alignment of the full length amino acid sequences of the Arabidopsis thaliana LNT2 polypeptide (SEQ ID NO:28) and the LNT2 homologs (SEQ ID NOs: 18, 20, 24, 26, 30, 32, 33, and 34).
[0047]FIG. 15 shows a chart of the percent sequence identity and the divergence values for each pair of amino acids sequences displayed in FIGS. 14A and 14B.
[0048]FIG. 16 shows the results from screening of Gaspe Flint derived maize lines under reduced nitrogen (1 mM KNO3) and optimal nitrogen (6.5 mM KNO3) conditions. Four events containing PHP29689 were evaluated for a number of traits. Event means were compared to that of the segregant nulls. A p-value≦0.1 was used as the cut off.
[0049]FIG. 17 shows the results from screening of Gaspe Flint derived maize lines under reduced nitrogen (1 mM KNO3) and optimal nitrogen (6.5 mM KNO3) conditions. All events containing PHP29689 were considered in the analysis. For each variable, the construct mean was compared to that of the construct null. A p-value≦0.1 was used as the cut off.
[0050]FIG. 18 shows the yield trial results for PHP28840-containing plants under low nitrogen conditions. The yield values in gray represent significant increases, and the yield values in black represent significant decreases. The remaining values represent non-significant differences.
[0051]FIG. 19 shows the yield trial results for PHP28841-containing plants under low nitrogen conditions. The yield values in gray represent significant increases, and the yield values in black represent significant decreases. The remaining values represent non-significant differences.
[0052]FIG. 20 shows the yield trial results for PHP28840-containing plants under normal nitrogen conditions. The yield values in gray represent significant increases, and the yield values in black represent significant decreases. The remaining values represent non-significant differences.
[0053]FIG. 21 shows the yield trial results for PHP28841-containing plants under normal nitrogen conditions. The yield values in gray represent significant increases, and the yield values in black represent significant decreases. The remaining values represent non-significant differences.
[0054]FIG. 22 shows the results of the NUE seedling assay for plants containing either PHP28840 (expression cassette=Int2-3) or PHP28841 (expression cassette=Int2-2).
[0055]The sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C.F.R. §1.821-1.825. The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the IUPAC-IUBMB standards described in Nucleic Acids Res. 13:3021-3030 (1985) and in the Biochemical J. 219 (2):345-373 (1984) which are herein incorporated by reference. The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.
[0056]Table 1 lists certain polypeptides that are described herein, the designation of the cDNA clones that comprise the nucleic acid fragments encoding polypeptides representing all or a substantial portion of these polypeptides, and the corresponding identifier (SEQ ID NO:) as used in the attached Sequence Listing.
TABLE-US-00001 TABLE 1 Low Nitrogen tolerant proteins (LNT) SEQ ID NO: Amino Clone Designation Nucleotide Acid LNT2-like cpg1c.pk013.o6:fis 17 18 LNT2-like rca1n.pk001.f6:fis 19 20 LNT2-like sfl1n1.pk002.j1 21 LNT2-like sds1f.pk001.k5 22
[0057]SEQ ID NO:1 is the nucleotide sequence of the pHSbarENDs2 activation tagging vector (FIG. 1).
[0058]SEQ ID NO:2 is the nucleotide sequence of the pDONR®Zeo construct (FIG. 2).
[0059]SEQ ID NO:3 is the nucleotide sequence of the pDONR®221 construct (FIG. 3).
[0060]SEQ ID NO:4 is the nucleotide sequence of the pBC-yellow vector (FIG. 4).
[0061]SEQ ID NO:5 is the nucleotide sequence of the PHP27840 vector (FIG. 5).
[0062]SEQ ID NO:6 is the nucleotide sequence of the destination vector PHP23236 (FIG. 6).
[0063]SEQ ID NO:7 is the nucleotide sequence of the PHP10523 vector (FIG. 7).
[0064]SEQ ID NO:8 is the nucleotide sequence of the PHP23235 vector (FIG. 8).
[0065]SEQ ID NO:9 is the nucleotide sequence of the PHP20234 vector (FIG. 9).
[0066]SEQ ID NO:10 is the nucleotide sequence of the destination vector PHP22655 (FIG. 10).
[0067]SEQ ID NO:11 is the nucleotide sequence of the poly-linker used to substitute the Pacl restriction site at position 5775 of pHSbarENDs2.
[0068]SEQ ID NO:12 is the nucleotide sequence of the attB1 sequence.
[0069]SEQ ID NO:13 is the nucleotide sequence of the attB2 sequence.
[0070]SEQ ID NO:14 is the nucleotide sequence of the entry clone PHP23112.
[0071]SEQ ID NO:15 is the forward primer VC062 in Example 5.
[0072]SEQ ID NO:16 is the reverse primer VC063 in Example 5.
[0073]SEQ ID NOs:17-22 (see Table 1).
[0074]SEQ ID NO:23 is the consensus nucleotide sequence of a contig, referred to herein as PSO415619, containing BI316280 (NCBI General Identifier No. 14990607), CD401485 (NCBI General Identifier No. 31459457) and sfl1n1.pk002.j1 (SEQ ID NO:21).
[0075]SEQ ID NO:24 is the amino acid sequence of the polypeptide encoded by PSO415619 (SEQ ID NO:23).
[0076]SEQ ID NO:25 is the consensus nucleotide sequence of a contig, referred to herein as PSO415620, containing CX548557 (NCBI General Identifier No. 57575582) and sds1f.pk001.k5 (SEQ ID NO:22).
[0077]SEQ ID NO:26 is the amino acid sequence of the polypeptide encoded by PSO415620 (SEQ ID NO:25).
[0078]SEQ ID NO:27 is the nucleotide sequence of the gene that encodes the Arabidopsis thaliana "unknown protein" (LNT2) (At5g50930; NCBI General Identifier No. 145359102).
[0079]SEQ ID NO:28 is the amino acid sequence of the Arabidopsis thaliana "unknown protein" (LNT2) (At5g50930; NCBI General Identifier No. 15241317).
[0080]SEQ ID NO:29 is the nucleotide sequence of an alternative splice variant (referred to herein as "Int2-2") of At5g50930.
[0081]SEQ ID NO:30 is the amino acid sequence of the polypeptide encoded by Int2-2 (SEQ ID NO:29) and is referred to herein as "LNT2-2".
[0082]SEQ ID NO:31 is the nucleotide sequence of a second alternative splice variant (referred to herein as "Int2-3") of At5g50930.
[0083]SEQ ID NO:32 is the amino acid sequence of the polypeptide encoded by Int2-3 (SEQ ID NO:29) and is referred to herein as "LNT2-3". SEQ ID NO:32 is 100% identical to SEQ ID NO:52198 in EP1033405 based on the Clustal V method of alignment, using default parameters.
[0084]SEQ ID NO:33 is the amino acid sequence of the Oryza sativa "unknown protein" (NCBI General Identifier No. 38347162).
[0085]SEQ ID NO:34 is the amino acid sequence of the Vitis vinifera "hypothetical protein" (NCBI General Identifier No.147791927).
[0086]SEQ ID NO:35 is the nucleotide sequence of the At5g50930-5' attB forward primer.
[0087]SEQ ID NO:36 is the nucleotide sequence of the At5g50930-3' attB reverse primer.
DETAILED DESCRIPTION OF OTHER EMBODIMENTS
[0088]The disclosure of each reference set forth herein is hereby incorporated by reference in its entirety.
[0089]As used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a plant" includes a plurality of such plants, reference to "a cell" includes one or more cells and equivalents thereof known to those skilled in the art, and so forth.
[0090]As used herein:
[0091]"Nitrogen limiting conditions" refers to conditions where the amount of total available nitrogen (e.g., from nitrates, ammonia, or other known sources of nitrogen) is not sufficient to sustain optimal plant growth and development. One skilled in the art would recognize conditions where total available nitrogen is sufficient to sustain optimal plant growth and development. One skilled in the art would recognize what constitutes sufficient amounts of total available nitrogen, and what constitutes soils, media and fertilizer inputs for providing nitrogen to plants. Nitrogen limiting conditions will vary depending upon a number of factors, including but not limited to, the particular plant and environmental conditions.
[0092]"Agronomic characteristic" is a measurable parameter including but not limited to, greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in vegetative tissue, whole plant amino acid content, vegetative tissue free amino acid content, fruit free amino acid content, seed free amino acid content, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, resistance to root lodging, harvest index, stalk lodging, plant height, ear height, and ear length.
[0093]"Harvest index" refers to the grain weight divided by the total plant weight. "Int2" refers to the Arabidopsis thaliana gene locus, At5g50930 (SEQ ID NO: 27). "LNT2" refers to the protein (SEQ ID NO:28) encoded by SEQ ID NO:27.
[0094]"Int2-2" (SEQ ID NO:29) and "Int2-3" (SEQ ID NO:31) are naturally occurring alternative splice variants of the At5g50930 gene. "LNT2-2" (SEQ ID NO:30) and "LNT2-3" (SEQ ID NO:32) refer to the proteins encoded by "Int2-2" and "Int2-3", respectively.
[0095]"Int2-like" refers to nucleotide homologs from different species, such as corn and soybean, of the Arabidopsis thaliana "Int2" locus At5g50930 (SEQ ID NO: 28) and includes without limitation any of the nucleotide sequences of SEQ ID NOs: 17, 19, 23, and 25.
[0096]"LNT2-like" refers to protein homologs from different species, such as corn and soybean, of the Arabidopsis thaliana "LNT2" (SEQ ID NO: 28) and includes without limitation any of the amino acid sequences of SEQ ID NOs: 18, 20, 24, and 26.
[0097]"Alternative splice variants" used herein refers to alternative forms of RNA transcribed from a gene. Splice variation naturally occurs as a result of alternative sites being spliced within a single transcribed RNA molecule or between separately transcribed RNA molecules, and may result in several different forms of mRNA transcribed from the same gene. Thus, splice variants may encode polypeptides having different amino acid sequences, which may or may not have similar functions in the organism.
[0098]"Nitrogen stress tolerance" is a trait of a plant and refers to the ability of the plant to survive under nitrogen limiting conditions.
[0099]"Increased nitrogen stress tolerance" of a plant is measured relative to a reference or control plant, and means that the nitrogen stress tolerance of the plant is increased by any amount or measure when compared to the nitrogen stress tolerance of the reference or control plant.
[0100]A "nitrogen stress tolerant plant" is a plant that exhibits nitrogen stress tolerance. A nitrogen stress tolerant plant is In an embodiment a plant that exhibits an increase in at least one agronomic characteristic relative to a control plant under nitrogen limiting conditions.
[0101]"Environmental conditions" refer to conditions under which the plant is grown, such as the availability of water, availability of nutrients (for example nitrogen), or the presence of insects or disease.
[0102]"Transgenic" refers to any cell, cell line, callus, tissue, plant part or plant, the genome of which has been altered by the presence of a heterologous nucleic acid, such as a recombinant DNA construct, including those initial transgenic events as well as those created by sexual crosses or asexual propagation from the initial transgenic event. The term "transgenic" as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.
[0103]"Genome" as it applies to plant cells encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components (e.g., mitochondrial, plastid) of the cell.
[0104]"Plant" includes reference to whole plants, plant organs, plant tissues, seeds and plant cells and progeny of same. Plant cells include, without limitation, cells from seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores.
[0105]"Progeny" comprises any subsequent generation of a plant.
[0106]"Transgenic plant" includes reference to a plant which comprises within its genome a heterologous polynucleotide. In an embodiment, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct.
[0107]"Heterologous" with respect to sequence means a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention.
[0108]"Polynucleotide", "nucleic acid sequence", "nucleotide sequence", or "nucleic acid fragment" are used interchangeably to refer to a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. Nucleotides (usually found in their 5'-monophosphate form) are referred to by their single letter designation as follows: "A" for adenylate or deoxyadenylate (for RNA or DNA, respectively), "C" for cytidylate or deoxycytidylate, "G" for guanylate or deoxyguanylate, "U" for uridylate, "T" for deoxythymidylate, "R" for purines (A or G), "Y" for pyrimidines (C or T), "K" for G or T, "H" for A or C or T, "I" for inosine, and "N" for any nucleotide.
[0109]"Polypeptide", "peptide", "amino acid sequence" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The terms "polypeptide", "peptide", "amino acid sequence", and "protein" are also inclusive of modifications including, but not limited to, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation.
[0110]"Messenger RNA (mRNA)" refers to the RNA that is without introns and that can be translated into protein by the cell.
[0111]"cDNA" refers to a DNA that is complementary to and synthesized from an mRNA template using the enzyme reverse transcriptase. The cDNA can be single-stranded or converted into the double-stranded form using the Klenow fragment of DNA polymerase 1.
[0112]An "Expressed Sequence Tag" ("EST") is a DNA sequence derived from a cDNA library and therefore is a sequence which has been transcribed. An EST is typically obtained by a single sequencing pass of a cDNA insert. The sequence of an entire cDNA insert is termed the "Full-insert Sequence" ("FIS"). A "Contig" sequence is a sequence assembled from two or more sequences that can be selected from, but not limited to, the group consisting of an EST, FIS and PCR sequence. A sequence encoding an entire or functional protein is termed a "Complete Gene Sequence" ("CGS") and can be derived from an FIS or a contig.
[0113]"Mature" protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or pro-peptides present in the primary translation product have been removed.
[0114]"Precursor" protein refers to the primary product of translation of mRNA; i.e., with pre- and pro-peptides still present. Pre- and pro-peptides may be and are not limited to intracellular localization signals.
[0115]"Isolated" refers to materials, such as nucleic acid molecules and/or proteins, which are substantially free or otherwise removed from components that normally accompany or interact with the materials in a naturally occurring environment. Isolated polynucleotides may be purified from a host cell in which they naturally occur. Conventional nucleic acid purification methods known to skilled artisans may be used to obtain isolated polynucleotides. The term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.
[0116]"Recombinant" refers to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques. "Recombinant" also includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid or a cell derived from a cell so modified, but does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention.
[0117]"Recombinant DNA construct" refers to a combination of nucleic acid fragments that are not normally found together in nature. Accordingly, a recombinant DNA construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that normally found in nature.
[0118]The terms "entry clone" and "entry vector" are used interchangeably herein.
[0119]"Regulatory sequences" and "regulatory elements" are used interchangeably and refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
[0120]"Promoter" refers to a nucleic acid fragment capable of controlling transcription of another nucleic acid fragment.
[0121]"Promoter functional in a plant" is a promoter capable of controlling transcription in plant cells whether or not its origin is from a plant cell.
[0122]"Tissue-specific promoter" and "tissue-preferred promoter" are used interchangeably to refer to a promoter that is expressed predominantly but not necessarily exclusively in one tissue or organ, but that may also be expressed in one specific cell.
[0123]"Developmentally regulated promoter" refers to a promoter whose activity is determined by developmental events.
[0124]"Operably linked" refers to the association of nucleic acid fragments in a single fragment so that the function of one is regulated by the other. For example, a promoter is operably linked with a nucleic acid fragment when it is capable of regulating the transcription of that nucleic acid fragment.
[0125]"Expression" refers to the production of a functional product. For example, expression of a nucleic acid fragment may refer to transcription of the nucleic acid fragment (e.g., transcription resulting in mRNA or functional RNA) and/or translation of mRNA into a precursor or mature protein.
[0126]"Phenotype" means the detectable characteristics of a cell or organism.
[0127]"Introduced" in the context of inserting a nucleic acid fragment (e.g., a recombinant DNA construct) into a cell, means "transfection" or "transformation" or "transduction" and includes reference to the incorporation of a nucleic acid fragment into a eukaryotic or prokaryotic cell where the nucleic acid fragment may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).
[0128]A "transformed cell" is any cell into which a nucleic acid fragment (e.g., a recombinant DNA construct) has been introduced.
[0129]"Transformation" as used herein refers to both stable transformation and transient transformation.
[0130]"Stable transformation" refers to the introduction of a nucleic acid fragment into a genome of a host organism resulting in genetically stable inheritance. Once stably transformed, the nucleic acid fragment is stably integrated in the genome of the host organism and any subsequent generation.
[0131]"Transient transformation" refers to the introduction of a nucleic acid fragment into the nucleus, or DNA-containing organelle, of a host organism resulting in gene expression without genetically stable inheritance.
[0132]"Allele" is one of several alternative forms of a gene occupying a given locus on a chromosome. When the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant are the same that plant is homozygous at that locus. If the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant differ that plant is heterozygous at that locus. If a transgene is present on one of a pair of homologous chromosomes in a diploid plant that plant is hemizygous at that locus.
[0133]Sequence alignments and percent identity calculations may be determined using a variety of comparison methods designed to detect homologous sequences including, but not limited to, the MEGALIGN® program of the LASERGENE® bioinformatics computing suite (DNASTAR® Inc., Madison, Wis.). Unless stated otherwise, multiple alignment of the sequences provided herein were performed using the Clustal V method of alignment (Higgins and Sharp, CABIOS. 5:151-153 (1989)) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments and calculation of percent identity of protein sequences using the Clustal V method are KTUPLE=1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4. After alignment of the sequences, using the Clustal V program, it is possible to obtain "percent identity" and "divergence" values by viewing the "sequence distances" table on the same program; unless stated otherwise, percent identities and divergences provided and claimed herein were calculated in this manner.
[0134]Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter "Sambrook").
[0135]Turning now to several embodiments:
[0136]Other embodiments include isolated polynucleotides and polypeptides, recombinant DNA constructs, compositions (such as plants or seeds) comprising these recombinant DNA constructs, and methods utilizing these recombinant DNA constructs.
[0137]Other Isolated Polynucleotides and Polypeptides
[0138]The present invention includes the following other isolated polynucleotides and polypeptides:
[0139]An isolated polynucleotide comprising: (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or (ii) a full complement of the nucleic acid sequence of (i), wherein the full complement and the nucleic acid sequence of (i) consist of the same number of nucleotides and are 100% complementary. Any of the foregoing isolated polynucleotides may be utilized in any recombinant DNA constructs (including suppression DNA constructs) of the present invention. The polypeptide can be an LNT2 or LNT2-like protein.
[0140]An isolated polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32. The polypeptide is can be an LNT2 or LNT2-like protein.
[0141]An isolated polynucleotide comprising (i) a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:17, 19, 23, 25, 27, 29, or 31; or (ii) a full complement of the nucleic acid sequence of (i). Any of the foregoing isolated polynucleotides may be utilized in any recombinant DNA constructs (including suppression DNA constructs) of the present invention. The isolated polynucleotide can be encodes an LNT2 or LNT2-like protein.
[0142]Other Recombinant DNA Constructs and Suppression DNA Constructs
[0143]In one aspect, the present invention includes recombinant DNA constructs (including suppression DNA constructs).
[0144]In one other embodiment, a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein the polynucleotide comprises (i) a nucleic acid sequence encoding an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or (ii) a full complement of the nucleic acid sequence of (i).
[0145]In another other embodiment, a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein said polynucleotide comprises (i) a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:17, 19, 23, 25, 27, 29, or 31; or (ii) a full complement of the nucleic acid sequence of (i).
[0146]FIGS. 14A and 14B show the multiple alignment of the amino acid sequences of SEQ ID NOs: 18, 20, 24, 26, 28, 30, 32, 33, and 34 The multiple alignment of the sequences was performed using the MEGALIGN® program of the LASERGENE® bioinformatics computing suite (DNASTAR® Inc., Madison, Wis.); in particular, using the Clustal V method of alignment (Higgins and Sharp, CABIOS. 5:151-153 (1989)) with the multiple alignment default parameters of GAP PENALTY=10 and GAP LENGTH PENALTY=10, and the pairwise alignment default parameters of KTUPLE=1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.
[0147]FIG. 15 is a chart of the percent sequence identity and the divergence values for each pair of amino acids sequences displayed in FIGS. 14A and 14B.
[0148]In another other embodiment, a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein said polynucleotide encodes an LNT2 or LNT2-like protein.
[0149]In another aspect, the present invention includes suppression DNA constructs.
[0150]A suppression DNA construct can comprise at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to (a) all or part of: (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or (ii) a full complement of the nucleic acid sequence of (a)(i); or (b) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like protein; or (c) all or part of: (i) a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:17, 19, 23, 25, 27, 29, or 31; or (ii) a full complement of the nucleic acid sequence of (c)(i). The suppression DNA construct in an embodiment, comprises a cosuppression construct, antisense construct, viral-suppression construct, hairpin suppression construct, stem-loop suppression construct, double-stranded RNA-producing construct, RNAi construct, or small RNA construct (e.g., an siRNA construct or an miRNA construct).
[0151]It is understood, as those skilled in the art will appreciate, that the invention encompasses more than the specific exemplary sequences. Alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not affect the functional properties of the encoded polypeptide, are well known in the art. For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products.
[0152]"Suppression DNA construct" is a recombinant DNA construct which when transformed or stably integrated into the genome of the plant, results in "silencing" of a target gene in the plant. The target gene may be endogenous or transgenic to the plant. "Silencing," as used herein with respect to the target gene, refers generally to the suppression of levels of mRNA or protein/enzyme expressed by the target gene, and/or the level of the enzyme activity or protein functionality. The terms "suppression", "suppressing" and "silencing", used interchangeably herein, includes lowering, reducing, declining, decreasing, inhibiting, eliminating or preventing. "Silencing" or "gene silencing" does not specify mechanism and is inclusive, and not limited to, anti-sense, cosuppression, viral-suppression, hairpin suppression, stem-loop suppression, RNAi-based approaches, and small RNA-based approaches.
[0153]A suppression DNA construct may comprise a region derived from a target gene of interest and may comprise all or part of the nucleic acid sequence of the sense strand (or antisense strand) of the target gene of interest. Depending upon the approach to be utilized, the region may be 100% identical or less than 100% identical (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical all or part of the sense strand (or antisense strand) of the gene of interest.
[0154]Suppression DNA constructs are well-known in the art, are readily constructed once the target gene of interest is selected, and include, without limitation, cosuppression constructs, antisense constructs, viral-suppression constructs, hairpin suppression constructs, stem-loop suppression constructs, double-stranded RNA-producing constructs, and more generally, RNAi (RNA interference) constructs and small RNA constructs such as siRNA (short interfering RNA) constructs and miRNA (microRNA) constructs.
[0155]"Antisense inhibition" refers to the production of antisense RNA transcripts capable of suppressing the expression of the target gene or gene product. "Antisense RNA" refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target isolated nucleic acid fragment (U.S. Pat. No. 5,107,065). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence.
[0156]"Cosuppression" refers to the production of sense RNA transcripts capable of suppressing the expression of the target gene or gene product. "Sense" RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro. Cosuppression constructs in plants have been previously designed by focusing on overexpression of a nucleic acid sequence having homology to a native mRNA, in the sense orientation, which results in the reduction of all RNA having homology to the overexpressed sequence (see Vaucheret et al., Plant J. 16:651-659 (1998); and Gura, Nature 404:804-808 (2000)).
[0157]Another variation describes the use of plant viral sequences to direct the suppression of proximal mRNA encoding sequences (PCT Publication No. WO 98/36083 published on Aug. 20, 1998).
[0158]Previously described is the use of "hairpin" structures that incorporate all, or part, of an mRNA encoding sequence in a complementary orientation that results in a potential "stem-loop" structure for the expressed RNA (PCT Publication No. WO 99/53050 published on Oct. 21,1999). In this case the stem is formed by polynucleotides corresponding to the gene of interest inserted in either sense or anti-sense orientation with respect to the promoter and the loop is formed by some polynucleotides of the gene of interest, which do not have a complement in the construct. This increases the frequency of cosuppression or silencing in the recovered transgenic plants. For a review of hairpin suppression see Wesley, S. V. et al. (2003) Methods in Molecular Biology, Plant Functional Genomics: Methods and Protocols 236:273-286.
[0159]A construct where the stem is formed by at least 30 nucleotides from a gene to be suppressed and the loop is formed by a random nucleotide sequence has also effectively been used for suppression (PCT Publication No. WO 99/61632 published on Dec. 2, 1999).
[0160]The use of poly-T and poly-A sequences to generate the stem in the stem-loop structure has also been described (PCT Publication No. WO 02/00894 published Jan. 3, 2002).
[0161]Yet another variation includes using synthetic repeats to promote formation of a stem in the stem-loop structure. Transgenic organisms prepared with such recombinant DNA fragments have been shown to have reduced levels of the protein encoded by the nucleotide fragment forming the loop as described in PCT Publication No. WO 02/00904, published Jan. 3, 2002.
[0162]RNA interference refers to the process of sequence-specific post-transcriptional gene silencing in animals mediated by short interfering RNAs (siRNAs) (Fire et al., Nature 391:806 (1998)). The corresponding process in plants is commonly referred to as post-transcriptional gene silencing (PTGS) or RNA silencing and is also referred to as quelling in fungi. The process of post-transcriptional gene silencing is thought to be an evolutionarily-conserved cellular defense mechanism used to prevent the expression of foreign genes and is commonly shared by diverse flora and phyla (Fire et al., Trends Genet. 15:358 (1999)). Such protection from foreign gene expression may have evolved in response to the production of double-stranded RNAs (dsRNAs) derived from viral infection or from the random integration of transposon elements into a host genome via a cellular response that specifically destroys homologous single-stranded RNA of viral genomic RNA. The presence of dsRNA in cells triggers the RNAi response through a mechanism that has yet to be fully characterized.
[0163]The presence of long dsRNAs in cells stimulates the activity of a ribonuclease III enzyme referred to as dicer. Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs) (Berstein et al., Nature 409:363 (2001)). Short interfering RNAs derived from dicer activity are typically about 21 to about 23 nucleotides in length and comprise about 19 base pair duplexes (Elbashir et al., Genes Dev. 15:188 (2001)). Dicer has also been implicated in the excision of 21- and 22-nucleotide small temporal RNAs (stRNAs) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner et al., Science 293:834 (2001)). The RNAi response also features an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single-stranded RNA having sequence complementarity to the antisense strand of the siRNA duplex. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex. In addition, RNA interference can also involve small RNA (e.g., miRNA) mediated gene silencing, presumably through cellular mechanisms that regulate chromatin structure and thereby prevent transcription of target gene sequences (see, e.g., Allshire, Science 297:1818-1819 (2002); Volpe et al., Science 297:1833-1837 (2002); Jenuwein, Science 297:2215-2218 (2002); and Hall et al., Science 297:2232-2237 (2002)). As such, miRNA molecules of the invention can be used to mediate gene silencing via interaction with RNA transcripts or alternately by interaction with particular gene sequences, wherein such interaction results in gene silencing either at the transcriptional or post-transcriptional level.
[0164]RNAi has been studied in a variety of systems. Fire et al. (Nature 391:806 (1998)) were the first to observe RNAi in Caenorhabditis elegans. Wianny and Goetz (Nature Cell Biol. 2:70 (1999)) describe RNAi mediated by dsRNA in mouse embryos. Hammond et al. (Nature 404:293 (2000)) describe RNAi in Drosophila cells transfected with dsRNA. Elbashir et al., (Nature 411:494 (2001)) describe RNAi induced by introduction of duplexes of synthetic 21-nucleotide RNAs in cultured mammalian cells including human embryonic kidney and HeLa cells.
[0165]Small RNAs play an important role in controlling gene expression. Regulation of many developmental processes, including flowering, is controlled by small RNAs. It is now possible to engineer changes in gene expression of plant genes by using transgenic constructs which produce small RNAs in the plant.
[0166]Small RNAs appear to function by base-pairing to complementary RNA or DNA target sequences. When bound to RNA, small RNAs trigger either RNA cleavage or translational inhibition of the target sequence. When bound to DNA target sequences, it is thought that small RNAs can mediate DNA methylation of the target sequence. The consequence of these events, regardless of the specific mechanism, is that gene expression is inhibited.
[0167]It is thought that sequence complementarity between small RNAs and their RNA targets helps to determine which mechanism, RNA cleavage or translational inhibition, is employed. It is believed that siRNAs which are perfectly complementary with their targets, work by RNA cleavage. Some miRNAs have perfect or near-perfect complementarity with their targets, and RNA cleavage has been demonstrated for at least a few of these miRNAs. Other miRNAs have several mismatches with their targets, and apparently inhibit their targets at the translational level. Again, without being held to a particular theory on the mechanism of action, a general rule is emerging that perfect or near-perfect complementarity causes RNA cleavage, whereas translational inhibition is favored when the miRNA/target duplex contains many mismatches. The apparent exception to this is microRNA 172 (miR172) in plants. One of the targets of miR172 is APETALA2 (AP2), and although miR172 shares near-perfect complementarity with AP2 it appears to cause translational inhibition of AP2 rather than RNA cleavage.
[0168]MicroRNAs (miRNAs) are noncoding RNAs of about 19 to about 24 nucleotides (nt) in length that have been identified in both animals and plants (Lagos-Quintana et al., Science 294:853-858 (2001), Lagos-Quintana et al., Curr. Biol. 12:735-739 (2002); Lau et al., Science 294:858-862 (2001); Lee and Ambros, Science 294:862-864 (2001); Llave et al., Plant Cell 14:1605-1619 (2002); Mourelatos et al., Genes. Dev. 16:720-728 (2002); Park et al., Curr. Biol. 12:1484-1495 (2002); Reinhart et al., Genes. Dev. 16:1616-1626 (2002)). They are processed from longer precursor transcripts that range in size from approximately 70 to 200 nt, and these precursor transcripts have the ability to form stable hairpin structures. In animals, the enzyme involved in processing miRNA precursors is called dicer, an RNAse III-like protein (Grishok et al., Cell 106:23-34 (2001); Hutvagner et al., Science 293:834-838 (2001); Ketting et al., Genes. Dev. 15:2654-2659 (2001)). Plants also have a dicer-like enzyme, DCL1 (previously named CARPEL FACTORY/SHORT INTEGUMENTS1/SUSPENSOR1), and recent evidence indicates that it, like dicer, is involved in processing the hairpin precursors to generate mature miRNAs (Park et al., Curr. Biol. 12:1484-1495 (2002); Reinhart et al., Genes Dev. 16:1616-1626 (2002)). Furthermore, it is becoming clear from recent work that at least some miRNA hairpin precursors originate as longer polyadenylated transcripts, and several different miRNAs and associated hairpins can be present in a single transcript (Lagos-Quintana et al., Science 294:853-858 (2001); Lee et al., EMBO J. 21:4663-4670 (2002)). Recent work has also examined the selection of the miRNA strand from the dsRNA product arising from processing of the hairpin by DICER (Schwartz et al., Cell 115:199-208 (2003)). It appears that the stability (i.e., G:C versus A:U content, and/or mismatches) of the two ends of the processed dsRNA affects the strand selection, with the low stability end being easier to unwind by a helicase activity. The 5' end strand at the low stability end is incorporated into the RISC complex, while the other strand is degraded.
[0169]MicroRNAs (miRNAs) appear to regulate target genes by binding to complementary sequences located in the transcripts produced by these genes. In the case of lin-4 and let-7, the target sites are located in the 3' UTRs of the target mRNAs (Lee et al., Cell 75:843-854 (1993); Wightman et al., Cell 75:855-862 (1993); Reinhart et al., Nature 403:901-906 (2000); Slack et al., Mol. Cell 5:659-669 (2000)), and there are several mismatches between the lin-4 and let-7 miRNAs and their target sites. Binding of the lin-4 or let-7 miRNA appears to cause downregulation of steady-state levels of the protein encoded by the target mRNA without affecting the transcript itself (Olsen and Ambros, Dev. Biol. 216:671-680 (1999)). On the other hand, recent evidence suggests that miRNAs can in some cases cause specific RNA cleavage of the target transcript within the target site, and this cleavage step appears to require 100% complementarity between the miRNA and the target transcript (Hutvagner and Zamore, Science 297:2056-2060 (2002); Llave et al., Plant Cell 14:1605-1619 (2002)). It seems likely that miRNAs can enter at least two pathways of target gene regulation: (1) protein downregulation when target complementarity is <100%; and (2) RNA cleavage when target complementarity is 100%. MicroRNAs entering the RNA cleavage pathway are analogous to the 21-25 nt short interfering RNAs (siRNAs) generated during RNA interference (RNAi) in animals and posttranscriptional gene silencing (PTGS) in plants, and likely are incorporated into an RNA-induced silencing complex (RISC) that is similar or identical to that seen for RNAi.
[0170]Identifying the targets of miRNAs with bioinformatics has not been successful in animals, and this is probably due to the fact that animal miRNAs have a low degree of complementarity with their targets. On the other hand, bioinformatic approaches have been successfully used to predict targets for plant miRNAs (Llave et al., Plant Cell 14:1605-1619 (2002); Park et al., Curr. Biol. 12:1484-1495 (2002); Rhoades et al., Cell 110:513-520 (2002)), and thus it appears that plant miRNAs have higher overall complementarity with their putative targets than do animal miRNAs. Most of these predicted target transcripts of plant miRNAs encode members of transcription factor families implicated in plant developmental patterning or cell differentiation.
[0171]Regulatory Sequences:
[0172]A recombinant DNA construct (including a suppression DNA construct) of the present invention can comprise at least one regulatory sequence.
[0173]A regulatory sequence is a promoter.
[0174]A number of promoters can be used in recombinant DNA constructs (and suppression DNA constructs) of the present invention. The promoters can be selected based on the desired outcome, and may include constitutive, tissue-specific, inducible, or other promoters for expression in the host organism.
[0175]High level, constitutive expression of the candidate gene under control of the 35S or UBI promoter may (or may not) have pleiotropic effects, although candidate gene efficacy may be estimated when driven by a constitutive promoter. Use of tissue-specific and/or stress-specific promoters may eliminate undesirable effects, but retain the ability to enhance nitrogen tolerance. This type of effect has been observed in Arabidopsis for drought and cold tolerance (Kasuga et al., Nature Biotechnol. 17:287-91 (1999)).
[0176]Suitable constitutive promoters for use in a plant host cell include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Pat. No. 6,072,050; the core CaMV 35S promoter (Odell et al., Nature 313:810-812 (1985)); rice actin (McElroy et al., Plant Cell 2:163-171 (1990)); ubiquitin (Christensen et al., Plant Mol. Biol. 12:619-632 (1989) and Christensen et al., Plant Mol. Biol. 18:675-689 (1992)); pEMU (Last et al., Theor. Appl. Genet. 81:581-588 (1991)); MAS (Velten et al., EMBO J. 3:2723-2730 (1984)); ALS promoter (U.S. Pat. No. 5,659,026), and the like. Other constitutive promoters include, for example, those discussed in U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611.
[0177]In choosing a promoter to use in the methods of the invention, it may be desirable to use a tissue-specific or developmentally regulated promoter.
[0178]Another tissue-specific or developmentally regulated promoter is a DNA sequence which regulates the expression of a DNA sequence selectively in the cells/tissues of a plant critical to tassel development, seed set, or both, and limits the expression of such a DNA sequence to the period of tassel development or seed maturation in the plant. Any identifiable promoter may be used in the methods of the present invention which causes the desired temporal and spatial expression.
[0179]Promoters which are seed or embryo-specific and may be useful in the invention include soybean Kunitz trypsin inhibitor (Kti3, Jofuku and Goldberg, Plant Cell 1:1079-1093 (1989)), patatin (potato tubers) (Rocha-Sosa, M., et al., EMBO J. 8:23-29 (1989)), convicilin, vicilin, and legumin (pea cotyledons) (Rerie, W. G., et al., Mol. Gen. Genet. 259:149-157 (1991); Newbigin, E. J., et al., Planta 180:461-470 (1990); Higgins, T. J. V., et al., Plant. Mol. Biol. 11:683-695 (1988)), zein (maize endosperm) (Schemthaner, J. P., et al., EMBO J. 7:1249-1255 (1988)), phaseolin (bean cotyledon) (Segupta-Gopalan, C., et al., Proc. Natl. Acad. Sci. U.S.A. 82:3320-3324 (1995)), phytohemagglutinin (bean cotyledon) (Voelker, T. et al., EMBO J. 6:3571-3577 (1987)), B-conglycinin and glycinin (soybean cotyledon) (Chen, Z-L, et al., EMBO J. 7:297-302 (1988)), glutelin (rice endosperm), hordein (barley endosperm) (Marris, C., et al., Plant Mol. Biol. 10:359-366 (1988)), glutenin and gliadin (wheat endosperm) (Colot, V., et al., EMBO J. 6:3559-3564 (1987)), and sporamin (sweet potato tuberous root) (Hattori, T., et al., Plant Mol. Biol. 14:595-604 (1990)). Promoters of seed-specific genes operably linked to heterologous coding regions in chimeric gene constructions maintain their temporal and spatial expression pattern in transgenic plants. Such examples include Arabidopsis thaliana 2S seed storage protein gene promoter to express enkephalin peptides in Arabidopsis and Brassica napus seeds (Vanderkerckhove et al., Bio/Technology 7:L929-932 (1989)), bean lectin and bean beta-phaseolin promoters to express luciferase (Riggs et al., Plant Sci. 63:47-57 (1989)), and wheat glutenin promoters to express chloramphenicol acetyl transferase (Colot et al., EMBO J. 6:3559-3564 (1987)).
[0180]Inducible promoters selectively express an operably linked DNA sequence in response to the presence of an endogenous or exogenous stimulus, for example by chemical compounds (chemical inducers) or in response to environmental, hormonal, chemical, and/or developmental signals. Inducible or regulated promoters include, for example, promoters regulated by light, heat, stress, flooding or drought, phytohormones, wounding, or chemicals such as ethanol, jasmonate, salicylic acid, or safeners.
[0181]Other promoters include the following: 1) the stress-inducible RD29A promoter (Kasuga et al., Nature Biotechnol. 17:287-91 (1999)); 2) the barley promoter, B22E; expression of B22E is specific to the pedicel in developing maize kernels ("Primary Structure of a Novel Barley Gene Differentially Expressed in Immature Aleurone Layers", Klemsdal et al., Mol. Gen. Genet. 228(1/2):9-16 (1991)); and 3) maize promoter, Zag2 ("Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS", Schmidt et al., Plant Cell 5(7):729-737 (1993); "Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize", Theissen et al., Gene 156(2):155-166 (1995); NCBI GenBank Accession No. X80206)). Zag2 transcripts can be detected five days prior to pollination to seven to eight days after pollination ("DAP"), and directs expression in the carpel of developing female inflorescences and Ciml which is specific to the nucleus of developing maize kernels. Ciml transcript is detected four to five days before pollination to six to eight DAP. Other useful promoters include any promoter which can be derived from a gene whose expression is maternally associated with developing female florets.
[0182]Additional other promoters for regulating the expression of the nucleotide sequences of the present invention in plants are stalk-specific promoters. Such stalk-specific promoters include the alfalfa S2A promoter (GenBank Accession No. EF030816; Abrahams et al., Plant Mol. Biol. 27:513-528 (1995)) and S2B promoter (GenBank Accession No. EF030817) and the like, herein incorporated by reference.
[0183]Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro, J. K., and Goldberg, R. B., Biochem. Plants 15:1-82 (1989).
[0184]Other promoters may include: RIP2, mLIP15, ZmCOR1, Rab17, CaMV 35S, RD29A, B22E, Zag2, SAM synthetase, ubiquitin, CaMV 19S, nos, Adh, sucrose synthase, R-allele, the vascular tissue other promoters S2A (Genbank accession number EF030816) and S2B (GenBank Accession No. EF030817), and the constitutive promoter GOS2 from Zea mays. Other promoters include root promoters, such as the maize NAS2 promoter, the maize Cyclo promoter (US Publication No. 2006/0156439, published Jul. 13, 2006), the maize ROOTMET2 promoter (WO 2005/063998, published Jul. 14, 2005), the CR1 BIO promoter (WO 2006/055487, published May 26, 2006), the CRWAQ81 (WO 2005/035770, published Apr. 21, 2005) and the maize ZRP2.47 promoter (NCBI Accession No. U38790; NCBI GI No.1063664).
[0185]Recombinant DNA constructs (and suppression DNA constructs) of the present invention may also include other regulatory sequences including, but not limited to, translation leader sequences, introns, and polyadenylation recognition sequences. In another other embodiment of the present invention, a recombinant DNA construct of the present invention further comprises an enhancer or silencer.
[0186]An intron sequence can be added to the 5' untranslated region, the protein-coding region or the 3' untranslated region to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg, Mol. Cell Biol. 8:4395-4405 (1988); Callis et al., Genes Dev. 1:1183-1200 (1987)). Such intron enhancement of gene expression is typically greatest when placed near the 5' end of the transcription unit. Use of maize introns Adh1-S intron 1, 2, and 6, the Bronze-1 intron are known in the art. See generally, The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).
[0187]If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3'-end of a polynucleotide coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3'-end sequence to be added can be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less in an embodiment from any other eukaryotic gene.
[0188]A translation leader sequence is a DNA sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D., Mol. Biotech. 3:225 (1995)).
[0189]Any plant can be selected for the identification of regulatory sequences and genes to be used in recombinant DNA constructs of the present invention. Examples of suitable plant targets for the isolation of genes and regulatory sequences would include but are not limited to alfalfa, apple, apricot, Arabidopsis, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassava, castorbean, cauliflower, celery, cherry, chicory, cilantro, citrus, clementines, clover, coconut, coffee, corn, cotton, cranberry, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, linseed, maize, mango, melon, mushroom, nectarine, nut, oat, oil palm, oil seed rape, okra, olive, onion, orange, an ornamental plant, palm, papaya, parsley, parsnip, pea, peach, peanut, pear, pepper, persimmon, pine, pineapple, plantain, plum, pomegranate, poplar, potato, pumpkin, quince, radiata pine, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugarbeet, sugarcane, sunflower, sweet potato, sweetgum, tangerine, tea, tobacco, tomato, triticale, turf, turnip, a vine, watermelon, wheat, yams, and zucchini. Particularly other plants for the identification of regulatory sequences are Arabidopsis, maize, wheat, soybean, and cotton.
[0190]Other Compositions
[0191]A other composition of the present invention is a plant comprising in its genome any of the recombinant DNA constructs (including any of the suppression DNA constructs) of the present invention (such as any of the other constructs discussed above). Other compositions also include any progeny of the plant, and any seed obtained from the plant or its progeny, wherein the progeny or seed comprises within its genome the recombinant DNA construct (or suppression DNA construct). Progeny includes subsequent generations obtained by self-pollination or out-crossing of a plant. Progeny also includes hybrids and inbreds.
[0192]In an embodiment, in hybrid seed propagated crops, mature transgenic plants can be self-pollinated to produce a homozygous inbred plant. The inbred plant produces seed containing the newly introduced recombinant DNA construct (or suppression DNA construct). These seeds can be grown to produce plants that would exhibit an altered agronomic characteristic (e.g., an increased agronomic characteristic, e.g. under nitrogen limiting conditions), or used in a breeding program to produce hybrid seed, which can be grown to produce plants that would exhibit such an altered agronomic characteristic. In an embodiment, the seeds are maize.
[0193]In an embodiment, the plant is a monocotyledonous or dicotyledonous plant, a maize or soybean plant, a maize plant, such as a maize hybrid plant or a maize inbred plant. The plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet.
[0194]In an embodiment, the recombinant DNA construct is stably integrated into the genome of the plant.
[0195]Particularly other embodiments include but are not limited to the following other embodiments 1-8:
[0196]1. A plant (in an embodiment a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32, and wherein said plant exhibits increased nitrogen stress tolerance when compared to a control plant not comprising said recombinant DNA construct. In an embodiment, the plant further exhibits an alteration of at least one agronomic characteristic when compared to the control plant.
[0197]2. A plant (in an embodiment a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising:
[0198](a) a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or
[0199](b) a suppression DNA construct comprising at least one regulatory element operably linked to: [0200](i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or [0201](ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide,
[0202]and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
[0203]3. A plant (in an embodiment a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes an LNT2 or LNT2-like polypeptide, and wherein said plant exhibits increased nitrogen stress tolerance when compared to a control plant not comprising said recombinant DNA construct. In an embodiment, the plant further exhibits an alteration of at least one agronomic characteristic when compared to the control plant. In an embodiment, the LNT2 polypeptide is from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja or Glycine tomentella.
[0204]4. A plant (in an embodiment a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes an LNT2 or LNT2-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said recombinant DNA construct. In an embodiment, the LNT2 polypeptide is from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja or Glycine tomentella.
[0205]5. A plant (in an embodiment a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32, and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said recombinant DNA construct.
[0206]6. A plant (in an embodiment a maize or soybean plant) comprising in its genome a suppression DNA construct comprising at least one regulatory element operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said suppression DNA construct.
[0207]7. A plant (in an embodiment a maize or soybean plant) comprising in its genome a suppression DNA construct comprising at least one regulatory element operably linked to all or part of: (a) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or (b) a full complement of the nucleic acid sequence of (a), and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said suppression DNA construct.
[0208]8. Any progeny of the above plants in other embodiments 1-7, any seeds of the above plants in other embodiments 1-7, any seeds of progeny of the above plants in other embodiments 1-7, and cells from any of the above plants in other embodiments 1-7 and progeny thereof.
[0209]In any of the foregoing other embodiments 1-8 or any other embodiments of the present invention, the recombinant DNA construct (or suppression DNA construct) In an embodiment comprises at least a promoter functional in a plant as a other regulatory sequence.
[0210]In any of the foregoing other embodiments 1-8 or any other embodiments of the present invention, the alteration of at least one agronomic characteristic is either an increase or decrease, In an embodiment an increase.
[0211]In any of the foregoing other embodiments 1-8 or any other embodiments of the present invention, the at least one agronomic characteristic selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, whole plant amino acid content, vegetative tissue free amino acid content, fruit free amino acid content, seed free amino acid content, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, resistance to root lodging, harvest index, stalk lodging, plant height, ear height, and ear length. Yield, greenness and biomass are particularly other agronomic characteristics for alteration (In an embodiment an increase).
[0212]In any of the foregoing other embodiments 1-8 or any other embodiments of the present invention, the plant In an embodiment exhibits the alteration of at least one agronomic characteristic when compared, under nitrogen stress conditions, to a control plant not comprising said recombinant DNA construct (or suppression DNA construct).
[0213]One of ordinary skill in the art is familiar with protocols for simulating nitrogen conditions, whether limiting or non-limiting, and for evaluating plants that have been subjected to simulated or naturally-occurring nitrogen conditions, whether limiting or non-limiting. For example, one can simulate nitrogen conditions by giving plants less nitrogen than normally required or no nitrogen over a period of time, and one can evaluate such plants by looking for differences in agronomic characteristics, e.g., changes in physiological and/or physical condition, including (but not limited to) vigor, growth, size, or root length, or in particular, leaf color or leaf area size. Other techniques for evaluating such plants include measuring chlorophyll fluorescence, photosynthetic rates, root growth or gas exchange rates.
[0214]The Examples below describe some representative protocols and techniques for simulating nitrogen limiting conditions and/or evaluating plants under such conditions.
[0215]One can also evaluate nitrogen stress tolerance by the ability of a plant to maintain sufficient yield (In an embodiment at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% yield) in field testing under simulated or naturally-occurring low or high nitrogen conditions (e.g., by measuring for substantially equivalent yield under low or high nitrogen conditions compared to normal nitrogen conditions, or by measuring for less yield loss under low or high nitrogen conditions compared to a control or reference plant).
[0216]One of ordinary skill in the art would readily recognize a suitable control or reference plant to be utilized when assessing or measuring an agronomic characteristic or phenotype of a transgenic plant in any embodiment of the present invention in which a control or preference plant is utilized (e.g., compositions or methods as described herein). For example, by way of non-limiting illustrations:
[0217]1. Progeny of a transformed plant which is hemizygous with respect to a recombinant DNA construct (or suppression DNA construct), such that the progeny are segregating into plants either comprising or not comprising the recombinant DNA construct (or suppression DNA construct): the progeny comprising the recombinant DNA construct (or suppression DNA construct) would be typically measured relative to the progeny not comprising the recombinant DNA construct (or suppression DNA construct) (i.e., the progeny not comprising the recombinant DNA construct (or the suppression DNA construct) is the control or reference plant).
[0218]2. Introgression of a recombinant DNA construct (or suppression DNA construct) into an inbred line, such as in maize, or into a variety, such as in soybean: the introgressed line would typically be measured relative to the parent inbred or variety line (i.e., the parent inbred or variety line is the control or reference plant).
[0219]3. Two hybrid lines, where the first hybrid line is produced from two parent inbred lines, and the second hybrid line is produced from the same two parent inbred lines except that one of the parent inbred lines contains a recombinant DNA construct (or suppression DNA construct): the second hybrid line would typically be measured relative to the first hybrid line (i.e., the first hybrid line is the control or reference plant).
[0220]4. A plant comprising a recombinant DNA construct (or suppression DNA construct): the plant may be assessed or measured relative to a control plant not comprising the recombinant DNA construct (or suppression DNA construct) but otherwise having a comparable genetic background to the plant (e.g., sharing at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity of nuclear genetic material compared to the plant comprising the recombinant DNA construct (or suppression DNA construct)). There are many laboratory-based techniques available for the analysis, comparison and characterization of plant genetic backgrounds; among these are Isozyme Electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length Polymorphisms (AFLP®s), and Simple Sequence Repeats (SSRs) which are also referred to as Microsatellites.
[0221]Furthermore, one of ordinary skill in the art would readily recognize that a suitable control or reference plant to be utilized when assessing or measuring an agronomic characteristic or phenotype of a transgenic plant would not include a plant that had been previously selected, via mutagenesis or transformation, for the desired agronomic characteristic or phenotype.
[0222]Other Methods
[0223]Other methods include but are not limited to methods for increasing nitrogen stress tolerance in a plant, methods for evaluating nitrogen stress tolerance in a plant, methods for altering an agronomic characteristic in a plant, methods for determining an alteration of an agronomic characteristic in a plant, and methods for producing seed. In an embodiment, the plant is a monocotyledonous or dicotyledonous plant, a maize or soybean plant, even more In an embodiment a maize plant. The plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, or millet. The seed is can be a maize or soybean seed a maize seed, and even more In an embodiment, a maize hybrid seed or maize inbred seed.
[0224]Particularly other methods include but are not limited to the following:
[0225]A method of increasing nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (in an embodiment a promoter functional in a plant), wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct. The method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen tolerance when compared to a control plant not comprising the recombinant DNA construct.
[0226]A method of increasing nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 8, 20, 24, 26, 28, 30, or 32, or (ii) a full complement of the nucleic acid sequence of (a)(i); and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the suppression DNA construct. The method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen tolerance when compared to a control plant not comprising the suppression DNA construct.
[0227]A method of increasing nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide; and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the suppression DNA construct. The method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen tolerance when compared to a control plant not comprising the suppression DNA construct.
[0228]A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (in an embodiment a promoter functional in a plant), wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
[0229]A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or (ii) a full complement of the nucleic acid sequence of (a)(i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct.
[0230]A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct.
[0231]A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (in an embodiment a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
[0232]A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 8, 20, 24, 26, 28, 30, or 32; or (ii) a full complement of the nucleic acid sequence of (a)(i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
[0233]A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
[0234]A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least on regulatory sequence (in an embodiment a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome said recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
[0235]A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or (ii) a full complement of the nucleic acid sequence of (i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
[0236]A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
[0237]A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (in an embodiment a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome said recombinant DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
[0238]A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 20, 24, 26, 28, 30, or 32; or (ii) a full complement of the nucleic acid sequence of (i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
[0239]A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (in an embodiment a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT2 or LNT2-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, in an embodiment under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
[0240]A method of producing seed (in an embodiment seed that can be sold as a nitrogen stress tolerant product offering) comprising any of the preceding other methods, and further comprising obtaining seeds from said progeny plant, wherein said seeds comprise in their genome said recombinant DNA construct (or suppression DNA construct).
[0241]In any of the foregoing other methods or any other embodiments of methods of the present invention, the step of determining an alteration of an agronomic characteristic in a transgenic plant, if applicable, may in an embodiment comprise determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under varying environmental conditions, to a control plant not comprising the recombinant DNA construct.
[0242]In any of the foregoing other methods or any other embodiments of methods of the present invention, the step of determining an alteration of an agronomic characteristic in a progeny plant, if applicable, may comprise determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under varying environmental conditions, to a control plant not comprising the recombinant DNA construct.
[0243]In any of the preceding other methods or any other embodiments of methods of the present invention, in said introducing step said regenerable plant cell may comprises a callus cell (in an embodiment embryogenic), a gametic cell, a meristematic cell, or a cell of an immature embryo. The regenerable plant cells are in an embodiment from an inbred maize plant.
[0244]In any of the preceding other methods or any other embodiments of methods of the present invention, said regenerating step in an embodiment comprises: (i) culturing said transformed plant cells in a media comprising an embryogenic promoting hormone until callus organization is observed; (ii) transferring said transformed plant cells of step (i) to a first media which includes a tissue organization promoting hormone; and (iii) subculturing said transformed plant cells after step (ii) onto a second media, to allow for shoot elongation, root development or both.
[0245]In any of the preceding other methods or any other embodiments of methods of the present invention, the at least one agronomic characteristic is selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, whole plant amino acid content, vegetative tissue free amino acid content, fruit free amino acid content, seed free amino acid content, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, resistance to root lodging, harvest index, stalk lodging, plant height, ear height, and ear length. Yield, greenness and biomass are particularly other agronomic characteristics for alteration (in an embodiment an increase).
[0246]In any of the preceding other methods or any other embodiments of methods of the present invention, the plant in an embodiment exhibits the alteration of at least one agronomic characteristic when compared, under nitrogen stress conditions, to a control plant not comprising said recombinant DNA construct (or suppression DNA construct).
[0247]In any of the preceding other methods or any other embodiments of methods of the present invention, alternatives exist for introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence. For example, one may introduce into a regenerable plant cell a regulatory sequence (such as one or more enhancers, in an embodiment as part of a transposable element), and then screen for an event in which the regulatory sequence is operably linked to an endogenous gene encoding a polypeptide of the instant invention.
[0248]The introduction of recombinant DNA constructs of the present invention into plants may be carried out by any suitable technique, including but not limited to direct DNA uptake, chemical treatment, electroporation, microinjection, cell fusion, infection, vector mediated DNA transfer, bombardment, or Agrobacterium mediated transformation.
[0249]Other techniques are set forth below in the Examples below for transformation of maize plant cells and soybean plant cells.
[0250]Other other methods for transforming dicots, primarily by use of Agrobacterium tumefaciens, and obtaining transgenic plants include those published for cotton (U.S. Pat. No. 5,004,863, U.S. Pat. No. 5,159,135, U.S. Pat. No. 5,518,908); soybean (U.S. Pat. No. 5,569,834, U.S. Pat. No. 5,416,011, McCabe et. al., Bio/Technology 6:923 (1988), Christou et al., Plant Physiol. 87:671 674 (1988)); Brassica (U.S. Pat. No. 5,463,174); peanut (Cheng et al., Plant Cell Rep. 15:653 657 (1996), McKently et al., Plant Cell Rep. 14:699 703 (1995)); papaya; and pea (Grant et al., Plant Cell Rep. 15:254-258 (1995)).
[0251]Transformation of monocotyledons using electroporation, particle bombardment, and Agrobacterium have also been reported and are included as other methods, for example, transformation and plant regeneration as achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci. U.S.A. 84:5354, (1987)); barley (Wan and Lemaux, Plant Physiol. 104:37 (1994)); corn (Rhodes et al., Science 240:204 (1988), Gordon-Kamm et al., Plant Cell 2:603 618 (1990), Fromm et al., Bio/Technology 8:833 (1990), Koziel et al., Bio/Technology 11:194 (1993), Armstrong et al., Crop Science 35:550-557 (1995)); oat (Somers et al., Bio/Technology 10:1589 (1992)); orchard grass (Horn et al., Plant Cell Rep. 7:469 (1988)); rice (Toriyama et al., Theor. Appl. Genet. 205:34 (1986); Part et al., Plant Mol. Biol. 32:1135 1148, (1996); Abedinia et al., Aust. J. Plant Physiol. 24:133 141 (1997); Zhang and Wu, Theor. Appl. Genet. 76:835 (1988); Zhang et al., Plant Cell Rep. 7:379, (1988); Battraw and Hall, Plant Sci. 86:191 202 (1992); Christou et al., Bio/Technology 9:957 (1991)); rye (De la Pena et al., Nature 325:274 (1987)); sugarcane (Bower and Birch, Plant J. 2:409 (1992)); tall fescue (Wang et al., Bio/Technology 10:691 (1992)); and wheat (Vasil et al., Bio/Technology 10:667 (1992); U.S. Pat. No. 5,631,152).
[0252]There are a variety of methods for the regeneration of plants from plant tissue. The particular method of regeneration will depend on the starting plant tissue and the particular plant species to be regenerated.
[0253]The regeneration, development, and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, In: Methods for Plant Molecular Biology, (Eds.), Academic Press, Inc. San Diego, Calif., (1988)). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
[0254]The development or regeneration of plants containing the foreign, exogenous isolated nucleic acid fragment that encodes a protein of interest is well known in the art. In an embodiment, the regenerated plants are self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
EXAMPLES
[0255]The present invention is further illustrated in the following Examples, in which parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating other embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Furthermore, various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
EXAMPLE 1
Creation of an Arabidopsis Population with Activation-Tagged Genes
[0256]An 18.49-kb T-DNA based binary construct was created, pHSbarENDs2 (SEQ ID NO:1; FIG. 1), that contains four multimerized enhancer elements derived from the Cauliflower Mosaic Virus 35S promoter (corresponding to sequences -341 to -64, as defined by Odell et al., Nature 313:810-812 (1985)). The construct also contains vector sequences (pUC9) and a poly-linker (SEQ ID NO:11) to allow plasmid rescue, transposon sequences (Ds) to remobilize the T-DNA, and the bar gene to allow for glufosinate selection of transgenic plants. In principle, only the 10.8-kb segment from the right border (RB) to left border (LB) inclusive will be transferred into the host plant genome. Since the enhancer elements are located near the RB, they can induce cis-activation of genomic loci following T-DNA integration.
[0257]Arabidopsis activation-tagged populations were created by whole plant Agrobacterium transformation. The pHSbarENDs2 construct was transformed into Agrobacterium tumefaciens strain C58, grown in lysogeny broth medium at 25° C. to OD600˜1.0. Cells were then pelleted by centrifugation and resuspended in an equal volume of 5% sucrose/0.05% Silwet L-77 (OSI Specialties, Inc). At early bolting, soil grown Arabidopsis thaliana ecotype Col-0 were top watered with the Agrobacterium suspension. A week later, the same plants were top watered again with the same Agrobacterium strain in sucrose/Silwet. The plants were then allowed to set seed as normal. The resulting T1 seed were sown on soil, and transgenic seedlings were selected by spraying with glufosinate (FINALE®; AgrEvo; Bayer Environmental Science). A total of 100,000 glufosinate resistant T1 seedlings were selected. T2 seed from each line was kept separate.
EXAMPLE 2
Screens to Identify Lines with Tolerance to Low Nitrogen
[0258]From each of 100,000 separate T1 activation-tagged lines, eleven T2 plants are sown on square plates (15 mm×15 mm) containing 0.5× N-Free Hoagland's, 0.4 mM potassium nitrate, 0.1% sucrose, 1 mM MES and 0.25% Phytagel® (Low N medium). Five lines are plated per plate, and the inclusion of 9 wild-type individuals on each plate makes for a total of 64 individuals in an 8×8 grid pattern (see FIG. 11). Plates are kept for three days in the dark at 4° C. to stratify seeds, and then placed horizontally for nine days at 22° C. light and 20° C. dark. Photoperiod is sixteen hours light and eight hours dark, with an average light intensity of ˜200 mmol/m2/s. Plates are rotated and shuffled daily within each shelf. At day twelve (nine days of growth), seedling status is evaluated by imaging the entire plate.
[0259]After masking the plate image to remove background color, two different measurements are collected for each individual: total rosette area, and the percentage of color that falls into a green color bin. Using hue, saturation and intensity data (HSI), the green color bin consists of hues 50 to 66. Total rosette area is used as a measure of plant biomass, whereas the green color bin was shown by dose-response studies to be an indicator of nitrogen assimilation (see FIG. 12).
[0260]Lines with a significant increase in total rosette area and/or green color bin, when compared to the wild-type controls, are designated as Phase 1 hits. Phase 1 hits are re-screened in duplicate under the same assay conditions (Phase 2 screen). A Phase 3 screen is also employed to further validate mutants that passed through Phases 1 and 2. In Phase 3, each line is plated separately on Low N medium, such that 32 T2 individuals are grown next to 32 wild-type individuals on one plate, providing greater statistical rigor to the analysis. If a line shows a significant difference from the controls in Phase 3, the line is then considered a validated nitrogen-deficiency tolerant line.
EXAMPLE 3
Identification of Activation-Tagged Genes
[0261]Genes flanking the T-DNA insert in nitrogen tolerant lines are identified using one, or both, of the following two standard procedures: (1) thermal asymmetric interlaced (TAIL) PCR (Liu et al., Plant J. 8:457-63 (1995)); and (2) SAIFF PCR (Siebert et al., Nucleic Acids Res. 23:1087-1088 (1995)). In lines with complex multimerized T-DNA inserts, TAIL PCR and SAIFF PCR may both prove insufficient to identify candidate genes. In these cases, other procedures, including inverse PCR, plasmid rescue and/or genomic library construction, can be employed.
[0262]A successful result is one where a single TAIL or SAIFF PCR fragment contains a T-DNA border sequence and Arabidopsis genomic sequence. Once a tag of genomic sequence flanking a T-DNA insert is obtained, candidate genes are identified by alignment to publicly available Arabidopsis genome sequence. Specifically, the annotated gene nearest the 35S enhancer elements/T-DNA RB are candidates for genes that are activated.
[0263]To verify that an identified gene is truly near a T-DNA and to rule out the possibility that the TAIL/SAIFF fragment is a chimeric cloning artifact, a diagnostic PCR on genomic DNA is done with one oligo in the T-DNA and one oligo specific for the candidate gene. Genomic DNA samples that give a PCR product are interpreted as representing a T-DNA insertion. This analysis also verifies a situation in which more than one insertion event occurs in the same line, e.g., if multiple differing genomic fragments are identified in TAIL and/or SAIFF PCR analyses.
EXAMPLE 4
Identification of Activation-Tagged LNT2 Gene
[0264]An activation tagged-line (line 111786) showing nitrogen-deficiency tolerance was further analyzed. DNA from the line was extracted, and genes flanking the T-DNA insert in the mutant line were identified using ligation-mediated PCR (Siebert et al., Nucleic Acids Res. 23:1087-1088 (1995)). A single amplified fragment was identified that contained a T-DNA border sequence and Arabidopsis genomic sequence. Once a tag of genomic sequence flanking a T-DNA insert was obtained, a candidate gene was identified by alignment to the completed Arabidopsis genome. Specifically, the annotated gene nearest the 35S enhancer elements/T-DNA RB was the candidate for the gene activated in the line. In the case of line 111786 the gene nearest the 35S enhancers was At5g50930 (SEQ ID NO:27) encoding the Arabidopsis thaliana "unknown protein" referred to herein as LNT2 (SEQ ID NO:28; NCBI GI 15241317).
EXAMPLE 5
Validation of Candidate Arabidopsis Gene (At5g50930) via Transformation into Arabidopsis
[0265]Candidate genes can be transformed into Arabidopsis and overexpressed under the 35S promoter. If the same or similar phenotype is observed in the transgenic line as in the parent activation-tagged line, then the candidate gene is considered to be a validated "lead gene" in Arabidopsis.
[0266]The Arabidopsis At5g50930 gene (SEQ ID NO:27) was tested for its ability to confer nitrogen-deficiency tolerance in the following manner.
[0267]The At5g50930 cDNA was amplified by RT-PCR with the following primers:
[0268]1. At5g50930-5' attB forward primer (SEQ ID NO:35)
[0269]The forward primer contains the attB1 sequence [0270](ACAAGTTTGTACAAAAAAGCAGGCT; SEQ ID NO:12) and a consensus Kozak sequence (CAACA) upstream of the first 21 nucleotides of the protein-coding region, beginning with the ATG start codon, of said cDNA.
[0271]2. At5g50930-3' attB reverse primer (SEQ ID NO:36)
[0272]The reverse primer contains the attB2 sequence [0273](ACCACTTTGTACAAGAAAGCTGGGT; SEQ ID NO:13) adjacent to the reverse complement of the last 21 nucleotides of the protein-coding region, beginning with the reverse complement of the stop codon, of said cDNA.
[0274]The RT-PCR reaction yielded two products, referred to herein as Int2-2 and Int2-3 (SEQ ID NOs:29 and 31, respectively). The products were identified as splice variants of the At5g50930 gene.
[0275]Using the INVITROGEN® GATEWAY® CLONASE® technology, a BP Recombination Reaction was performed for each RT-PCR product with pDONR®Zeo (SEQ ID NO:2; FIG. 2). This process removes the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM), from pDONR®Zeo and directionally clones the PCR product with flanking attB1 and attB2 sites, creating an entry clone. One positively identified entry clone for each splice variant sequence was used for a subsequent LR Recombination Reaction with a destination vector, as follows.
[0276]A 16.8-kb T-DNA based binary vector (destination vector), called pBC-yellow (SEQ ID NO:4; FIG. 4), was constructed with a 1.3-kb 35S promoter immediately upstream of the INVITROGEN® GATEWAY C1 conversion insert, which contains the bacterial lethal ccdB gene as well as the chloramphenicol resistance gene (CAM) flanked by attR1 and attR2 sequences. The vector also contains the RD29a promoter driving expression of the gene for ZS-Yellow (INVITROGEN®), which confers yellow fluorescence to transformed seed. Using the INVITROGEN® GATEWAY® technology, an LR Recombination Reaction was performed with the entry clone containing Int2-2 and the pBC-yellow vector. This amplification allowed for rapid and directional cloning of Int2-2 (SEQ ID NO: 29) behind the 35S promoter in pBC-yellow. An LR Recombination Reaction was also performed with the entry clone containing Int2-3 and the pBC-yellow vector.
[0277]Applicants then introduced the 35S promoter:At5g50930 expression constructs into wild-type Arabidopsis ecotype Col-0, using the same Agrobacterium-mediated transformation procedure described in Example 1. Transgenic T1 seeds were selected by yellow fluorescence, and 32 of these T1 seeds were plated next to 32 wild-type Arabidopsis ecotype Col-0 seeds on low nitrogen medium. All subsequent growth and imaging conditions were performed as described in Example 1. It was found that the original phenotype from activation tagging, tolerance to nitrogen limiting conditions, could be recapitulated in wild-type Arabidopsis plants that were transformed with a construct where an At5g50930 gene was directly expressed by the 35S promoter.
EXAMPLE 6
Composition of cDNA Libraries, Isolation and Sequencing of cDNA Clones
[0278]cDNA libraries may be prepared by any one of many methods available. For example, the cDNAs may be introduced into plasmid vectors by first preparing the cDNA libraries in UNI-ZAP® XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, Calif.). The UNI-ZAP® XR libraries are converted into plasmid libraries according to the protocol provided by Stratagene. Upon conversion, cDNA inserts will be contained in the plasmid vector pBLUESCRIPT®. In addition, the cDNAs may be introduced directly into precut BLUESCRIPT® II SK(+) vectors (Stratagene) using T4 DNA ligase (New England Biolabs), followed by transfection into DH10B cells according to the manufacturer's protocol (GIBCO BRL Products). Once the cDNA inserts are in plasmid vectors, plasmid DNAs are prepared from randomly picked bacterial colonies containing recombinant pBLUESCRIPT® plasmids, or the insert cDNA sequences are amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences. Amplified insert DNAs or plasmid DNAs are sequenced in dye-primer sequencing reactions to generate partial cDNA sequences (expressed sequence tags or "ESTs"; see Adams et al., Science 252:1651-1656 (1991)). The resulting ESTs are analyzed using a Perkin Elmer Model 377 fluorescent sequencer.
[0279]Full-insert sequence (FIS) data is generated utilizing a modified transposition protocol. Clones identified for FIS are recovered from archived glycerol stocks as single colonies, and plasmid DNAs are isolated via alkaline lysis. Isolated DNA templates are reacted with vector primed M13 forward and reverse oligonucleotides in a PCR-based sequencing reaction and loaded onto automated sequencers. Confirmation of clone identification is performed by sequence alignment to the original EST sequence from which the FIS request is made.
[0280]Confirmed templates are transposed via the Primer Island transposition kit (PE Applied Biosystems, Foster City, Calif.) which is based upon the Saccharomyces cerevisiae Ty1 transposable element (Devine and Boeke, Nucleic Acids Res. 22:3765-3772 (1994)). The in vitro transposition system places unique binding sites randomly throughout a population of large DNA molecules. The transposed DNA is then used to transform DH10B electro-competent cells (GIBCO BRL/Life Technologies, Rockville, Md.) via electroporation. The transposable element contains an additional selectable marker (named DHFR; Fling and Richards, Nucleic Acids Res. 11:5147-5158 (1983)), allowing for dual selection on agar plates of only those subclones containing the integrated transposon. Multiple subclones are randomly selected from each transposition reaction, plasmid DNAs are prepared via alkaline lysis, and templates are sequenced (ABI PRISM dye-terminator ReadyReaction mix) outward from the transposition event site, utilizing unique primers specific to the binding sites within the transposon.
[0281]Sequence data is collected (ABI PRISM® Collections) and assembled using Phred and Phrap (Ewing et al., Genome Res. 8:175-185 (1998); Ewing et al., Genome Res. 8:186-194 (1998)). Phred is a public domain software program which re-reads the ABI sequence data, re-calls the bases, assigns quality values, and writes the base calls and quality values into editable output files. The Phrap sequence assembly program uses these quality values to increase the accuracy of the assembled sequence contigs. Assemblies are viewed by the Consed sequence editor (Gordon et al., Genome Res. 8:195-202 (1998)).
[0282]In some of the clones the cDNA fragment corresponds to a portion of the 3'-terminus of the gene and does not cover the entire open reading frame. In order to obtain the upstream information one of two different protocols is used. The first of these methods results in the production of a fragment of DNA containing a portion of the desired gene sequence while the second method results in the production of a fragment containing the entire open reading frame. Both of these methods use two rounds of PCR amplification to obtain fragments from one or more libraries. The libraries sometimes are chosen based on previous knowledge that the specific gene should be found in a certain tissue and sometimes are randomly-chosen. Reactions to obtain the same gene may be performed on several libraries in parallel or on a pool of libraries. Library pools are normally prepared using from 3 to 5 different libraries and normalized to a uniform dilution. In the first round of amplification both methods use a vector-specific (forward) primer corresponding to a portion of the vector located at the 5'-terminus of the clone coupled with a gene-specific (reverse) primer. The first method uses a sequence that is complementary to a portion of the already known gene sequence while the second method uses a gene-specific primer complementary to a portion of the 3'-untranslated region (also referred to as UTR). In the second round of amplification a nested set of primers is used for both methods. The resulting DNA fragment is ligated into a pBLUESCRIPT® vector using a commercial kit and following the manufacturer's protocol. This kit is selected from many available from several vendors including INVITROGEN® (Carlsbad, Calif.), Promega Biotech (Madison, Wis.), and GIBCO-BRL (Gaithersburg, Md.). The plasmid DNA is isolated by alkaline lysis method and submitted for sequencing and assembly using Phred/Phrap, as above.
EXAMPLE 7
Identification of cDNA Clones
[0283]cDNA clones encoding LNT2-like polypeptides are identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul et al., J. Mol. Biol. 215:403-410 (1993); see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health) searches for similarity to amino acid sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The DNA sequences from clones can be translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr" database using the BLASTX algorithm (Gish and States, Nat. Genet. 3:266-272 (1993)) provided by the NCBI. The polypeptides encoded by the cDNA sequences can be analyzed for similarity to all publicly available amino acid sequences contained in the "nr" database using the BLASTP algorithm provided by the National Center for Biotechnology Information (NCBI). For convenience, the P-value (probability) or the E-value (expectation) of observing a match of a cDNA-encoded sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as "pLog" values, which represent the negative of the logarithm of the reported P-value or E-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA-encoded sequence and the BLAST "hit" represent homologous proteins.
[0284]EST sequences can be compared to the GenBank database as described above. ESTs that contain sequences more 5- or 3-prime can be found by using the BLASTN algorithm (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)) against the Dupont proprietary database comparing nucleotide sequences that share common or overlapping regions of sequence homology. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences can be assembled into a single contiguous nucleotide sequence, thus extending the original fragment in either the 5 or 3 prime direction. Once the most 5-prime EST is identified, its complete sequence can be determined by Full Insert Sequencing.
[0285]Homologous genes belonging to different species can be found by comparing the amino acid sequence of a known gene (from either a proprietary source or a public database) against an EST database using the tBLASTn algorithm. The tBLASTn algorithm searches an amino acid query against a nucleotide database that is translated in all 6 reading frames. This search allows for differences in nucleotide codon usage between different species, and for codon degeneracy.
EXAMPLE 8
Characterization of cDNA Clones Encoding LNT2-Like Polypeptides
[0286]cDNA libraries representing mRNAs from various tissues of Zea mays (maize), Oryza sativa (rice), and Glycine max (soybean) were prepared. The characteristics of the libraries are described below.
TABLE-US-00002 TABLE 2 cDNA Libraries from Maize, Rice, and Soybean Library Description (tissue) Clone cpg1c Corn (Zea mays L.) pooled BMS treated cpg1c.pk013.o6:fis with chemicals related to RNA, DNA synthesis rca1n Rice (Oryza sativa L., Nipponbare) callus rca1n.pk001.f6:fis normalized sfl1n1 Soybean (Glycine max L., Wye) immature sfl1n1.pk002.j1 flower normalized. sds1f Soybean (Glycine max, Wye) 11 day old sds1f.pk001.k5 seedling full length library using trehalose
[0287]As shown in Table 3, FIGS. 14A-14B, and FIG. 15, cDNAs identified in Table 2 encode polypeptides similar to the LNT2 polypeptide from Arabidopsis thaliana (At5g50930; NCBI General Identifier No. 15241317; SEQ ID NO:28) and to the LNT2-like polypeptides from Oryza sativa (GI No. 38347162 corresponding to SEQ ID NO: 33) and from Vitis vinifera (GI No.147791927 corresponding to SEQ ID NO: 34).
[0288]Shown in Table 3 (non-patent literature) and Table 4 (patent literature) are the BLASTP results for individual ESTs ("EST"), the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more EST, FIS or PCR sequences ("Contig"), or sequences encoding an entire or functional protein derived from an FIS or a contig ("CGS"). Also shown in Tables 3 and 4 are the percent sequence identity values for each pair of amino acid sequences using the Clustal V method of alignment with default parameters (described below).
TABLE-US-00003 TABLE 3 BLASTP Results for Polypeptides Homologous to LNT2 Polypeptides BLAST Sequence % pLog (SEQ ID NO: #) Status NCBI GI No. identity Score cpg1c.pk013.o6:fis CGS 38347162 77.4 17.8 (SEQ ID NO: 18) (SEQ ID: 33) rca1n.pk001.f6:fis CGS 38347162 100.0 15.8 (SEQ ID NO: 20) (SEQ ID: 33) PSO415619 contig 147791927 58.7 13.0 (SEQ ID NO: 24) (SEQ ID: 34) PSO415620 contig 147791927 57.1 11.8 (SEQ ID NO: 26) (SEQ ID: 34)
TABLE-US-00004 TABLE 4 BLASTP Results for Polypeptides Homologous to LNT2 Polypeptides BLAST Sequence % pLog (SEQ ID NO: #) Status Reference Identity score cpg1c.pk013.o6:fis CGS SEQ ID NO: 224380 92.3 21.0 (SEQ ID NO: 18) In US2004214272-A1 rca1n.pk001.f6:fis CGS SEQ ID NO: 188525 100.0 15.7 (SEQ ID NO: 20) In US2004123343-A1 PSO415619 contig SEQ ID NO: 183694 92.1 21.4 (SEQ ID NO: 24) In US2004031072-A1 PSO415620 contig SEQ ID NO: 183694 84.9 19.8 (SEQ ID NO: 26) In US2004031072-A1
[0289]FIGS. 14A and 14B present an alignment of the amino acid sequences set forth in SEQ ID NOs:18, 20, 24, 26, and the amino acid sequences of the LNT2 (At5g50930; NCBI General Identifier No. 15241317), LNT2-2, and LNT2-3 polypeptides from Arabidopsis thaliana (SEQ ID NOs: 28, 30, and 32, respectively). Also included in the alignment are the LNT2-like polypeptides from Oryza sativa (GI No. 38347162 corresponding to SEQ ID NO: 33) and from Vitis vinifera (GI No. 147791927 corresponding to SEQ ID NO: 34). FIG. 15 is a chart of the percent sequence identity and the divergence values for each pair of amino acids sequences presented in FIGS. 14A and 14B.
[0290]Sequence alignments and percent identity calculations were performed using the MEGALIGN® program of the LASERGENE® bioinformatics computing suite (DNASTAR® Inc., Madison, Wis.). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.
EXAMPLE 9
Preparation of a Plant Expression Vector Containing a Homolog to the Arabidopsis Lead Gene
[0291]Sequences homologous to the lead LNT2 genes can be identified using sequence comparison algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al., J. Mol. Biol. 215:403-410 (1993); see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health). Homologous LNT2-like sequences, such as the ones described in Example 8, can be PCR-amplified by either of the following methods.
[0292]Method 1 (RNA-based): If the 5' and 3' sequence information for the protein-coding region of an LNT2 homolog is available, gene-specific primers can be designed as outlined in Example 5. RT-PCR can be used with plant RNA to obtain a nucleic acid fragment containing the protein-coding region flanked by attB1 (SEQ ID NO:12) and attB2 (SEQ ID NO:13) sequences. The primer may contain a consensus Kozak sequence (CAACA) upstream of the start codon.
[0293]Method 2 (DNA-based): Alternatively, if a cDNA clone is available for the LNT2 homolog, the entire cDNA insert (containing 5' and 3' non-coding regions) can be PCR amplified. Forward and reverse primers can be designed that contain either the attB1 sequence and vector-specific sequence that precedes the cDNA insert or the attB2 sequence and vector-specific sequence that follows the cDNA insert, respectively. For a cDNA insert cloned into the vector pBLUESCRIPT SK+, the forward primer VC062 (SEQ ID NO:15) and the reverse primer VC063 (SEQ ID NO:16) can be used.
[0294]Methods 1 and 2 can be modified according to procedures known by one skilled in the art. For example, the primers of Method 1 may contain restriction sites instead of attB1 and attB2 sites, for subsequent cloning of the PCR product into a vector containing attB1 and attB2 sites. Additionally, Method 2 can involve amplification from a cDNA clone, a lambda clone, a BAC clone or genomic DNA.
[0295]A PCR product obtained by either method above can be combined with the GATEWAY® donor vector, such as pDONR® Zeo (SEQ ID NO:2; FIG. 2) or pDONR®221 (SEQ ID NO:3; FIG. 3), using a BP Recombination Reaction. This process removes the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONR®Zeo or pDONR®221 and directionally clones the PCR product with flanking attB1 and attB2 sites to create an entry clone. Using the INVITROGEN® GATEWAY® CLONASE® technology, the sequence encoding the homologous LNT2 polypeptide from the entry clone can then be transferred to a suitable destination vector, such as pBC-Yellow (SEQ ID NO:4; FIG. 4), PHP27840 (SEQ ID NO:5; FIG. 5), or PHP23236 (SEQ ID NO:6; FIG. 6), to obtain a plant expression vector for use with Arabidopsis, soybean, and corn, respectively.
[0296]The attP1 and attP2 sites of donor vectors pDONR®/Zeo or pDONR®221 are shown in FIGS. 2 and 3, respectively. The attR1 and attR2 sites of destination vectors pBC-Yellow, PHP27840, and PHP23236 are shown in FIGS. 4, 5 and 6, respectively.
[0297]Alternatively a MultiSite GATEWAY® LR recombination reaction between multiple entry clones and a suitable destination vector can be performed to create an expression vector.
EXAMPLE 10
Preparation of Soybean Expression Vectors and Transformation of Soybean with Validated Arabidopsis Lead Genes
[0298]Soybean plants can be transformed to overexpress each validated Arabidopsis gene or the corresponding homologs from various species in order to examine the resulting phenotype.
[0299]The same GATEWAY® entry clone described in Example 5 can be used to directionally clone each gene into the PHP27840 vector (SEQ ID NO:5; FIG. 5) such that expression of the gene is under control of the SCP1 promoter.
[0300]Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides.
[0301]To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26° C. on an appropriate agar medium for six to ten weeks. Somatic embryos, which produce secondary embryos, are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiply as early, globular staged embryos, the suspensions are maintained as described below.
[0302]Soybean embryogenic suspension cultures can be maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26° C. with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium.
[0303]Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al., Nature (London) 327:70-73 (1987), U.S. Pat. No. 4,945,050). A DUPONT BIOLISTIC® PDS1000/HE instrument (helium retrofit) can be used for these transformations.
[0304]A selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from cauliflower mosaic virus (Odell et al., Nature 313:810-812 (1985)), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz et al., Gene 25:179-188 (1983)) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens. Another selectable marker gene which can be used to facilitate soybean transformation is an herbicide-resistant acetolactate synthase (ALS) gene from soybean or Arabidopsis. ALS is the first common enzyme in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. Mutations in ALS have been identified that convey resistance to some or all of three classes of inhibitors of ALS (U.S. Pat. No. 5,013,659; the entire contents of which are herein incorporated by reference). Expression of the herbicide-resistant ALS gene can be under the control of a SAM synthetase promoter (U.S. Patent Application No. US-2003-0226166-A1; the entire contents of which are herein incorporated by reference).
[0305]To 50 μL of a 60 mg/mL 1 μm gold particle suspension is added (in order): 5 μL DNA (1 μg/μL), 20 μL spermidine (0.1 M), and 50 μL CaCl2 (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μL 70% ethanol and resuspended in 40 μL of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five μL of the DNA-coated gold particles are then loaded on each macro carrier disk.
[0306]Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60×15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
[0307]Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment, with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
[0308]Soybean plants transformed with validated genes can be assayed to study agronomic characteristics relative to control or reference plants. For example, yield enhancement and/or stability under low and high nitrogen conditions (e.g., nitrogen limiting conditions and nitrogen-sufficient conditions) can be assayed.
EXAMPLE 11
Transformation of Maize with Validated Arabidopsis Lead Genes using Particle Bombardment
[0309]Maize plants can be transformed to overexpress a validated Arabidopsis lead gene or the corresponding homologs from various species in order to examine the resulting phenotype.
[0310]The same GATEWAY® entry clones described in Example 5 can be used to directionally clone each respective gene into a maize transformation vector. Expression of the gene in the maize transformation vector can be under control of a constitutive promoter such as the maize ubiquitin promoter (Christensen et al., Plant Mol. Biol. 12:619-632 (1989) and Christensen et al., Plant Mol. Biol. 18:675-689 (1992))
[0311]The recombinant DNA construct described above can then be introduced into maize cells by the following procedure. Immature maize embryos can be dissected from developing caryopses derived from crosses of the inbred maize lines H99 and LH132. The embryos are isolated ten to eleven days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al., Sci. Sin. Peking 18:659-668 (1975)). The embryos are kept in the dark at 27° C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every two to three weeks.
[0312]The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the pat gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT). The enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The pat gene in p35S/Ac is under the control of the 35S promoter from cauliflower mosaic virus (Odell et al., Nature 313:810-812 (1985)) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
[0313]The particle bombardment method (Klein et al., Nature 327:70-73 (1987)) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 μm in diameter) are coated with DNA using the following technique. Ten μg of plasmid DNAs are added to 50 μL of a suspension of gold particles (60 mg per mL). Calcium chloride (50 μL of a 2.5 M solution) and spermidine free base (20 μL of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After ten minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 μL of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 μL of ethanol. An aliquot (5 μL) of the DNA-coated gold particles can be placed in the center of a KAPTON® flying disc (Bio-Rad Labs). The particles are then accelerated into the maize tissue with a BIOLISTIC® PDS-1000/He (Bio-Rad Instruments, Hercules Calif.), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
[0314]For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covers a circular area of about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
[0315]Seven days after bombardment the tissue can be transferred to N6 medium that contains bialaphos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional two weeks the tissue can be transferred to fresh N6 medium containing bialaphos. After six weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialaphos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.
[0316]Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)).
[0317]Transgenic T0 plants can be regenerated and their phenotype determined following HTP procedures. T1 seed can be collected.
[0318]T1 plants can be grown under nitrogen limiting conditions, for example 1 mM nitrate, and analyzed for phenotypic changes. The following parameters can be quantified using image analysis: plant area, volume, growth rate and color analysis can be collected and quantified. Overexpression constructs that result in an alteration, compared to suitable control plants, in greenness (green color bin), yield, growth rate, biomass, fresh or dry weight at maturation, fruit or seed yield, total plant nitrogen content, fruit or seed nitrogen content, nitrogen content in vegetative tissue, free amino acid content in the whole plant, free amino acid content in vegetative tissue, free amino acid content in the fruit or seed, protein content in the fruit or seed, or protein content in a vegetative tissue can be considered evidence that the Arabidopsis lead gene functions in maize to enhance tolerance to nitrogen deprivation (increased nitrogen tolerance). Furthermore, a recombinant DNA construct containing a validated Arabidopsis gene can be introduced into a maize inbred line either by direct transformation or introgression from a separately transformed line.
EXAMPLE 12
Electroporation of Agrobacterium tumefaciens LBA4404 (General Description)
[0319]Electroporation competent cells (40 μL), such as Agrobacterium tumefaciens LBA4404 (containing PHP10523), are thawed on ice (20-30 min). PHP10523 contains VIR genes for T-DNA transfer, an Agrobacterium low copy number plasmid origin of replication, a tetracycline resistance gene, and a Cos site for in vivo DNA bimolecular recombination. Meanwhile the electroporation cuvette is chilled on ice. The electroporator settings are adjusted to 2.1 kV. A DNA aliquot (0.5 μL parental DNA at a concentration of 0.2 μg -1.0 μg in low salt buffer or twice distilled H2O) is mixed with the thawed Agrobacterium tumefaciens LBA4404 cells while still on ice. The mixture is transferred to the bottom of electroporation cuvette and kept at rest on ice for 1-2 min. The cells are electroporated (Eppendorf electroporator 2510) by pushing the "pulse" button twice (ideally achieving a 4.0 millisecond pulse). Subsequently, 0.5 mL of room temperature 2×YT medium (or SOC medium) are added to the cuvette and transferred to a 15 mL snap-cap tube (e.g., FALCON® tube). The cells are incubated at 28-30° C., 200-250 rpm for 3 h.
[0320]Aliquots of 250 μL are spread onto plates containing YM medium and 50 μg/mL spectinomycin and incubated three days at 28-30° C. To increase the number of transformants one of two optional steps can be performed:
[0321]Option 1: Overlay plates with 30 μL of 15 mg/mL rifampicin. LBA4404 has a chromosomal resistance gene for rifampicin. This additional selection eliminates some contaminating colonies observed when using poorer preparations of LBA4404 competent cells.
[0322]Option 2: Perform two replicates of the electroporation to compensate for poorer electrocompetent cells.
Identification of Transformants:
[0323]Four independent colonies are picked and streaked on plates containing AB minimal medium and 50 μg/mL spectinomycin for isolation of single colonies. The plates are incubated at 28° C. for two to three days. A single colony for each putative cointegrate is picked and inoculated with 4 mL of 10 g/L bactopeptone, 10 g/L yeast extract, 5 g/L sodium chloride, and 50 mg/L spectinomycin. The mixture is incubated for 24 h at 28° C. with shaking. Plasmid DNA from 4 mL of culture is isolated using QIAGEN Miniprep and an optional Buffer PB wash. The DNA is eluted in 30 μL. Aliquots of 2 μL are used to electroporate 20 μL of DH10b+20 μL of twice distilled H2O as per above. Optionally a 15 μL aliquot can be used to transform 75-100 μL of INVITROGEN® Library Efficiency DH5α. The cells are spread on plates containing LB medium and 50 μg/mL spectinomycin and incubated at 37° C. overnight.
[0324]Three to four independent colonies are picked for each putative cointegrate and inoculated 4 mL of 2×YT medium (10 g/L bactopeptone, 10 g/L yeast extract, 5 g/L sodium chloride) with 50 μg/mL spectinomycin. The cells are incubated at 37° C. overnight with shaking. Next, the plasmid DNA is isolated from 4 mL of culture using QIAprep® Miniprep with optional Buffer PB wash (elute in 50 μL). 8 μL are used for digestion with SaII (using parental DNA and PHP10523 as controls). Three more digestions using restriction enzymes BamHI, EcoRI, and HindIII are performed for 4 plasmids that represent 2 putative cointegrates with correct SaII digestion pattern (using parental DNA and PHP10523 as controls). Electronic gels are recommended for comparison.
[0325]Alternatively, for high throughput applications, such as that described for Gaspe Flint Derived Maize Lines (Example 16), instead of evaluating the resulting cointegrate vectors by restriction analysis, three colonies can be simultaneously used for the infection step as described in Example 13 (transformation via Agrobacterium).
EXAMPLE 13
Transformation of Maize using Agrobacterium
[0326]Maize plants can be transformed to overexpress a validated Arabidopsis lead gene or the corresponding homologs from various species in order to examine the resulting phenotype.
[0327]Agrobacterium-mediated transformation of maize is performed essentially as described by Zhao et al., in Meth. Mol. Biol. 318:315-323 (2006) (see also Zhao et al., Mol. Breed. 8:323-333 (2001) and U.S. Pat. No. 5,981,840 issued Nov. 9, 1999, incorporated herein by reference). The transformation process involves bacterium inoculation, co-cultivation, resting, selection, and plant regeneration.
1. Immature Embryo Preparation:
[0328]Immature maize embryos are dissected from caryopses and placed in a 2 mL microtube containing 2 mL PHI-A medium.
2. Agrobacterium Infection and Co-Cultivation of Immature Embryos:
2.1 Infection Step:
[0329]PHI-A medium of (1) is removed with 1 mL micropipettor, and 1 mL of Agrobacterium suspension is added. The tube is gently inverted to mix. The mixture is incubated for 5 min at room temperature.
2.2 Co-Culture Step:
[0330]The Agrobacterium suspension is removed from the infection step with a 1 mL micropipettor. Using a sterile spatula the embryos are scraped from the tube and transferred to a plate of PHI-B medium in a 100×15 mm Petri dish. The embryos are oriented with the embryonic axis down on the surface of the medium. Plates with the embryos are cultured at 20° C., in darkness, for three days. L-Cysteine can be used in the co-cultivation phase. With the standard binary vector, the co-cultivation medium supplied with 100-400 mg/L L-cysteine is critical for recovering stable transgenic events.
3. Selection of Putative Transgenic Events:
[0331]To each plate of PHI-D medium in a 100×15 mm Petri dish, 10 embryos are transferred, maintaining orientation, and the dishes are sealed with parafilm. The plates are incubated in darkness at 28° C. Actively growing putative events, evinced as pale yellow embryonic tissue, are expected to be visible in six to eight weeks. Embryos that produce no events may be brown and necrotic, and little friable tissue growth is evident. Putative transgenic embryonic tissue is subcultured to fresh PHI-D plates at two-three week intervals, depending on growth rate. The events are recorded.
4. Regeneration of T0 Plants:
[0332]Embryonic tissue propagated on PHI-D medium is subcultured to PHI-E medium (somatic embryo maturation medium), in 100×25 mm Petri dishes and incubated at 28° C., in darkness, until somatic embryos mature, for about ten to eighteen days. Individual, matured somatic embryos with well-defined scutellum and coleoptile are transferred to PHI-F embryo germination medium and incubated at 28° C. in the light (about 80 μE from cool white or equivalent fluorescent lamps). In seven to ten days, regenerated plants, about 10 cm tall, are potted in horticultural mix and hardened-off using standard horticultural methods.
Media for Plant Transformation:
[0333]1. PHI-A: 4 g/L CHU basal salts, 1.0 mL/L 100× Eriksson's vitamin mix, 0.5 mg/L thiamin HCl, 1.5 mg/L 2,4-D, 0.69 g/L L-proline, 68.5 g/L sucrose, 36 g/L glucose, pH 5.2. Add 100 μM acetosyringone (filter-sterilized). [0334]2. PHI-B: PHI-A without glucose, increase 2,4-D to 2 mg/L, reduce sucrose to 30 g/L and supplemented with 0.85 mg/L silver nitrate (filter-sterilized), 3.0 g/L GELRITE®, 100 μM acetosyringone (filter-sterilized), pH 5.8. [0335]3. PHI-C: PHI-B without GELRITE® and acetosyringonee, reduce 2,4-D to 1.5 mg/L and supplemented with 8.0 g/L agar, 0.5 g/L 2-[N-morpholino]ethane-sulfonic acid (MES) buffer, 100 mg/L carbenicillin (filter-sterilized). [0336]4. PHI-D: PHI-C supplemented with 3 mg/L bialaphos (filter-sterilized). [0337]5. PHI-E: 4.3 g/L of Murashige and Skoog (MS) salts, (GIBCO, BRL 11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCl, 0.5 mg/L pyridoxine HCl, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.5 mg/L zeatin (Sigma, Cat. No. Z-0164), 1 mg/L indole acetic acid (IAA), 26.4 μg/L abscisic acid (ABA), 60 g/L sucrose, 3 mg/L bialaphos (filter-sterilized), 100 mg/L carbenicillin (filter-sterilized), 8 g/L agar, pH 5.6. [0338]6. PHI-F: PHI-E without zeatin, IAA, ABA; reduce sucrose to 40 g/L; replacing agar with 1.5 g/L GELRITE®; pH 5.6.
[0339]Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)).
[0340]Transgenic T0 plants can be regenerated and their phenotype determined. T1 seed can be collected.
[0341]T1 plants can be grown under nitrogen limiting conditions, for example 1 mM nitrate, and analyzed for phenotypic changes. The following parameters can be quantified using image analysis: plant area, volume, growth rate and color analysis can be collected and quantified. Overexpression constructs that result in an alteration, compared to suitable control plants, in greenness (green color bin), yield, growth rate, biomass, fresh or dry weight at maturation, fruit or seed yield, total plant nitrogen content, fruit or seed nitrogen content, nitrogen content in vegetative tissue, free amino acid content in the whole plant, free amino acid content in vegetative tissue, free amino acid content in the fruit or seed, protein content in the fruit or seed, or protein content in a vegetative tissue can be considered evidence that the Arabidopsis lead gene functions in maize to enhance tolerance to nitrogen deprivation (increased nitrogen tolerance).
[0342]Furthermore, a recombinant DNA construct containing a validated Arabidopsis gene can be introduced into a maize inbred line either by direct transformation or introgression from a separately transformed line.
EXAMPLE 14A
Preparation of Expression Vector for Transformation of Maize Lines with Validated Candidate Arabidopsis Gene (At5q50930) Using Agrobacterium
[0343]Using the INVITROGEN® GATEWAY® technology, an LR Recombination Reaction was performed with the GATEWAY® entry clone containing the Arabidopsis Int2-2 (described in Example 5), entry clone PHP23112 (SEQ ID NO:14), entry clone PHP20234 (SEQ ID NO:9; FIG. 9) and destination vector PHP22655 (SEQ ID NO:10) to generate the precursor plasmid PHP28699. Likewise, an LR Recombination Reaction was performed with the GATEWAY® entry clone containing the Arabidopsis Int2-2 (described in Example 5), entry clone PHP23112 (SEQ ID NO:14), entry clone PHP20234 (SEQ ID NO:9; FIG. 9) and destination vector PHP22655 (SEQ ID NO:10) to generate the precursor plasmid PHP28700. PHP28699 and PHP28700 each contain the following expression cassettes:
[0344]1. Ubiquitin promoter::moPAT::PinII terminator cassette expressing the PAT herbicide resistance gene used for selection during the transformation process.
[0345]2. LTP2 promoter::DS-RED2::PinII terminator cassette expressing the DS-RED color marker gene used for seed sorting.
[0346]In addition, PHP28699 contains the Ubiquitin promoter::Int2-2::PinII terminator cassette overexpressing the Arabidopsis LNT2-2, and PHP28700 contains the Ubiquitin promoter::Int2-3::PinII terminator cassette overexpressing the Arabidopsis LNT2-3.
EXAMPLE 14B
Transformation of Maize Lines with Validated Candidate Arabidopsis Gene (At5g50930) using Agrobacterium
[0347]The LNT2-2 expression cassette present in vector PHP28699 (described in Example 14A) can be introduced into a maize inbred line, or a transformable maize line derived from an elite maize inbred line, using Agrobacterium-mediated transformation as described in Examples 12 and 13. The same procedures can also be used to introduce the LNT2-3 expression cassette present in PHP28700 into a maize inbred line, or a transformable maize line derived from an elite maize inbred line.
[0348]Expression vector PHP28699 can be electroporated into the LBA4404 Agrobacterium strain containing vector PHP10523 (SEQ ID NO:7, FIG. 7) to create the co-integrate vector PHP28841, which contains the Int2-2 expression cassette. The co-integrate vector is formed by recombination of the two plasmids, PHP28699 and PHP10523, through the COS recombination sites contained on each vector and contains the same three expression cassettes as above (Example 14A) in addition to other genes (TET, TET, TRFA, ORI terminator, CTL, ORI V, VIR Cl, VIR C2, VIR G, VIR B) needed for the Agrobacterium strain and the Agrobacterium-mediated transformation. Similarly, expression vector PHP28700 can be electroporated into the LBA4404 Agrobacterium strain containing vector PHP10523 (SEQ ID NO:7, FIG. 7) to create the co-integrate vector PHP28840, which contains the Int2-3 expression cassette. The electroporation protocol in, but not limited to, Example 12 may be used.
EXAMPLE 15
Preparation of the Destination Vector PHP23236 for Transformation into Gaspe Flint Derived Maize Lines
[0349]Destination vector PHP23236 (FIG. 6; SEQ ID NO:6) was obtained by transformation of Agrobacterium strain LBA4404 containing PHP10523 (FIG. 7; SEQ ID NO:7) with vector PHP23235 (FIG. 8; SEQ ID NO:8) and isolation of the resulting co-integration product.
[0350]Destination vector PHP23236 can be used in a recombination reaction with an entry clone, as described in Example 16, to create a maize expression vector for transformation of Gaspe Flint derived maize lines.
EXAMPLE 16
Preparation of Expression Constructs for Transformation into Gaspe Flint Derived Maize Lines
[0351]Using the INVITROGEN® GATEWAY® LR Recombination technology, the same entry clones described in Example 5 can be used to directionally clone the expression cassettes into the GATEWAY® destination vector PHP23236 (SEQ ID NO:6; FIG. 6) to create corresponding expression vectors. Expression vectors PHP29694 and PHP29689 contain Int2-2 (SEQ ID NO:29) and Int2-3 (SEQ ID NO:31), respectively. Each expression vector contains the cDNA of interest under control of the UBI promoter and is a T-DNA binary for Agrobacterium-mediated transformation into maize as described, but not limited to, the examples described herein.
EXAMPLE 17A
Transformation of Gaspe Flint Derived Maize Lines with Validated Candidate Arabidopsis Gene (At5g50930)
[0352]Maize plants can be transformed to overexpress the Arabidopsis At5g50930 gene (and the corresponding homologs from other species) in order to examine the resulting phenotype. Expression constructs such as the one described in Example 16 may be used.
[0353]Recipient Plants
[0354]Recipient plant cells can be from a uniform maize line having a short life cycle ("fast cycling"), a reduced size, and high transformation potential. Typical of these plant cells for maize are plant cells from any of the publicly available Gaspe Flint (GF) line varieties. One possible candidate plant line variety is the F1 hybrid of GF×QTM (Quick Turnaround Maize, a publicly available form of Gaspe Flint selected for growth under greenhouse conditions) disclosed in Tomes et al. (U.S. application Ser. No.10/367,416 filed Feb. 13, 2003; U.S. Patent Publication No. 2003/0221212 A1 published Nov. 27, 2003). Transgenic plants obtained from this line are of such a reduced size that they can be grown in four inch pots (1/4 the space needed for a normal sized maize plant) and mature in less than 2.5 months. (Traditionally 3.5 months is required to obtain transgenic T0 seed once the transgenic plants are acclimated to the greenhouse.) Another suitable line includes but is not limited to a double haploid line of GS3 (a highly transformable line)×Gaspe Flint. Yet another suitable line is a transformable elite maize inbred line carrying a transgene which causes early flowering, reduced stature, or both.
[0355]Transformation Protocol
[0356]Any suitable method may be used to introduce the transgenes into the maize cells, including but not limited to inoculation type procedures using Agrobacterium based vectors (see, for example, Examples 12 and 13). Transformation may be performed on immature embryos of the recipient (target) plant.
[0357]Precision Growth and Plant Tracking
[0358]The event population of transgenic (T0) plants resulting from the transformed maize embryos is grown in a controlled greenhouse environment using a modified randomized block design to reduce or eliminate environmental error. A randomized block design is a plant layout in which the experimental plants are divided into groups (e.g., thirty plants per group), referred to as blocks, and each plant is randomly assigned a location within the block.
[0359]For a group of thirty plants, twenty-four transformed, experimental plants and six control plants (plants with a set phenotype) (collectively, a "replicate group") are placed in pots which are arranged in an array (a.k.a. a replicate group or block) on a table located inside a greenhouse. Each plant, control or experimental, is randomly assigned to a location within the block which is mapped to a unique, physical greenhouse location as well as to the replicate group. Multiple replicate groups of thirty plants each may be grown in the same greenhouse in a single experiment. The layout (arrangement) of the replicate groups should be determined to minimize space requirements as well as environmental effects within the greenhouse. Such a layout may be referred to as a compressed greenhouse layout.
[0360]An alternative to the addition of a specific control group is to identify those transgenic plants that do not express the gene of interest. A variety of techniques such as RT-PCR can be applied to quantitatively assess the expression level of the introduced gene. T0 plants that do not express the transgene can be compared to those which do.
[0361]Each plant in the event population is identified and tracked throughout the evaluation process, and the data gathered from that plant is automatically associated with that plant so that the gathered data can be associated with the transgene carried by the plant. For example, each plant container can have a machine readable label (such as a Universal Product Code (UPC) bar code) which includes information about the plant identity, which in turn is correlated to a greenhouse location so that data obtained from the plant can be automatically associated with that plant.
[0362]Alternatively any efficient, machine readable, plant identification system can be used, such as two-dimensional matrix codes or even radio frequency identification tags (RFID) in which the data is received and interpreted by a radio frequency receiver/processor. See U.S. application Ser. No. 10/324,288 filed Dec. 19, 2002 (U.S. Patent Publication No. 2004/0122592 A1 published Jun. 24, 2004), incorporated herein by reference.
[0363]Phenotypic Analysis using Three-Dimensional Imaging
[0364]Each greenhouse plant in the T0 event population, including any control plants, is analyzed for agronomic characteristics of interest, and the agronomic data for each plant is recorded or stored in a manner so that it is associated with the identifying data (see above) for that plant. Confirmation of a phenotype (gene effect) can be accomplished in the T1 generation with a similar experimental design to that described above.
[0365]The T0 plants are analyzed at the phenotypic level using quantitative, non-destructive imaging technology throughout the plant's entire greenhouse life cycle to assess the traits of interest. In an embodiment, a digital imaging analyzer is used for automatic multi-dimensional analyzing of total plants. The imaging may be done inside the greenhouse. Two camera systems, located at the top and side, and an apparatus to rotate the plant, are used to view and image plants from all sides. Images are acquired from the top, front and side of each plant. All three images together provide sufficient information to evaluate, for example, the biomass, size, and morphology of each plant.
[0366]Due to the change in size of the plants from the time the first leaf appears from the soil to the time the plants are at the end of their development, the early stages of plant development are In an embodiment documented with a higher magnification from the top. This imaging may be accomplished by using a motorized zoom lens system that is fully controlled by the imaging software.
[0367]In a single imaging analysis operation, the following events occur: (1) the plant is conveyed inside the analyzer area, rotated 360 degrees so its machine readable label can be read, and left at rest until its leaves stop moving; (2) the side image is taken and entered into a database; (3) the plant is rotated 90 degrees and again left at rest until its leaves stop moving, and (4) the plant is transported out of the analyzer.
[0368]Plants are allowed at least six hours of darkness per twenty four hour period in order to have a normal day/night cycle.
[0369]Imaging Instrumentation
[0370]Any suitable imaging instrumentation may be used, including but not limited to light spectrum digital imaging instrumentation commercially available from LemnaTec GmbH of Wurselen, Germany. The images are taken and analyzed with a LemnaTec Scanalyzer HTS LT-0001-2 having a 1/2'' IT Progressive Scan IEE CCD imaging device. The imaging cameras may be equipped with a motor zoom, motor aperture, and motor focus. All camera settings may be made using LemnaTec software. In an embodiment, the instrumental variance of the imaging analyzer is less than about 5% for major components and less than about 10% for minor components.
[0371]Software
[0372]The imaging analysis system comprises a LemnaTec HTS Bonit software program for color and architecture analysis and a server database for storing data from about 500,000 analyses, including the analysis dates. The original images and the analyzed images are stored together to allow the user to do as much reanalyzing as desired. The database can be connected to the imaging hardware for automatic data collection and storage. A variety of commercially available software systems (e.g., Matlab, others) can be used for quantitative interpretation of the imaging data, and any of these software systems can be applied to the image data set.
[0373]Conveyor System
[0374]A conveyor system with a plant rotating device may be used to transport the plants to the imaging area and rotate them during imaging. For example, up to four plants, each with a maximum height of 1.5 m, are loaded onto cars that travel over the circulating conveyor system and through the imaging measurement area. In this case the total footprint of the unit (imaging analyzer and conveyor loop) is about 5 m×5 m.
[0375]The conveyor system can be enlarged to accommodate more plants at a time. The plants are transported along the conveyor loop to the imaging area and are analyzed for up to 50 seconds per plant. Three views of the plant are taken. The conveyor system, as well as the imaging equipment, should be capable of being used in greenhouse environmental conditions.
[0376]Illumination
[0377]Any suitable mode of illumination may be used for the image acquisition. For example, a top light above a black background can be used. Alternatively, a combination of top- and backlight using a white background can be used. The illuminated area should be housed to ensure constant illumination conditions. The housing should be longer than the measurement area so that constant light conditions prevail without requiring the opening and closing or doors. Alternatively, the illumination can be varied to cause excitation of either transgene (e.g., green fluorescent protein (GFP), red fluorescent protein (RFP)) or endogenous (e.g. Chlorophyll) fluorophores).
[0378]Biomass Estimation Based on Three-Dimensional Imaging
[0379]For best estimation of biomass the plant images should be taken from at least three axes, In an embodiment the top and two side (sides 1 and 2) views. These images are then analyzed to separate the plant from the background, pot and pollen control bag (if applicable). The volume of the plant can be estimated by the calculation:
Volume ( voxels ) = TopArea ( pixels ) × Side 1 Area ( pixels ) × Side 2 Area ( pixels ) ##EQU00001##
[0380]In the equation above the units of volume and area are "arbitrary units". Arbitrary units are entirely sufficient to detect gene effects on plant size and growth in this system because what is desired is to detect differences (both positive-larger and negative-smaller) from the experimental mean, or control mean. The arbitrary units of size (e.g. area) may be trivially converted to physical measurements by the addition of a physical reference to the imaging process. For instance, a physical reference of known area can be included in both top and side imaging processes. Based on the area of these physical references a conversion factor can be determined to allow conversion from pixels to a unit of area such as square centimeters (cm2). The physical reference may or may not be an independent sample. For instance, the pot, with a known diameter and height, could serve as an adequate physical reference.
[0381]Color Classification
[0382]The imaging technology may also be used to determine plant color and to assign plant colors to various color classes. The assignment of image colors to color classes is an inherent feature of the LemnaTec software. With other image analysis software systems color classification may be determined by a variety of computational approaches.
[0383]For the determination of plant size and growth parameters, a useful classification scheme is to define a simple color scheme including two or three shades of green (In an embodiment hues 50-66, see FIG. 12) and, in addition, a color class for chlorosis, necrosis and bleaching, should these conditions occur. A background color class which includes non plant colors in the image (for example pot and soil colors) is also used and these pixels are specifically excluded from the determination of size. The plants are analyzed under controlled constant illumination so that any change within one plant over time, or between plants or different batches of plants (e.g. seasonal differences) can be quantified.
[0384]In addition to its usefulness in determining plant size growth, color classification can be used to assess other yield component traits. For these other yield component traits additional color classification schemes may be used. For instance, the trait known as "staygreen", which has been associated with improvements in yield, may be assessed by a color classification that separates shades of green from shades of yellow and brown (which are indicative of senescing tissues). By applying this color classification to images taken toward the end of the T0 or T1 plants' life cycle, plants that have increased amounts of green colors relative to yellow and brown colors (expressed, for instance, as Green/Yellow Ratio) may be identified. Plants with a significant difference in this Green/Yellow ratio can be identified as carrying transgenes which impact this important agronomic trait.
[0385]The skilled plant biologist will recognize that other plant colors arise which can indicate plant health or stress response (for instance anthocyanins), and that other color classification schemes can provide further measures of gene action in traits related to these responses.
[0386]Plant Architecture Analysis
[0387]Transgenes which modify plant architecture parameters may also be identified using the present invention, including such parameters as maximum height and width, internodal distances, angle between leaves and stem, number of leaves starting at nodes, and leaf length. The LemnaTec system software may be used to determine plant architecture as follows. The plant is reduced to its main geometric architecture in a first imaging step and then, based on this image, parameterized identification of the different architecture parameters can be performed. Transgenes that modify any of these architecture parameters either singly or in combination can be identified by applying the statistical approaches previously described.
[0388]Pollen Shed Date
[0389]Pollen shed date is an important parameter to be analyzed in a transformed plant, and may be determined by the first appearance on the plant of an active male flower. To find the male flower object, the upper end of the stem is classified by color to detect yellow or violet anthers. This color classification analysis is then used to define an active flower, which in turn can be used to calculate pollen shed date.
[0390]Alternatively, pollen shed date and other easily visually detected plant attributes (e.g., pollination date, first silk date) can be recorded by the personnel responsible for performing plant care. To maximize data integrity and process efficiency, this data is tracked by utilizing the same barcodes utilized by the LemnaTec light spectrum digital analyzing device. A computer with a barcode reader, a palm device, or a notebook PC may be used for ease of data capture recording time of observation, plant identifier, and the operator who captured the data.
[0391]Orientation of the Plants
[0392]Mature maize plants grown at densities approximating commercial planting often have a planar architecture. That is, the plant has a clearly discernable broad side, and a narrow side. The image of the plant from the broadside is determined. To each plant a well defined basic orientation is assigned to obtain the maximum difference between the broadside and edgewise images. The top image is used to determine the main axis of the plant, and an additional rotating device is used to turn the plant to the appropriate orientation prior to starting the main image acquisition.
EXAMPLE 17B
Transformation of Gaspe Flint Derived Maize Lines with Maize Homolog
[0393]Using the INVITROGEN® GATEWAY® LR Recombination technology, an entry clone may be created for the maize homolog (SEQ ID NO:1 7) (see Example 5 for entry clone preparation) and can be directionally cloned into the GATEWAY® destination vector PHP23236 (SEQ ID NO:6; FIG. 6) to create an expression vector PHP30115. This expression vector now contains the cDNA of interest under control of the UBI promoter and is a T-DNA binary for Agrobacterium-mediated transformation into maize as described, but not limited to, the examples described herein.
EXAMPLE 18
Screening of Gaspe Flint Derived Maize Lines Under Optimal and Reduced Nitrogen Conditions
[0394]Transgenic plants contain two or three doses of Gaspe Flint-3 with one dose of GS3 (GS3/(Gaspe-3)2× or GS3/(Gaspe-3)3×) and segregate 1:1 for a dominant transgene. Transgenic plants containing PHP29689 (expression cassette=Int2-3) were planted in 100% Turface in classic 200 pots. Plants were watered with 1.0 mM KNO3 growth medium (see FIG. 13) until segregant determination. At 8 DAP (days after planting), seedlings were randomized and placed equally into respective treatment groups. Two treatments were applied: optimal (6.5 mMol KNO3) and reduced nitrogen (1.0 mMol KNO3), twice daily until 13 DAP. The daily irrigation schedule consisted of a 9:00 AM, 12:00 PM, and 3:00 PM nutrient watering for 3 minutes (156 ml) between 13 and 24 DAP. A fourth watering was added at 5:00 AM on 25 DAP, and a fifth watering was added at 5:00 PM on 31 DAP. pH was monitored at least three times weekly for each table, and days to emergence and days to shed were recorded. Imaging to assess surface area accumulation, specific growth rates (sgr), and changes in color, was performed for each plant three times per week (Monday, Wednesday, and Friday). Plants were sampled for ELISA MOPAT on 8 DAP and for expression and metabolic profiling analysis on 35 DAP. Fresh weight data was obtained from harvested tissue, obtained at 37 DAP, and the harvested tissue was then oven dried (70° C. for 120 hrs.) to obtain dry weight data.
[0395]Four events for PHP29689 were evaluated (FIG. 16). The probability of a greater Student's t test was calculated for each transgenic mean compared to the appropriate null mean (either segregant null or construct null). A minimum (P<t ) of 0.1 was used as a cut off. Table 5 shows the variables for each event that were significantly increased, as compared to the segregant nulls.
TABLE-US-00005 TABLE 5 PHP29689 event summary Event Reduced nitrogen Optimal nitrogen EA2391.314.1.5 % light green end % light green end exponential exponential % light green harvest day Ear diameter Total area harvest day Ear dry weight Days to shed Ear fresh weight Maximum total area Specific growth rate Shoot fresh rate EA2391.314.1.6 Total area end % light green end exponential exponential Total area harvest day % light green harvest day Maximum total area Total area end exponential Shoot dry weight Total area harvest day Shoot fresh weight Maximum total area Shoot + ear dry weight Specific growth rate Shoot + ear fresh weight Shoot dry weight Stalk + ear diameter Shoot fresh weight Shoot + ear dry weight Shoot + ear fresh weight EA2391.314.1.8 Days to shed % light green end Specific growth rate exponential Shoot fresh weight % light green harvest day Shoot + ear fresh weight Days to shed Specific growth rate EA2391.314.1.9 % light green end exponential % light green harvest day Total area harvest day Maximum total area Specific growth rate
[0396]When all events were considered relative to the construct null (FIG. 17), the construct, on average, evinced a significant increase over the construct null for a number of variables (data summarized in Table 6).
TABLE-US-00006 TABLE 6 PHP29689 construct summary Reduced nitrogen Optimal nitrogen % light green harvest day % light green end exponential Total area harvest day % light green harvest day Days to shed Total area end exponential Max total area Total area harvest day Specific growth rate Days to shed Shoot fresh weight Max total area Specific growth rate Shoot dry weight Shoot fresh weight Shoot + ear dry weight Shoot + ear fresh weight
EXAMPLE 19
Yield Analysis of Maize Lines with the Arabidopsis Lead Genes
[0397]Transgenic plants, either inbreds or topcross hybrids, can undergo more vigorous field-based experiments to study yield enhancement and/or stability under nitrogen limiting and non-limiting conditions. For example, yield analysis can be done to determine whether plants that contain a validated Arabidopsis Int2-2 or Int2-3 gene have an improvement in yield performance (under nitrogen limiting or non-limiting conditions), when compared to the control (or reference) plants, that are either construct null or wild-type. Nitrogen limiting conditions are provided by a combination of previous fertility practices in which nitrogen is applied at reduced levels for one or more years where corn or an alternative crop is grown and the seed crop is removed each season. Under such conditions, a low nitrogen (LN) environment consists of a less than normal amount of nitrogen fertilizer applied in early spring or summer, whereas a normal nitrogen (NN) environment consists of adding adequate nitrogen for normal yields, based on soil test standards established for specific growing areas by Federal and State Extension services.
[0398]Corn hybrid testcrosses, containing either the validated Arabidopsis Int2-2 or Int2-3 gene, and their controls were grown in LN and NN environments in Woodland, Calif., and in Johnston, Iowa, and yield was assessed. Yield reduction was observed in LN environments compared to that obtained in NN environments. Yields of the corn hybrid testcrosses, containing either the validated Arabidopsis Int2-2 or Int2-3 gene, were compared to that of the construct nulls. The results of these yield trials are shown in FIGS. 18-21.
[0399]Individual events of plants containing PHP28840 (expression cassette=Int2-3) showed significantly increased yield under LN conditions in 2007 for events E6919.105.1.11 and E6919.105.1.21 in Woodland, while the E6919.105.1.21 event tested in Johnston in 2007 was numerically higher in yield. Similar testing in 2008 revealed significantly improved yield for event E6919.105.1.21 in both Woodland and Johnston and for events E6919.105.1.2 and E6919.105.1.24, in Woodland and in Johnston, respectively. The results for PHP28840-containing plants under low nitrogen conditions are shown in FIG. 18
[0400]Under normal nitrogen (NN) treatments, event E6919.105.1.11 was similar in yield to the construct null (not statistically different) in both Woodland and Johnston in 2007, suggesting that under higher nitrogen levels, this event retains high yield potential. A similar result was obtained in 2008 at the Woodland location. In contrast, event E3919.105.1.11 in Johnston in 2008 and events E6919.105.1.21 and E6919.105.1.24 in Johnston in 2007 and 2008 had significantly lower yields. The results for PHP28840-containing plants under normal nitrogen conditions are shown in FIG. 20.
[0401]Individual events of plants containing PHP28841 (expression cassette=Int2-2) showed a statistically significant increase in yield for events E6919.106.1.17 and E6919.106.1.3 under LN conditions in Woodland in 2007. However, in Johnston in 2007 under LN conditions, event E6919.106.1.3 showed significantly lower yields, and yields were not collected for event E6919.106.1.17. The results for PHP28841-containing plants under low nitrogen (LN) conditions are shown in FIG. 19.
[0402]Under normal nitrogen (NN) treatments, E6919.106.1.17 had numerically higher yields in both Woodland and Johnston in 2007, as compared to the construct null, while event E6919.106.1.3 showed a significant increase in yield in Woodland in 2007 and a numerical increase in Johnston in 2007. Events E6919.106.1.22 and E619.106.1.8 showed significant decreases in yield in Woodland. The results for PHP28841-containing plants under normal nitrogen (NN) conditions are shown in FIG. 21.
EXAMPLE 20
NUE Maize Seedling Assay
[0403]Seed of transgenic events (having construct PHP28841 or PHP28840) were separated into transgene (heterozygous) and null seed using a seed color marker. Two different random assignments of treatments were made to each block of 54 pots, which were arranged 6 rows by 9 columns using 9 replicates of all treatments. In one case, 4 null seed of 5 events of the same construct were mixed and used as a bulked control for comparisons of the 5 positive events in this block, making up 6 treatment combinations in each block. In the second case, 3 transgenic positive treatments and their corresponding nulls were randomly assigned to the 54 pots of the block, making 6 treatment combinations (3 positive and corresponding nulls) for each block, containing 9 replicates of all treatment combinations. In the first case, transgenic parameters were compared to a bulked construct null; in the second case, transgenic parameters were compared to the corresponding event null. In cases where there were 10,15, or 20 events per construct, the events were assigned in groups of 5 events and the variances were calculated for each block of 54 pots. However, the block null means were pooled across blocks before transgenic mean comparisons were made.
[0404]For each treatment, two seeds were planted in a 4 inch square pot containing Turface, on 8 inch, staggered centers. The pots were watered four times each day with a solution containing the following nutrients: 1 mM CaC2, 2 mM MgSO4, 0.5 mM KH2PO4, 83 ppm Sprint330, 3 mM KCl, 1 mM KNO3, 1 μM ZnSO4, 1 μM MnCl2, 3 μM H3BO4, 0.1 μM CuSO4, and 0.1 μM NaMoO4.
[0405]After emergence, the plants were thinned to one seed per pot. Treatments were routinely planted on a Monday, and the plants emerged the following Friday. The plants were then harvested 18 days after planting. At harvest, plants were removed from the pots, and the Turface was washed from the roots. The roots were separated from the shoot, placed in a paper bag and dried at 70° C. for 70 hr. The dried plant parts (roots and shoots) were weighed and placed in a 50 ml conical tube with approximately 20 5/32 inch steel balls and then ground by shaking in a paint shaker. Approximately, 30 mg of the ground tissue (weight recorded for later adjustment) was hydrolyzed in 2 ml of 20% H2O2 and 6M H2SO4 for 30 min at 170° C. After cooling, water was added to 20 ml, and the solution was mixed thoroughly. A 50 μl aliquot was removed and added to 950 μl 1M Na2CO3. The ammonia in this solution was used to estimate total reduced plant nitrogen by placing 100 μl of this solution into individual wells of a 96 well plate and then adding 50 μl of OPA solution. Fluorescence, excitation=360 nM/emission=530 nM, was determined and compared to NH4Cl standards dissolved in a similar solution and treated with OPA solution.
[0406]The following solutions were used in the aforementioned experiments:
[0407]OPA solution-5 μl Mercaptoethanol+1 ml OPA stock solution (make fresh, daily)
[0408]OPA stock-50 mg o-phthadialdehyde (OPA--Sigma #P0657) dissolved in 1.5 ml methanol+4.4 ml 1 M Borate buffer pH9.5 (3.09 g H3BO4+1 g NaOH in 50 ml water)+0.55ml 20% SDS (made fresh weekly)
[0409]The following parameters were measured, and the means were compared to null mean parameters using a Student's t test: SPAD (greenness), stem diameter, root dry weight, shoot dry weight, total dry weight, and plant N concentration. Variance was calculated within each block using a nearest neighbor calculation as well as by Analysis of Variance (ANOVA) using a completely random design (CRD) model. An overall treatment effect for each block was calculated using an F statistic, by dividing overall block treatment mean square by the overall block error mean square. The probability of a greater Student's t test was calculated for each transgenic mean compared to the appropriate null (either construct bulked or individual event null mean) mean. A minimum (P<t ) of 0.1 was used as a cut off.
[0410]The results of the NUE seedling assay for the PHP28840 (expression cassette=Int2-3) and PHP28841 (expression cassette=Int2-2) constructs are shown in FIG. 22. Event E6919.105.1.21, which contains the UBI:Int2-3 expression cassette, showed a statistically significant increase in the following: shoot dry weight, nitrogen concentration, and total N. Another event with the UBI:Int2-3 expression cassette and four out of six events with the UBI:Int2-2 expression cassette evinced a statistically significant increase in plant N concentration. In addition, two out of six events containing the UBI:Int2-2 expression cassette showed a statistically significant increase in total N.
EXAMPLE 21
Transformation and Evaluation of Soybean with Soybean Homologs of Validated Lead Genes
[0411]Based on homology searches, one or several candidate soybean homologs of validated Arabidopsis leads can be identified and also be assessed for their ability to enhance tolerance to nitrogen limiting conditions in soybean. Vector construction, plant transformation and phenotypic analysis will be similar to that in previously described Examples.
EXAMPLE 22
Transformation and Evaluation of Maize with Maize Homologs of Validated Lead Genes
[0412]Based on homology searches, one or several candidate maize homologs of validated Arabidopsis lead genes can be identified (e.g., SEQ ID NOs:18 and 20) and also be assessed for their ability to enhance tolerance to nitrogen limiting conditions in maize. Vector construction, plant transformation and phenotypic analysis can be similar to that in previously described Examples.
EXAMPLE 23
Transformation of Arabidopsis with Maize and Soybean Homologs of Validated Lead Genes
[0413]Soybean and maize homologs to validated Arabidopsis lead genes can be transformed into Arabidopsis under control of the 35S promoter and assayed for leaf area and green color bin accumulation when grown on low nitrogen medium. Vector construction and plant transformation can be as described in the examples herein. Assay conditions, data capture and data analysis can be similar to that in previously described Examples.
Sequence CWU
1
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 36
<210> SEQ ID NO 1
<211> LENGTH: 18491
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pHSbarEND2s activation tagging vector
<400> SEQUENCE: 1
catgaatcaa acaaacatac acagcgactt attcacacga gctcaaatta caacggtata 60
tatcctgccg tcgacaacca tggtctagac aggatccccg ggtaccgagc tcgaatttgc 120
aggtcgactg cgtcatccct tacgtcagtg gagatatcac atcaatccac ttgctttgaa 180
gacgtggttg gaacgtcttc tttttccacg atgctcctcg tgggtggggg tccatctttg 240
ggaccactgt cggcagaggc atcttgaacg atagcctttc ctttatcgca atgatggcat 300
ttgtaggtgc caccttcctt ttctactgtc cttttgatga agtgacagat agctgggcaa 360
tggaatccga ggaggtttcc cgatattacc ctttgttgaa aagtctcaat tgccctttgg 420
tcttctgaga ctgttgcgtc atcccttacg tcagtggaga tatcacatca atccacttgc 480
tttgaagacg tggttggaac gtcttctttt tccacgatgc tcctcgtggg tgggggtcca 540
tctttgggac cactgtcggc agaggcatct tgaacgatag cctttccttt atcgcaatga 600
tggcatttgt aggtgccacc ttccttttct actgtccttt tgatgaagtg acagatagct 660
gggcaatgga atccgaggag gtttcccgat attacccttt gttgaaaagt ctcagttaac 720
ccgcgatcct gcgtcatccc ttacgtcagt ggagatatca catcaatcca cttgctttga 780
agacgtggtt ggaacgtctt ctttttccac gatgctcctc gtgggtgggg gtccatcttt 840
gggaccactg tcggcagagg catcttgaac gatagccttt cctttatcgc aatgatggca 900
tttgtaggtg ccaccttcct tttctactgt ccttttgatg aagtgacaga tagctgggca 960
atggaatccg aggaggtttc ccgatattac cctttgttga aaagtctcaa ttgccctttg 1020
gtcttctgag actgttgcgt catcccttac gtcagtggag atatcacatc aatccacttg 1080
ctttgaagac gtggttggaa cgtcttcttt ttccacgatg ctcctcgtgg gtgggggtcc 1140
atctttggga ccactgtcgg cagaggcatc ttgaacgata gcctttcctt tatcgcaatg 1200
atggcatttg taggtgccac cttccttttc tactgtcctt ttgatgaagt gacagatagc 1260
tgggcaatgg aatccgagga ggtttcccga tattaccctt tgttgaaaag tctcagttaa 1320
cccgcaattc actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc 1380
aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc gaagaggccc 1440
gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggatc gatccgtcga 1500
tcgaccaaag cggccatcgt gcctccccac tcctgcagtt cgggggcatg gatgcgcgga 1560
tagccgctgc tggtttcctg gatgccgacg gatttgcact gccggtagaa ctccgcgagg 1620
tcgtccagcc tcaggcagca gctgaaccaa ctcgcgaggg gatcgagccc ctgctgagcc 1680
tcgacatgtt gtcgcaaaat tcgccctgga cccgcccaac gatttgtcgt cactgtcaag 1740
gtttgacctg cacttcattt ggggcccaca tacaccaaaa aaatgctgca taattctcgg 1800
ggcagcaagt cggttacccg gccgccgtgc tggaccgggt tgaatggtgc ccgtaacttt 1860
cggtagagcg gacggccaat actcaacttc aaggaatctc acccatgcgc gccggcgggg 1920
aaccggagtt cccttcagtg aacgttatta gttcgccgct cggtgtgtcg tagatactag 1980
cccctggggc cttttgaaat ttgaataaga tttatgtaat cagtctttta ggtttgaccg 2040
gttctgccgc tttttttaaa attggatttg taataataaa acgcaattgt ttgttattgt 2100
ggcgctctat catagatgtc gctataaacc tattcagcac aatatattgt tttcatttta 2160
atattgtaca tataagtagt agggtacaat cagtaaattg aacggagaat attattcata 2220
aaaatacgat agtaacgggt gatatattca ttagaatgaa ccgaaaccgg cggtaaggat 2280
ctgagctaca catgctcagg ttttttacaa cgtgcacaac agaattgaaa gcaaatatca 2340
tgcgatcata ggcgtctcgc atatctcatt aaagcagggg gtgggcgaag aactccagca 2400
tgagatcccc gcgctggagg atcatccagc cggcgtcccg gaaaacgatt ccgaagccca 2460
acctttcata gaaggcggcg gtggaatcga aatctcgtga tggcaggttg ggcgtcgctt 2520
ggtcggtcat ttcgaacccc agagtcccgc tcagaagaac tcgtcaagaa ggcgatagaa 2580
ggcgatgcgc tgcgaatcgg gagcggcgat accgtaaagc acgaggaagc ggtcagccca 2640
ttcgccgcca agctcttcag caatatcacg ggtagccaac gctatgtcct gatagcggtc 2700
cgccacaccc agccggccac agtcgatgaa tccagaaaag cggccatttt ccaccatgat 2760
attcggcaag caggcatcgc catgggtcac gacgagatcc tcgccgtcgg gcatgccccc 2820
caattcactg gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg ttacccaact 2880
taatcgcctt gcagcacatc cccctttcgc cagctggcgt aatagcgaag aggcccgcac 2940
cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa tggcgcctga tgcggtattt 3000
tctccttacg catctgtgcg gtatttcaca ccgcatatgg tgcactctca gtacaatctg 3060
ctctgatgcc gcatagttaa gccagccccg acacccgcca acacccgctg acgcgccctg 3120
acgggcttgt ctgctcccgg catccgctta cagacaagct gtgaccgtct ccgggagctg 3180
catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg agacgaaagg gcctcgtgat 3240
acgcctattt ttataggtta atgtcatgat aataatggtt tcttagacgt caggtggcac 3300
ttttcgggga aatgtgcgcg gaacccctat ttgtttattt ttctaaatac attcaaatat 3360
gtatccgctc atgagacaat aaccctgata aatgcttcaa taatattgaa aaaggaagag 3420
tatgagtatt caacatttcc gtgtcgccct tattcccttt tttgcggcat tttgccttcc 3480
tgtttttgct cacccagaaa cgctggtgaa agtaaaagat gctgaagatc agttgggtgc 3540
acgagtgggt tacatcgaac tggatctcaa cagcggtaag atccttgaga gttttcgccc 3600
cgaagaacgt tttccaatga tgagcacttt taaagttctg ctatgtggcg cggtattatc 3660
ccgtattgac gccgggcaag agcaactcgg tcgccgcata cactattctc agaatgactt 3720
ggttgagtac tcaccagtca cagaaaagca tcttacggat ggcatgacag taagagaatt 3780
atgcagtgct gccataacca tgagtgataa cactgcggcc aacttacttc tgacaacgat 3840
cggaggaccg aaggagctaa ccgctttttt gcacaacatg ggggatcatg taactcgcct 3900
tgatcgttgg gaaccggagc tgaatgaagc cataccaaac gacgagcgtg acaccacgat 3960
gcctgtagca atggcaacaa cgttgcgcaa actattaact ggcgaactac ttactctagc 4020
ttcccggcaa caattaatag actggatgga ggcggataaa gttgcaggac cacttctgcg 4080
ctcggccctt ccggctggct ggtttattgc tgataaatct ggagccggtg agcgtgggtc 4140
tcgcggtatc attgcagcac tggggccaga tggtaagccc tcccgtatcg tagttatcta 4200
cacgacgggg agtcaggcaa ctatggatga acgaaataga cagatcgctg agataggtgc 4260
ctcactgatt aagcattggt aactgtcaga ccaagtttac tcatatatac tttagattga 4320
tttaaaactt catttttaat ttaaaaggat ctaggtgaag atcctttttg ataatctcat 4380
gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat 4440
caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 4500
accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 4560
ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt agccgtagtt 4620
aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 4680
accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata 4740
gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt 4800
ggagcgaacg acctacaccg aactgagata cctacagcgt gagcattgag aaagcgccac 4860
gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga 4920
gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 4980
ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa 5040
aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat 5100
gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct ttgagtgagc 5160
tgataccgct cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga 5220
agagcgccca atacgcaaac cgcctctccc cgcgcgttgg ccgattcatt aatgcagctg 5280
gcacgacagg tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta 5340
gctcactcat taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg 5400
aattgtgagc ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct 5460
ttctaggggg ggggtaccga tctgagatcg gtaacgaaaa cgaacgggta gggatgaaaa 5520
cggtcggtaa cggtcggtaa aatacctcta ccgttttcat tttcatattt aacttgcggg 5580
acggaaacga aaacgggata taccggtaac gaaaacgaac gggataaata cggtaatcga 5640
aaaccgatac gatccggtcg ggttaaagtc gaaatcggac gggaaccggt atttttgttc 5700
ggtaaaatca cacatgaaaa catatattca aaacttaaaa acaaatataa aaaattgtaa 5760
acacaagtct taatgatcac tagtggcgcg cctaggagat ctcgagtagg gataacaggg 5820
taatacatag ataaaatcca tataaatctg gagcacacat agtttaatgt agcacataag 5880
tgataagtct tgggctcttg gctaacataa gaagccatat aagtctacta gcacacatga 5940
cacaatataa agtttaaaac acatattcat aatcacttgc tcacatctgg atcacttagc 6000
atgctacagc tagtgcaata ttagacactt tccaatattt ctcaaacttt tcactcattg 6060
caacggccat tctcctaatg acaaattttt catgaacaca ccattggtca atcaaatcct 6120
ttatctcaca gaaacctttg taaaataaat ttgcagtgga atattgagta ccagatagga 6180
gttcagtgag atcaaaaaac ttcttcaaac acttaaaaag agttaatgcc atcttccact 6240
cctcggcttt aggacaaatt gcatcgtacc tacaataatt gacatttgat taattgagaa 6300
tttataatga tgacatgtac aacaattgag acaaacatac ctgcgaggat cacttgtttt 6360
aagccgtgtt agtgcaggct tataatataa ggcatccctc aacatcaaat aggttgaatt 6420
ccatctagtt gagacatcat atgagatccc tttagattta tccaagtcac attcactagc 6480
acacttcatt agttcttccc actgcaaagg agaagatttt acagcaagaa caatcgcttt 6540
gattttctca attgttcctg caattacagc caagccatcc tttgcaacca agttcagtat 6600
gtgacaagca cacctcacat gaaagaaagc accatcacaa actagatttg aatcagtgtc 6660
ctgcaaatcc tcaattatat cgtgcacagc tacttcattt gcactagcat tatccaaaga 6720
caaggcaaac aattttttct caatgttcca cttaaccatg attgcagtga aggtttgtga 6780
taacctttgg ccagtgtggc gcccttcaac atgaaaaaag ccaacaattc ttttttggag 6840
acaccaatca tcatcaatcc aatggatggt gacacacatg tatgacttat tttgacaaga 6900
tgtccacata tccatagttg tactgaagcg agactgaaca tcttttagtt ttccatacaa 6960
cttttctttt tcttccaaat acaaatccat gatatatttt ctagcagtga cacgggactt 7020
tattggaaag tgagggcgca gagacttaac aaactcaaca aagtactcat gttctacaat 7080
attgaaagga tattcatgca tgattattgc caaatgaagc ttctttaggc taaccacttc 7140
atcgtactta taaggctcaa tgagatttat gtctttgcca tgatcctttt cactttttag 7200
acacaactga cctttaacta aactatgtga tgttctcaag tgatttcgaa atccgcttgt 7260
tccatgatga ccctcagccc tatacttagc cttgcaatta ggaaagttgc aatgtcccca 7320
tacctgaacg tatttctttc catcgacctc cacttcaatt tccttcttgg tgaaatgctg 7380
ccatacatcc gatgtgcact tctttgccct cttctgtggt gcttcttctt cgggttcagg 7440
ttgtggctgt ggttgtggtt ctggttgtgg ttgtggttgt ggttgtggtt catgaacaat 7500
agccatatca tcttgactcg gatctgtagc tgtaccattt gcattactac tgcttacact 7560
ctgaataaaa tgcctctcgg cctcagctgt tgatgatgat ggtgatgtgc ggccacatcc 7620
atgcccacgc gcacgtgcac gtacattctg aatccgacta gaagaggctt cagcttttct 7680
tttcaaccct gttataaaca gatttttcgt attattctac agtcaatatg atgcttccca 7740
atctacaacc aattagtaat gctaatgcta ttgctactgt ttttctaata tataccttga 7800
gcatatgcag agaatacgga atttgttttg cgagtagaag gcgctcttgt ggtagacatc 7860
aacttggcca atcttatggc tgagcctgag ggaggattat ttccaaccgg aggcgtcatc 7920
tgaggaatgg agtcgtagcc ggctagccga agtggagagc agagccctgg acagcaggtg 7980
ttcagcaatc agcttggtgc tgtactgctg tgacttgtga gcacctggac ggctggacag 8040
caatcagcag gtgttgcaga gcccctggac agcacacaaa tgacacaaca gcttggtgca 8100
atggtgctga cgtgctgtac tgctaagtgc tgtgagcctg tgagcagccg tggagacagg 8160
gagaccgcgg atggccggat gggcgagcgc cgagcagtgg aggtctggag gaccgctgac 8220
cgcagatggc ggatggcgga tgggcggacc gcggatgggc gagcagtgga gtggaggtct 8280
gggcggatgg gcggaccgcg gcgcggatgg gcgagtcgcg agcagtggag tggagggcgg 8340
accgtggatg gcggcgtctg cgtccggcgt gccgcgtcac ggccgtcacc gcgtgtggtg 8400
cctggtgcag cccagcggcc ggccggctgg gagacaggga gagtcggaga gagcaggcga 8460
gagcgagacg cgtcgccggc gtcggcgtgc ggctggcggc gtccggactc cggcgtgggc 8520
gcgtggcggc gtgtgaatgt gtgatgctgt tactcgtgtg gtgcctggcc gcctgggaga 8580
gaggcagagc agcgttcgct aggtatttct tacatgggct gggcctcagt ggttatggat 8640
gggagttgga gctggccata ttgcagtcat cccgaattag aaaatacggt aacgaaacgg 8700
gatcatcccg attaaaaacg ggatcccggt gaaacggtcg ggaaactagc tctaccgttt 8760
ccgtttccgt ttaccgtttt gtatatcccg tttccgttcc gttttcgttt tttacctcgg 8820
gttcgaaatc gatcgggata aaactaacaa aatcggttat acgataacgg tcggtacggg 8880
attttcccat cctactttca tccctgagat tattgtcgtt tctttcgcag atcggtaccc 8940
cccccctaga gtcgacatcg atctagtaac atagatgaca ccgcgcgcga taatttatcc 9000
tagtttgcgc gctatatttt gttttctatc gcgtattaaa tgtataattg cgggactcta 9060
atcataaaaa cccatctcat aaataacgtc atgcattaca tgttaattat tacatgctta 9120
acgtaattca acagaaatta tatgataatc atcgcaagac cggcaacagg attcaatctt 9180
aagaaacttt attgccaaat gtttgaacga tctgcttcga cgcactcctt ctttaggtac 9240
ggactagatc tcggtgacgg gcaggaccgg acggggcggt accggcaggc tgaagtccag 9300
ctgccagaaa cccacgtcat gccagttccc gtgcttgaag ccggccgccc gcagcatgcc 9360
gcggggggca tatccgagcg cctcgtgcat gcgcacgctc gggtcgttgg gcagcccgat 9420
gacagcgacc acgctcttga agccctgtgc ctccagggac ttcagcaggt gggtgtagag 9480
cgtggagccc agtcccgtcc gctggtggcg gggggagacg tacacggtcg actcggccgt 9540
ccagtcgtag gcgttgcgtg ccttccaggg gcccgcgtag gcgatgccgg cgacctcgcc 9600
gtccacctcg gcgacgagcc agggatagcg ctcccgcaga cggacgaggt cgtccgtcca 9660
ctcctgcggt tcctgcggct cggtacggaa gttgaccgtg cttgtctcga tgtagtggtt 9720
gacgatggtg cagaccgccg gcatgtccgc ctcggtggca cggcggatgt cggccgggcg 9780
tcgttctggg ctcatggatc tggattgaga gtgaatatga gactctaatt ggataccgag 9840
gggaatttat ggaacgtcag tggagcattt ttgacaagaa atatttgcta gctgatagtg 9900
accttaggcg acttttgaac gcgcaataat ggtttctgac gtatgtgctt agctcattaa 9960
actccagaaa cccgcggctg agtggctcct tcaatcgttg cggttctgtc agttccaaac 10020
gtaaaacggc ttgtcccgcg tcatcggcgg gggtcataac gtgactccct taattctccg 10080
ctcatgatcc ccgggtaccg agctcgaatt gcggctgagt ggctccttca atcgttgcgg 10140
ttctgtcagt tccaaacgta aaacggcttg tcccgcgtca tcggcggggg tcataacgtg 10200
actcccttaa ttctccgctc atgatcttga tcccctgcgc catcagatcc ttggcggcaa 10260
gaaagccatc cagtttactt tgcagggctt cccaacctta ccagagggcg ccccagctgg 10320
caattccggt tcgcttgctg tatcgatatg gtggatttat cacaaatggg acccgccgcc 10380
gacagaggtg tgatgttagg ccaggacttt gaaaatttgc gcaactatcg tatagtggcc 10440
gacaaattga cgccgagttg acagactgcc tagcatttga gtgaattatg tgaggtaatg 10500
ggctacactg aattggtagc tcaaactgtc agtatttatg tatatgagtg tatattttcg 10560
cataatctca gaccaatctg aagatgaaat gggtatctgg gaatggcgaa atcaaggcat 10620
cgatcgtgaa gtttctcatc taagccccca tttggacgtg aatgtagaca cgtcgaaata 10680
aagatttccg aattagaata atttgtttat tgctttcgcc tataaatacg acggatcgta 10740
atttgtcgtt ttatcaaaat gtactttcat tttataataa cgctgcggac atctacattt 10800
ttgaattgaa aaaaaattgg taattactct ttctttttct ccatattgac catcatactc 10860
attgctgatc catgtagatt tcccggacat gaagccattt acaattgaat atatcctgcc 10920
gccgctgccg ctttgcaccc ggtggagctt gcatgttggt ttctacgcag aactgagccg 10980
gttaggcaga taatttccat tgagaactga gccatgtgca ccttcccccc aacacggtga 11040
gcgacggggc aacggagtga tccacatggg acttttaaac atcatccgtc ggatggcgtt 11100
gcgagagaag cagtcgatcc gtgagatcag ccgacgcacc gggcaggcgc gcaacacgat 11160
cgcaaagtat ttgaacgcag gtacaatcga gccgacgttc accgtcaccc tggatgctgt 11220
aggcataggc ttggttatgc cggtactgcc gggcctcttg cgggatatcg tccattccga 11280
cagcatcgcc agtcactatg gcgtgctgct agcgctatat gcgttgatgc aatttctatg 11340
cgcacccgtt ctcggagcac tgtccgaccg ctttggccgc cgcccagtcc tgctcgcttc 11400
gctacttgga gccactatcg actacgcgat catggcgacc acacccgtcc tgtggtccaa 11460
cccctccgct gctatagtgc agtcggcttc tgacgttcag tgcagccgtc ttctgaaaac 11520
gacatgtcgc acaagtccta agttacgcga caggctgccg ccctgccctt ttcctggcgt 11580
tttcttgtcg cgtgttttag tcgcataaag tagaatactt gcgactagaa ccggagacat 11640
tacgccatga acaagagcgc cgccgctggc ctgctgggct atgcccgcgt cagcaccgac 11700
gaccaggact tgaccaacca acgggccgaa ctgcacgcgg ccggctgcac caagctgttt 11760
tccgagaaga tcaccggcac caggcgcgac cgcccggagc tggccaggat gcttgaccac 11820
ctacgccctg gcgacgttgt gacagtgacc aggctagacc gcctggcccg cagcacccgc 11880
gacctactgg acattgccga gcgcatccag gaggccggcg cgggcctgcg tagcctggca 11940
gagccgtggg ccgacaccac cacgccggcc ggccgcatgg tgttgaccgt gttcgccggc 12000
attgccgagt tcgagcgttc cctaatcatc gaccgcaccc ggagcgggcg cgaggccgcc 12060
aaggcccgag gcgtgaagtt tggcccccgc cctaccctca ccccggcaca gatcgcgcac 12120
gcccgcgagc tgatcgacca ggaaggccgc accgtgaaag aggcggctgc actgcttggc 12180
gtgcatcgct cgaccctgta ccgcgcactt gagcgcagcg aggaagtgac gcccaccgag 12240
gccaggcggc gcggtgcctt ccgtgaggac gcattgaccg aggccgacgc cctggcggcc 12300
gccgagaatg aacgccaaga ggaacaagca tgaaaccgca ccaggacggc caggacgaac 12360
cgtttttcat taccgaagag atcgaggcgg agatgatcgc ggccgggtac gtgttcgagc 12420
cgcccgcgca cgtctcaacc gtgcggctgc atgaaatcct ggccggtttg tctgatgcca 12480
agctggcggc ctggccggcc agcttggccg ctgaagaaac cgagcgccgc cgtctaaaaa 12540
ggtgatgtgt atttgagtaa aacagcttgc gtcatgcggt cgctgcgtat atgatgcgat 12600
gagtaaataa acaaatacgc aagggaacgc atgaagttat cgctgtactt aaccagaaag 12660
gcgggtcagg caagacgacc atcgcaaccc atctagcccg cgccctgcaa ctcgccgggg 12720
ccgatgttct gttagtcgat tccgatcccc agggcagtgc ccgcgattgg gcggccgtgc 12780
gggaagatca accgctaacc gttgtcggca tcgaccgccc gacgattgac cgcgacgtga 12840
aggccatcgg ccggcgcgac ttcgtagtga tcgacggagc gccccaggcg gcggacttgg 12900
ctgtgtccgc gatcaaggca gccgacttcg tgctgattcc ggtgcagcca agcccttacg 12960
acatatgggc caccgccgac ctggtggagc tggttaagca gcgcattgag gtcacggatg 13020
gaaggctaca agcggccttt gtcgtgtcgc gggcgatcaa aggcacgcgc atcggcggtg 13080
aggttgccga ggcgctggcc gggtacgagc tgcccattct tgagtcccgt atcacgcagc 13140
gcgtgagcta cccaggcact gccgccgccg gcacaaccgt tcttgaatca gaacccgagg 13200
gcgacgctgc ccgcgaggtc caggcgctgg ccgctgaaat taaatcaaaa ctcatttgag 13260
ttaatgaggt aaagagaaaa tgagcaaaag cacaaacacg ctaagtgccg gccgtccgag 13320
cgcacgcagc agcaaggctg caacgttggc cagcctggca gacacgccag ccatgaagcg 13380
ggtcaacttt cagttgccgg cggaggatca caccaagctg aagatgtacg cggtacgcca 13440
aggcaagacc attaccgagc tgctatctga atacatcgcg cagctaccag agtaaatgag 13500
caaatgaata aatgagtaga tgaattttag cggctaaagg aggcggcatg gaaaatcaag 13560
aacaaccagg caccgacgcc gtggaatgcc ccatgtgtgg aggaacgggc ggttggccag 13620
gcgtaagcgg ctgggttgtc tgccggccct gcaatggcac tggaaccccc aagcccgagg 13680
aatcggcgtg agcggtcgca aaccatccgg cccggtacaa atcggcgcgg cgctgggtga 13740
tgacctggtg gagaagttga aggccgcgca ggccgcccag cggcaacgca tcgaggcaga 13800
agcacgcccc ggtgaatcgt ggcaagcggc cgctgatcga atccgcaaag aatcccggca 13860
accgccggca gccggtgcgc cgtcgattag gaagccgccc aagggcgacg agcaaccaga 13920
ttttttcgtt ccgatgctct atgacgtggg cacccgcgat agtcgcagca tcatggacgt 13980
ggccgttttc cgtctgtcga agcgtgaccg acgagctggc gaggtgatcc gctacgagct 14040
tccagacggg cacgtagagg tttccgcagg gccggccggc atggccagtg tgtgggatta 14100
cgacctggta ctgatggcgg tttcccatct aaccgaatcc atgaaccgat accgggaagg 14160
gaagggagac aagcccggcc gcgtgttccg tccacacgtt gcggacgtac tcaagttctg 14220
ccggcgagcc gatggcggaa agcagaaaga cgacctggta gaaacctgca ttcggttaaa 14280
caccacgcac gttgccatgc agcgtacgaa gaaggccaag aacggccgcc tggtgacggt 14340
atccgagggt gaagccttga ttagccgcta caagatcgta aagagcgaaa ccgggcggcc 14400
ggagtacatc gagatcgagc tagctgattg gatgtaccgc gagatcacag aaggcaagaa 14460
cccggacgtg ctgacggttc accccgatta ctttttgatc gatcccggca tcggccgttt 14520
tctctaccgc ctggcacgcc gcgccgcagg caaggcagaa gccagatggt tgttcaagac 14580
gatctacgaa cgcagtggca gcgccggaga gttcaagaag ttctgtttca ccgtgcgcaa 14640
gctgatcggg tcaaatgacc tgccggagta cgatttgaag gaggaggcgg ggcaggctgg 14700
cccgatccta gtcatgcgct accgcaacct gatcgagggc gaagcatccg ccggttccta 14760
atgtacggag cagatgctag ggcaaattgc cctagcaggg gaaaaaggtc gaaaaggtct 14820
ctttcctgtg gatagcacgt acattgggaa cccaaagccg tacattggga accggaaccc 14880
gtacattggg aacccaaagc cgtacattgg gaaccggtca cacatgtaag tgactgatat 14940
aaaagagaaa aaaggcgatt tttccgccta aaactcttta aaacttatta aaactcttaa 15000
aacccgcctg gcctgtgcat aactgtctgg ccagcgcaca gccgaagagc tgcaaaaagc 15060
gcctaccctt cggtcgctgc gctccctacg ccccgccgct tcgcgtcggc ctatcgcggc 15120
cgctggccgc tcaaaaatgg ctggcctacg gccaggcaat ctaccagggc gcggacaagc 15180
cgcgccgtcg ccactcgacc gccggcgccc acatcaaggc accctgcctc gcgcgtttcg 15240
gtgatgacgg tgaaaacctc tgacacatgc agctcccgga gacggtcaca gcttgtctgt 15300
aagcggatgc cgggagcaga caagcccgtc agggcgcgtc agcgggtgtt ggcgggtgtc 15360
ggggcgcagc catgacccag tcacgtagcg atagcggagt gtatactggc ttaactatgc 15420
ggcatcagag cagattgtac tgagagtgca ccatatgcgg tgtgaaatac cgcacagatg 15480
cgtaaggaga aaataccgca tcaggcgctc ttccgcttcc tcgctcactg actcgctgcg 15540
ctcggtcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc 15600
cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag 15660
gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc ctgacgagca 15720
tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca 15780
ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg 15840
atacctgtcc gcctttctcc cttcgggaag cgtggcgctt tctcatagct cacgctgtag 15900
gtatctcagt tcggtgtagg tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt 15960
tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggtaagaca 16020
cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga ggtatgtagg 16080
cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa ggacagtatt 16140
tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc 16200
cggcaaacaa accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg 16260
cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggtctg acgctcagtg 16320
gaacgaaaac tcacgttaag ggattttggt catgagatta tcaaaaagga tcttcaccta 16380
gatcctttta aattaaaaat gaagttttaa atcaatctaa agtatatatg agtaaacttg 16440
gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct gtctatttcg 16500
ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg agggcttacc 16560
atctggcccc agtgctgcaa tgataccgcg agacccacgc tcaccggctc cagatttatc 16620
agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc 16680
ctccatccag tctattaatt gttgccggga agctagagta agtagttcgc cagttaatag 16740
tttgcgcaac gttgttgcca ttgctacagg catcgtggtg tcacgctcgt cgtttggtat 16800
ggcttcattc agctccggtt cccaacgatc aaggcgagtt acatgatccc ccatgttgtg 16860
caaaaaagcg gttagctcct tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt 16920
gttatcactc atggttatgg cagcactgca taattctctt actgtcatgc catccgtaag 16980
atgcttttct gtgactggtg agtactcaac caagtcattc tgagaatagt gtatgcggcg 17040
accgagttgc tcttgcccgg cgtcaacacg ggataatacc gcgccacata gcagaacttt 17100
aaaagtgctc atcattggaa aagacctgca gggggggggg ggaaagccac gttgtgtctc 17160
aaaatctctg atgttacatt gcacaagata aaaatatatc atcatgaaca ataaaactgt 17220
ctgcttacat aaacagtaat acaaggggtg ttatgagcca tattcaacgg gaaacgtctt 17280
gctcgaggcc gcgattaaat tccaacatgg atgctgattt atatgggtat aaatgggctc 17340
gcgataatgt cgggcaatca ggtgcgacaa tctatcgatt gtatgggaag cccgatgcgc 17400
cagagttgtt tctgaaacat ggcaaaggta gcgttgccaa tgatgttaca gatgagatgg 17460
tcagactaaa ctggctgacg gaatttatgc ctcttccgac catcaagcat tttatccgta 17520
ctcctgatga tgcatggtta ctcaccactg cgatccccgg gaaaacagca ttccaggtat 17580
tagaagaata tcctgattca ggtgaaaata ttgttgatgc gctggcagtg ttcctgcgcc 17640
ggttgcattc gattcctgtt tgtaattgtc cttttaacag cgatcgcgta tttcgtctcg 17700
ctcaggcgca atcacgaatg aataacggtt tggttgatgc gagtgatttt gatgacgagc 17760
gtaatggctg gcctgttgaa caagtctgga aagaaatgca taagcttttg ccattctcac 17820
cggattcagt cgtcactcat ggtgatttct cacttgataa ccttattttt gacgagggga 17880
aattaatagg ttgtattgat gttggacgag tcggaatcgc agaccgatac caggatcttg 17940
ccatcctatg gaactgcctc ggtgagtttt ctccttcatt acagaaacgg ctttttcaaa 18000
aatatggtat tgataatcct gatatgaata aattgcagtt tcatttgatg ctcgatgagt 18060
ttttctaatc agaattggtt aattggttgt aacactggca gagcattacg ctgacttgac 18120
gggacggcgg ctttgttgaa taaatcgaac ttttgctgag ttgaaggatc agatcacgca 18180
tcttcccgac aacgcagacc gttccgtggc aaagcaaaag ttcaaaatca ccaactggtc 18240
cacctacaac aaagctctca tcaaccgtgg ctccctcact ttctggctgg atgatggggc 18300
gattcaggcc tggtatgagt cagcaacacc ttcttcacga ggcagacctc agcgcccccc 18360
cccccctgca ggtcaattcg gtcgatatgg ctattacgaa gaaggctcgt gcgcggagtc 18420
ccgtgaactt tcccacgcaa caagtgaacc gcaccgggtt tgccggaggc catttcgtta 18480
aaatgcgcag c 18491
<210> SEQ ID NO 2
<211> LENGTH: 4291
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pDONRZeo construct
<400> SEQUENCE: 2
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 60
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 120
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 180
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc 240
tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta 300
gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc 360
acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa 420
caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg 480
gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa 540
aacgacggcc agtcttaagc tcgggcccca aataatgatt ttattttgac tgatagtgac 600
ctgttcgttg caacacattg atgagcaatg cttttttata atgccaactt tgtacaaaaa 660
agctgaacga gaaacgtaaa atgatataaa tatcaatata ttaaattaga ttttgcataa 720
aaaacagact acataatact gtaaaacaca acatatccag tcactatgaa tcaactactt 780
agatggtatt agtgacctgt agtcgaccga cagccttcca aatgttcttc gggtgatgct 840
gccaacttag tcgaccgaca gccttccaaa tgttcttctc aaacggaatc gtcgtatcca 900
gcctactcgc tattgtcctc aatgccgtat taaatcataa aaagaaataa gaaaaagagg 960
tgcgagcctc ttttttgtgt gacaaaataa aaacatctac ctattcatat acgctagtgt 1020
catagtcctg aaaatcatct gcatcaagaa caatttcaca actcttatac ttttctctta 1080
caagtcgttc ggcttcatct ggattttcag cctctatact tactaaacgt gataaagttt 1140
ctgtaatttc tactgtatcg acctgcagac tggctgtgta taagggagcc tgacatttat 1200
attccccaga acatcaggtt aatggcgttt ttgatgtcat tttcgcggtg gctgagatca 1260
gccacttctt ccccgataac ggagaccggc acactggcca tatcggtggt catcatgcgc 1320
cagctttcat ccccgatatg caccaccggg taaagttcac gggagacttt atctgacagc 1380
agacgtgcac tggccagggg gatcaccatc cgtcgcccgg gcgtgtcaat aatatcactc 1440
tgtacatcca caaacagacg ataacggctc tctcttttat aggtgtaaac cttaaactgc 1500
atttcaccag cccctgttct cgtcagcaaa agagccgttc atttcaataa accgggcgac 1560
ctcagccatc ccttcctgat tttccgcttt ccagcgttcg gcacgcagac gacgggcttc 1620
attctgcatg gttgtgctta ccagaccgga gatattgaca tcatatatgc cttgagcaac 1680
tgatagctgt cgctgtcaac tgtcactgta atacgctgct tcatagcata cctctttttg 1740
acatacttcg ggtatacata tcagtatata ttcttatacc gcaaaaatca gcgcgcaaat 1800
acgcatactg ttatctggct tttagtaagc cggatccacg cggcgtttac gccccgccct 1860
gccactcatc gcagtactgt tgtaattcat taagcattct gccgacatgg aagccatcac 1920
agacggcatg atgaacctga atcgccagcg gcatcagcac cttgtcgcct tgcgtataat 1980
atttgcccat ggtgaaaacg ggggcgaaga agttgtccat attggccacg tttaaatcaa 2040
aactggtgaa actcacccag ggattggctg agacgaaaaa catattctca ataaaccctt 2100
tagggaaata ggccaggttt tcaccgtaac acgccacatc ttgcgaatat atgtgtagaa 2160
actgccggaa atcgtcgtgg tattcactcc agagcgatga aaacgtttca gtttgctcat 2220
ggaaaacggt gtaacaaggg tgaacactat cccatatcac cagctcaccg tctttcattg 2280
ccatacggaa ttccggatga gcattcatca ggcgggcaag aatgtgaata aaggccggat 2340
aaaacttgtg cttatttttc tttacggtct ttaaaaaggc cgtaatatcc agctgaacgg 2400
tctggttata ggtacattga gcaactgact gaaatgcctc aaaatgttct ttacgatgcc 2460
attgggatat atcaacggtg gtatatccag tgattttttt ctccatttta gcttccttag 2520
ctcctgaaaa tctcgataac tcaaaaaata cgcccggtag tgatcttatt tcattatggt 2580
gaaagttgga acctcttacg tgccgatcaa cgtctcattt tcgccaaaag ttggcccagg 2640
gcttcccggt atcaacaggg acaccaggat ttatttattc tgcgaagtga tcttccgtca 2700
caggtattta ttcggcgcaa agtgcgtcgg gtgatgctgc caacttagtc gactacaggt 2760
cactaatacc atctaagtag ttgattcata gtgactggat atgttgtgtt ttacagtatt 2820
atgtagtctg ttttttatgc aaaatctaat ttaatatatt gatatttata tcattttacg 2880
tttctcgttc agctttcttg tacaaagttg gcattataag aaagcattgc ttatcaattt 2940
gttgcaacga acaggtcact atcagtcaaa ataaaatcat tatttgccat ccagctgata 3000
tcccctatag tgagtcgtat tacatggtca tagctgtttc ctggcagctc tggcccgtgt 3060
ctcaaaatct ctgatgttac attgcacaag ataaaataat atcatcatga tcagtcctgc 3120
tcctcggcca cgaagtgcac gcagttgccg gccgggtcgc gcagggcgaa ctcccgcccc 3180
cacggctgct cgccgatctc ggtcatggcc ggcccggagg cgtcccggaa gttcgtggac 3240
acgacctccg accactcggc gtacagctcg tccaggccgc gcacccacac ccaggccagg 3300
gtgttgtccg gcaccacctg gtcctggacc gcgctgatga acagggtcac gtcgtcccgg 3360
accacaccgg cgaagtcgtc ctccacgaag tcccgggaga acccgagccg gtcggtccag 3420
aactcgaccg ctccggcgac gtcgcgcgcg gtgagcaccg gaacggcact ggtcaacttg 3480
gccatggttt agttcctcac cttgtcgtat tatactatgc cgatatacta tgccgatgat 3540
taattgtcaa cacgtgctga tcatgaccaa aatcccttaa cgtgagttac gcgtcgttcc 3600
actgagcgtc agaccccgta gaaaagatca aaggatcttc ttgagatcct ttttttctgc 3660
gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc agcggtggtt tgtttgccgg 3720
atcaagagct accaactctt tttccgaagg taactggctt cagcagagcg cagataccaa 3780
atactgttct tctagtgtag ccgtagttag gccaccactt caagaactct gtagcaccgc 3840
ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtcgt 3900
gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg tcgggctgaa 3960
cggggggttc gtgcacacag cccagcttgg agcgaacgac ctacaccgaa ctgagatacc 4020
tacagcgtga gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc 4080
cggtaagcgg cagggtcgga acaggagagc gcacgaggga gcttccaggg ggaaacgcct 4140
ggtatcttta tagtcctgtc gggtttcgcc acctctgact tgagcgtcga tttttgtgat 4200
gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa cgcggccttt ttacggttcc 4260
tggccttttg ctggcctttt gctcacatgt t 4291
<210> SEQ ID NO 3
<211> LENGTH: 4762
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pDONR221
<400> SEQUENCE: 3
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 60
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 120
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 180
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc 240
tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta 300
gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc 360
acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa 420
caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg 480
gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa 540
aacgacggcc agtcttaagc tcgggcccca aataatgatt ttattttgac tgatagtgac 600
ctgttcgttg caacacattg atgagcaatg cttttttata atgccaactt tgtacaaaaa 660
agctgaacga gaaacgtaaa atgatataaa tatcaatata ttaaattaga ttttgcataa 720
aaaacagact acataatact gtaaaacaca acatatccag tcactatgaa tcaactactt 780
agatggtatt agtgacctgt agtcgaccga cagccttcca aatgttcttc gggtgatgct 840
gccaacttag tcgaccgaca gccttccaaa tgttcttctc aaacggaatc gtcgtatcca 900
gcctactcgc tattgtcctc aatgccgtat taaatcataa aaagaaataa gaaaaagagg 960
tgcgagcctc ttttttgtgt gacaaaataa aaacatctac ctattcatat acgctagtgt 1020
catagtcctg aaaatcatct gcatcaagaa caatttcaca actcttatac ttttctctta 1080
caagtcgttc ggcttcatct ggattttcag cctctatact tactaaacgt gataaagttt 1140
ctgtaatttc tactgtatcg acctgcagac tggctgtgta taagggagcc tgacatttat 1200
attccccaga acatcaggtt aatggcgttt ttgatgtcat tttcgcggtg gctgagatca 1260
gccacttctt ccccgataac ggagaccggc acactggcca tatcggtggt catcatgcgc 1320
cagctttcat ccccgatatg caccaccggg taaagttcac gggagacttt atctgacagc 1380
agacgtgcac tggccagggg gatcaccatc cgtcgcccgg gcgtgtcaat aatatcactc 1440
tgtacatcca caaacagacg ataacggctc tctcttttat aggtgtaaac cttaaactgc 1500
atttcaccag cccctgttct cgtcagcaaa agagccgttc atttcaataa accgggcgac 1560
ctcagccatc ccttcctgat tttccgcttt ccagcgttcg gcacgcagac gacgggcttc 1620
attctgcatg gttgtgctta ccagaccgga gatattgaca tcatatatgc cttgagcaac 1680
tgatagctgt cgctgtcaac tgtcactgta atacgctgct tcatagcata cctctttttg 1740
acatacttcg ggtatacata tcagtatata ttcttatacc gcaaaaatca gcgcgcaaat 1800
acgcatactg ttatctggct tttagtaagc cggatccacg cggcgtttac gccccgccct 1860
gccactcatc gcagtactgt tgtaattcat taagcattct gccgacatgg aagccatcac 1920
agacggcatg atgaacctga atcgccagcg gcatcagcac cttgtcgcct tgcgtataat 1980
atttgcccat ggtgaaaacg ggggcgaaga agttgtccat attggccacg tttaaatcaa 2040
aactggtgaa actcacccag ggattggctg agacgaaaaa catattctca ataaaccctt 2100
tagggaaata ggccaggttt tcaccgtaac acgccacatc ttgcgaatat atgtgtagaa 2160
actgccggaa atcgtcgtgg tattcactcc agagcgatga aaacgtttca gtttgctcat 2220
ggaaaacggt gtaacaaggg tgaacactat cccatatcac cagctcaccg tctttcattg 2280
ccatacggaa ttccggatga gcattcatca ggcgggcaag aatgtgaata aaggccggat 2340
aaaacttgtg cttatttttc tttacggtct ttaaaaaggc cgtaatatcc agctgaacgg 2400
tctggttata ggtacattga gcaactgact gaaatgcctc aaaatgttct ttacgatgcc 2460
attgggatat atcaacggtg gtatatccag tgattttttt ctccatttta gcttccttag 2520
ctcctgaaaa tctcgataac tcaaaaaata cgcccggtag tgatcttatt tcattatggt 2580
gaaagttgga acctcttacg tgccgatcaa cgtctcattt tcgccaaaag ttggcccagg 2640
gcttcccggt atcaacaggg acaccaggat ttatttattc tgcgaagtga tcttccgtca 2700
caggtattta ttcggcgcaa agtgcgtcgg gtgatgctgc caacttagtc gactacaggt 2760
cactaatacc atctaagtag ttgattcata gtgactggat atgttgtgtt ttacagtatt 2820
atgtagtctg ttttttatgc aaaatctaat ttaatatatt gatatttata tcattttacg 2880
tttctcgttc agctttcttg tacaaagttg gcattataag aaagcattgc ttatcaattt 2940
gttgcaacga acaggtcact atcagtcaaa ataaaatcat tatttgccat ccagctgata 3000
tcccctatag tgagtcgtat tacatggtca tagctgtttc ctggcagctc tggcccgtgt 3060
ctcaaaatct ctgatgttac attgcacaag ataaaataat atcatcatga acaataaaac 3120
tgtctgctta cataaacagt aatacaaggg gtgttatgag ccatattcaa cgggaaacgt 3180
cgaggccgcg attaaattcc aacatggatg ctgatttata tgggtataaa tgggctcgcg 3240
ataatgtcgg gcaatcaggt gcgacaatct atcgcttgta tgggaagccc gatgcgccag 3300
agttgtttct gaaacatggc aaaggtagcg ttgccaatga tgttacagat gagatggtca 3360
gactaaactg gctgacggaa tttatgcctc ttccgaccat caagcatttt atccgtactc 3420
ctgatgatgc atggttactc accactgcga tccccggaaa aacagcattc caggtattag 3480
aagaatatcc tgattcaggt gaaaatattg ttgatgcgct ggcagtgttc ctgcgccggt 3540
tgcattcgat tcctgtttgt aattgtcctt ttaacagcga tcgcgtattt cgtctcgctc 3600
aggcgcaatc acgaatgaat aacggtttgg ttgatgcgag tgattttgat gacgagcgta 3660
atggctggcc tgttgaacaa gtctggaaag aaatgcataa acttttgcca ttctcaccgg 3720
attcagtcgt cactcatggt gatttctcac ttgataacct tatttttgac gaggggaaat 3780
taataggttg tattgatgtt ggacgagtcg gaatcgcaga ccgataccag gatcttgcca 3840
tcctatggaa ctgcctcggt gagttttctc cttcattaca gaaacggctt tttcaaaaat 3900
atggtattga taatcctgat atgaataaat tgcagtttca tttgatgctc gatgagtttt 3960
tctaatcaga attggttaat tggttgtaac actggcagag cattacgctg acttgacggg 4020
acggcgcaag ctcatgacca aaatccctta acgtgagtta cgcgtcgttc cactgagcgt 4080
cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 4140
gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 4200
taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 4260
ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 4320
tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 4380
ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 4440
cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 4500
agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 4560
gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 4620
atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 4680
gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 4740
gctggccttt tgctcacatg tt 4762
<210> SEQ ID NO 4
<211> LENGTH: 16843
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pBC-yellow construct
<400> SEQUENCE: 4
ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60
aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120
aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180
ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240
cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 300
caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360
gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420
tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480
ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540
tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc 600
cttctcgaac cctcccggcc cgctaacgcg ggcctcccat ccccccaggg gctgcgcccc 660
tcggccgcga acggcctcac cccaaaaatg gcagcgctgg cagtccttgc cattgccggg 720
atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780
ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840
ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900
gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960
ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020
acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080
acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140
agataatata tcttttatat agaagatatc gccgtatgta aggatttcag ggggcaaggc 1200
ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga 1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta 1320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc 1380
agctccaccg attttgagaa cgacagcgac ttccgtccca gccgtgccag gtgctgcctc 1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt 1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag 1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc 1620
gcaacaaccg tcttccggag actgtcatac gcgtaaaaca gccagcgctg gcgcgattta 1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc 1740
tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga 1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa 1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt 1920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca 1980
ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc 2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca 2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg 2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat 2220
aattagcttc ttggggtatc tttaaatact gtagaaaaga ggaaggaaat aataaatggc 2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga 2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata 2400
tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga 2460
catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact ttgaacggca 2520
tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct cggaagagta 2580
tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca tcaggctctt 2640
tcactccatc gacatatcgg attgtcccta tacgaatagc ttagacagcc gcttagccga 2700
attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact gggaagaaga 2760
cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa agcccgaaga 2820
ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga aagatggcaa 2880
agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc 2940
cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt 3000
tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt tactggatga 3060
attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact 3120
tcttccgcat caagtgtttt ggctctcagg ccgaggccca cggcaagtat ttgggcaagg 3180
ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag gacggccaga 3240
cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc aaggcaccag 3300
gcgggtcaaa tcaggaataa gggcacattg ccccggcgtg agtcggggca atcccgcaag 3360
gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg 3420
ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg 3480
aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca 3540
gcgtgcaact ggctccccct gccctgcccg cgccatcggc cgccgtggag cgttcgcgtc 3600
gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta 3660
tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca 3720
agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt 3780
tcgatattgc gccgtggccg gacacgatgc gagcgatgcc aaacgacacg gcccgctctg 3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt 3900
tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg 3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga 4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt 4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg 4140
accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg 4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg 4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac 4320
ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc 4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag 4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg 4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg 4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc 4620
gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat 4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat 4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga 4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta 4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc 4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc 4980
cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat 5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt 5100
ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg 5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg 5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac 5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat 5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac 5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc 5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg 5520
agcgggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt 5580
ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc 5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt 5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta 5760
tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag 5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca 5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt 5940
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag 6000
tctgccgcct tacaacggct ctcccgctga cgccgtcccg gactgatggg ctgcctgtat 6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga 6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt 6180
taatgtactg gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc 6240
accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga 6300
aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc 6360
ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg 6420
actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cctgtatggc 6480
cgcattcgca aaacacacct agactagatt tgttttgcta acccaattga tattaattat 6540
atatgattaa tatttatatg tatatggatt tggttaatga aatgcatctg gttcatcaaa 6600
gaattataaa gacacgtgac attcatttag gataagaaat atggatgatc tctttctctt 6660
ttattcagat aactagtaat tacacataac acacaacttt gatgcccaca ttatagtgat 6720
tagcatgtca ctatgtgtgc atccttttat ttcatacatt aattaagttg gccaatccag 6780
aagatggaca agtctaggtt aaccatgtgg tacctacgcg ttcgaatatc catgggccgc 6840
ttcaggccag ggcgctgggg aaggcgatgg cgtgctcggt cagctgccac ttctggttct 6900
tggcgtcgct ccggtcctcc cgcagcagct tgtgctggat gaagtgccac tcgggcatct 6960
tgctgggcac gctcttggcc ttgtacacgg tgtcgaactg gcaccggtac cggccgccgt 7020
ccttcagcag caggtacatg ctcacgtcgc ccttcaggat gccctgctta ggcacgggca 7080
tgatcttctc gcagctggcc tcccagttgg tggtcatctt cttcatcacg gggccgtcgg 7140
cggggaagtt cacgccgttg aagatgctct tgtggtagat gcagttctcc ttcacgctca 7200
cggtgatgtc cacgttacag atgcacacgg cgccgtcctc gaacaggaag ctccggcccc 7260
aggtgtagcc ggcggggcag ctgttcttga agtagtccac gatgtcctgg gggtactcgg 7320
tgaagatccg gtcgccgtac ttgaagccgg cgctcaggat gtcctcgctg aagggcaggg 7380
ggccgccctc gatcacgcac aggttgatgg tctgcttgcc cttgaagggg tagccgatgc 7440
cctcgccggt gatcacgaac ttgtggccgt tcacgcagcc ctccatgtgg tacttcatgg 7500
tcatctcctc cttcaggccg tgcttgctgt gggccatggt ggcgaccggt gaattcgagc 7560
tcggtacccg gggatcctga gtaaaacaga ggagggtctc actaagttta tagagagact 7620
gagagagata aagggacacg tatgaagcgt ctgttttcgt ggtgtgacgt caaagtcatt 7680
ttgctctcta cgcgtgtctg tgtcggcttg atcttttttt ttgctttttg gaactcatgt 7740
cggtagtata tcttttattt attttttctt tttttccctt ttctttcaaa ctgatgtcgg 7800
tatgatattt attccatcct aaaatgtaac ttactattat tagtagtcgg tccatgtcta 7860
ttggcccatc atgtggtcat tttacgttta cgtcgtgtgg ctgtttatta taacaaacgg 7920
cacatccttc tcattcgaat tgtatttctc cttaatcgtt ctaataggta tgatctttta 7980
ttttatacgt aaaattaaaa ttgaatgatg tcaagaacga aaattaattt gtatttacaa 8040
aggagctaaa tattgtttat tcctctactg gtagaagata aaagaagtag atgaaataat 8100
gatcttacta gagaatattc ctcatttaca ctagtcaaat ggaaatcttg taaactttta 8160
caataattta tcctgaaaat atgaaaaaat agaagaaaat gtttacctcc tctctcctct 8220
taattcacct acgatcggtg cgggcctctt cgctattacg ccagctggcg aaagggggat 8280
gtgctgcaag gcgattaagt tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa 8340
cgacggccag tgaattcgag ctcggtaccc ggggatcctc tagagtcgac ctgcaggcat 8400
gcaagcttgt tgaaacatcc ctgaagtgtc tcattttatt ttatttattc tttgctgata 8460
aaaaaataaa ataaaagaag ctaagcacac ggtcaaccat tgctctactg ctaaaagggt 8520
tatgtgtagt gttttactgc ataaattatg cagcaaacaa gacaactcaa attaaaaaat 8580
ttcctttgct tgtttttttg ttgtctctga cttgactttc ttgtggaagt tggttgtata 8640
aggattggga cacaccattg tccttcttaa tttaatttta tttctttgct gataaaaaaa 8700
aaaaatttca tatagtgtta aataataatt tgttaaataa ccaaaaagtc aaatatgttt 8760
actctcgttt aaataattga gagtcgtcca gcaaggctaa acgattgtat agatttatga 8820
caatatttac ttttttatag ataaatgtta tattataata aatttatata catatattat 8880
atgttattta ttatttatta ttattttaaa tccttcaata ttttatcaaa ccaactcata 8940
attttttttt tatctgtaag aagcaataaa attaaataga cccactttaa ggatgatcca 9000
acctttatac agagtaagag agttcaaata gtaccctttc atatacatat caactaaaat 9060
attagaaata tcatggatca aaccttataa agacattaaa taagtggata agtataatat 9120
ataaatgggt agtatataat atataaatgg atacaaactt ctctctttat aattgttatg 9180
tctccttaac atcctaatat aatacataag tgggtaatat ataatatata aatggagaca 9240
aacttcttcc attataattg ttatgtcttc ttaacactta tgtctcgttc acaatgctaa 9300
agttagaatt gtttagaaag tcttatagta cacatttgtt tttgtactat ttgaagcatt 9360
ccataagccg tcacgattca gatgatttat aataataaga ggaaatttat catagaacaa 9420
taaggtgcat agatagagtg ttaatatatc ataacatcct ttgtttattc atagaagaag 9480
tgagatggag ctcagttatt atactgttac atggtcggat acaatattcc atgctctcca 9540
tgagctctta cacctacatg cattttagtt catacttcat gcacgtggcc atcacagcta 9600
gctgcagcta catatttaca ttttacaaca ccaggagaac tgccctgtta gtgcataaca 9660
atcagaagat ggccgtggct actcgagtta tcgaaccact ttgtacaaga aagctgaacg 9720
agaaacgtaa aatgatataa atatcaatat attaaattag attttgcata aaaaacagac 9780
tacataatac tgtaaaacac aacatatcca gtcactatgg tcgacctgca gactggctgt 9840
gtataaggga gcctgacatt tatattcccc agaacatcag gttaatggcg tttttgatgt 9900
cattttcgcg gtggctgaga tcagccactt cttccccgat aacggagacc ggcacactgg 9960
ccatatcggt ggtcatcatg cgccagcttt catccccgat atgcaccacc gggtaaagtt 10020
cacgggagac tttatctgac agcagacgtg cactggccag ggggatcacc atccgtcgcc 10080
cgggcgtgtc aataatatca ctctgtacat ccacaaacag acgataacgg ctctctcttt 10140
tataggtgta aaccttaaac tgcatttcac cagtccctgt tctcgtcagc aaaagagccg 10200
ttcatttcaa taaaccgggc gacctcagcc atcccttcct gattttccgc tttccagcgt 10260
tcggcacgca gacgacgggc ttcattctgc atggttgtgc ttaccagacc ggagatattg 10320
acatcatata tgccttgagc aactgatagc tgtcgctgtc aactgtcact gtaatacgct 10380
gcttcatagc acacctcttt ttgacatact tcgggtatac atatcagtat atattcttat 10440
accgcaaaaa tcagcgcgca aatacgcata ctgttatctg gcttttagta agccggatcc 10500
tctagattac gccccgccct gccactcatc gcagtactgt tgtaattcat taagcattct 10560
gccgacatgg aagccatcac agacggcatg atgaacctga atcgccagcg gcatcagcac 10620
cttgtcgcct tgcgtataat atttgcccat ggtgaaaacg ggggcgaaga agttgtccat 10680
attggccacg tttaaatcaa aactggtgaa actcacccag ggattggctg agacgaaaaa 10740
catattctca ataaaccctt tagggaaata ggccaggttt tcaccgtaac acgccacatc 10800
ttgcgaatat atgtgtagaa actgccggaa atcgtcgtgg tattcactcc agagcgatga 10860
aaacgtttca gtttgctcat ggaaaacggt gtaacaaggg tgaacactat cccatatcac 10920
cagctcaccg tctttcattg ccatacggaa ttccggatga gcattcatca ggcgggcaag 10980
aatgtgaata aaggccggat aaaacttgtg cttatttttc tttacggtct ttaaaaaggc 11040
cgtaatatcc agctgaacgg tctggttata ggtacattga gcaactgact gaaatgcctc 11100
aaaatgttct ttacgatgcc attgggatat atcaacggtg gtatatccag tgattttttt 11160
ctccatttta gcttccttag ctcctgaaaa tctcgccgga tcctaactca aaatccacac 11220
attatacgag ccggaagcat aaagtgtaaa gcctggggtg cctaatgcgg ccgccatagt 11280
gactggatat gttgtgtttt acagtattat gtagtctgtt ttttatgcaa aatctaattt 11340
aatatattga tatttatatc attttacgtt tctcgttcag cttttttgta caaacttgtt 11400
tgataaccgg tactagtgtg cacgtcgagc gtgtcctctc caaatgaaat gaacttcctt 11460
atatagagga agggtcttgc gaaggatagt gggattgtgc gtcatccctt acgtcagtgg 11520
agatgtcaca tcaatccact tgctttgaag acgtggttgg aacgtcttct ttttccacga 11580
tgctcctcgt gggtgggggt ccatctttgg gaccactgtc ggcagaggca tcttgaatga 11640
tagcctttcc tttatcgcaa tgatggcatt tgtaggagcc accttccttt tctactgtcc 11700
tttcgatgaa gtgacagata gctgggcaat ggaatccgag gaggtttccc gaaattatcc 11760
tttgttgaaa agtctcaata gccctttggt cttctgagac tgtatctttg acatttttgg 11820
agtagaccag agtgtcgtgc tccaccatgt tgacgaagat tttcttcttg tcattgagtc 11880
gtaaaagact ctgtatgaac tgttcgccag tcttcacggc gagttctgtt agatcctcga 11940
tttgaatctt agactccatg catggcctta gattcagtag gaactacctt tttagagact 12000
ccaatctcta ttacttgcct tggtttatga agcaagcctt gaatcgtcca tactggaata 12060
gtacttctga tcttgagaaa tatgtctttc tctgtgttct tgatgcaatt agtcctgaat 12120
cttttgactg catctttaac cttcttggga aggtatttga tctcctggag attgttactc 12180
gggtagatcg tcttgatgag acctgctgcg taggcctctc taaccatctg tgggtcagca 12240
ttctttctga aattgaagag gctaaccttc tcattatcag tggtgaacat agtgtcgtca 12300
ccttcacctt cgaacttcct tcctagatcg taaagataga ggaaatcgtc cattgtaatc 12360
tccggggcaa aggagatctc ttttggggct ggatcactgc tgggcctttt ggttcctagc 12420
gtgagccagt gggctttttg ctttggtggg cttgttaggg ccttagcaaa gctcttgggc 12480
ttgagttgag cttctccttt ggggatgaag ttcaacctgt ctgtttgctg acttgttgtg 12540
tacgcgtcag ctgctgctct tgcctctgta atagtggcaa atttcttgtg tgcaactccg 12600
ggaacgccgt ttgttgccgc ctttgtacaa ccccagtcat cgtatatacc ggcatgtgga 12660
ccgttataca caacgtagta gttgatatga gggtgttgaa tacccgattc tgctctgaga 12720
ggagcaactg tgctgttaag ctcagatttt tgtgggattg gaattggatc ctctagagca 12780
aagcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc cgctcacaat 12840
tccacacaac atacgagccg gaagcataaa gtgtaaagcc tggggtgcct aatgagtgag 12900
ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg 12960
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggccaaa 13020
gacaaaaggg cgacattcaa ccgattgagg gagggaaggt aaatattgac ggaaattatt 13080
cattaaaggt gaattatcac cgtcaccgac ttgagccatt tgggaattag agccagcaaa 13140
atcaccagta gcaccattac cattagcaag gccggaaacg tcaccaatga aaccatcatc 13200
tagtaacata gatgacaccg cgcgcgataa tttatcctag tttgcgcgct atattttgtt 13260
ttctatcgcg tattaaatgt ataattgcgg gactctaatc ataaaaaccc atctcataaa 13320
taacgtcatg cattacatgt taattattac atgcttaacg taattcaaca gaaattatat 13380
gataatcatc gcaagaccgg caacaggatt caatcttaag aaactttatt gccaaatgtt 13440
tgaacgatct gcttcgacgc actccttctt taggtacgga ctagatctcg gtgacgggca 13500
ggaccggacg gggcggtacc ggcaggctga agtccagctg ccagaaaccc acgtcatgcc 13560
agttcccgtg cttgaagccg gccgcccgca gcatgccgcg gggggcatat ccgagcgcct 13620
cgtgcatgcg cacgctcggg tcgttgggca gcccgatgac agcgaccacg ctcttgaagc 13680
cctgtgcctc cagggacttc agcaggtggg tgtagagcgt ggagcccagt cccgtccgct 13740
ggtggcgggg ggagacgtac acggtcgact cggccgtcca gtcgtaggcg ttgcgtgcct 13800
tccaggggcc cgcgtaggcg atgccggcga cctcgccgtc cacctcggcg acgagccagg 13860
gatagcgctc ccgcagacgg acgaggtcgt ccgtccactc ctgcggttcc tgcggctcgg 13920
tacggaagtt gaccgtgctt gtctcgatgt agtggttgac gatggtgcag accgccggca 13980
tgtccgcctc ggtggcacgg cggatgtcgg ccgggcgtcg ttctgggctc atggatctgg 14040
attgagagtg aatatgagac tctaattgga taccgagggg aatttatgga acgtcagtgg 14100
agcatttttg acaagaaata tttgctagct gatagtgacc ttaggcgact tttgaacgcg 14160
caataatggt ttctgacgta tgtgcttagc tcattaaact ccagaaaccc gcggctgagt 14220
ggctccttca acgttgcggt tctgtcagtt ccaaacgtaa aacggcttgt cccgcgtcat 14280
cggcgggggt cataacgtga ctcccttaat tctccgctca tgatcagatt gtcgtttccc 14340
gccttcagtt taaactatca gtgtttgaca ggatatattg gcgggtaaac ctaagagaaa 14400
agagcgttta ttagaataat cggatattta aaagggcgtg aaaaggttta tccgttcgtc 14460
catttgtatg tgcatgccaa ccacagggtt ccccagatct ggcgccggcc agcgagacga 14520
gcaagattgg ccgccgcccg aaacgatccg acagcgcgcc cagcacaggt gcgcaggcaa 14580
attgcaccaa cgcatacagc gccagcagaa tgccatagtg ggcggtgacg tcgttcgagt 14640
gaaccagatc gcgcaggagg cccggcagca ccggcataat caggccgatg ccgacagcgt 14700
cgagcgcgac agtgctcaga attacgatca ggggtatgtt gggtttcacg tctggcctcc 14760
ggaccagcct ccgctggtcc gattgaacgc gcggattctt tatcactgat aagttggtgg 14820
acatattatg tttatcagtg ataaagtgtc aagcatgaca aagttgcagc cgaatacagt 14880
gatccgtgcc gccctggacc tgttgaacga ggtcggcgta gacggtctga cgacacgcaa 14940
actggcggaa cggttggggg ttcagcagcc ggcgctttac tggcacttca ggaacaagcg 15000
ggcgctgctc gacgcactgg ccgaagccat gctggcggag aatcatacgc attcggtgcc 15060
gagagccgac gacgactggc gctcatttct gatcgggaat gcccgcagct tcaggcaggc 15120
gctgctcgcc taccgcgatg gcgcgcgcat ccatgccggc acgcgaccgg gcgcaccgca 15180
gatggaaacg gccgacgcgc agcttcgctt cctctgcgag gcgggttttt cggccgggga 15240
cgccgtcaat gcgctgatga caatcagcta cttcactgtt ggggccgtgc ttgaggagca 15300
ggccggcgac agcgatgccg gcgagcgcgg cggcaccgtt gaacaggctc cgctctcgcc 15360
gctgttgcgg gccgcgatag acgccttcga cgaagccggt ccggacgcag cgttcgagca 15420
gggactcgcg gtgattgtcg atggattggc gaaaaggagg ctcgttgtca ggaacgttga 15480
aggaccgaga aagggtgacg attgatcagg accgctgccg gagcgcaacc cactcactac 15540
agcagagcca tgtagacaac atcccctccc cctttccacc gcgtcagacg cccgtagcag 15600
cccgctacgg gctttttcat gccctgccct agcgtccaag cctcacggcc gcgctcggcc 15660
tctctggcgg ccttctggcg ctcttccgct tcctcgctca ctgactcgct gcgctcggtc 15720
gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa 15780
tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt 15840
aaaaaggccg cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa 15900
aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt 15960
ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg 16020
tccgcctttc tcccttcggg aagcgtggcg cttttccgct gcataaccct gcttcggggt 16080
cattatagcg attttttcgg tatatccatc ctttttcgca cgatatacag gattttgcca 16140
aagggttcgt gtagactttc cttggtgtat ccaacggcgt cagccgggca ggataggtga 16200
agtaggccca cccgcgagcg ggtgttcctt cttcactgtc ccttattcgc acctggcggt 16260
gctcaacggg aatcctgctc tgcgaggctg gccggctacc gccggcgtaa cagatgaggg 16320
caagcggatg gctgatgaaa ccaagccaac caggaagggc agcccaccta tcaaggtgta 16380
ctgccttcca gacgaacgaa gagcgattga ggaaaaggcg gcggcggccg gcatgagcct 16440
gtcggcctac ctgctggccg tcggccaggg ctacaaaatc acgggcgtcg tggactatga 16500
gcacgtccgc gagctggccc gcatcaatgg cgacctgggc cgcctgggcg gcctgctgaa 16560
actctggctc accgacgacc cgcgcacggc gcggttcggt gatgccacga tcctcgccct 16620
gctggcgaag atcgaagaga agcaggacga gcttggcaag gtcatgatgg gcgtggtccg 16680
cccgagggca gagccatgac ttttttagcc gctaaaacgg ccggggggtg cgcgtgattg 16740
ccaagcacgt ccccatgcgc tccatcaaga agagcgactt cgcggagctg gtgaagtaca 16800
tcaccgacga gcaaggcaag accgagcgcc tttgcgacgc tca 16843
<210> SEQ ID NO 5
<211> LENGTH: 9142
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PHP27840 construct
<400> SEQUENCE: 5
ctagttatct gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca 60
cgtgtcttta taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata 120
taaatattaa tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt 180
gtgttttgcg aattcgatat caagcttgat gggtaccggc gcgcccgatc atccggatat 240
agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa ggggttatgc 300
tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt tgttagcagc 360
cggatcgatc caagctgtac ctcactattc ctttgccctc ggacgagtgc tggggcgtcg 420
gtttccacta tcggcgagta cttctacaca gccatcggtc cagacggccg cgcttctgcg 480
ggcgatttgt gtacgcccga cagtcccggc tccggatcgg acgattgcgt cgcatcgacc 540
ctgcgcccaa gctgcatcat cgaaattgcc gtcaaccaag ctctgataga gttggtcaag 600
accaatgcgg agcatatacg cccggagccg cggcgatcct gcaagctccg gatgcctccg 660
ctcgaagtag cgcgtctgct gctccataca agccaaccac ggcctccaga agaagatgtt 720
ggcgacctcg tattgggaat ccccgaacat cgcctcgctc cagtcaatga ccgctgttat 780
gcggccattg tccgtcagga cattgttgga gccgaaatcc gcgtgcacga ggtgccggac 840
ttcggggcag tcctcggccc aaagcatcag ctcatcgaga gcctgcgcga cggacgcact 900
gacggtgtcg tccatcacag tttgccagtg atacacatgg ggatcagcaa tcgcgcatat 960
gaaatcacgc catgtagtgt attgaccgat tccttgcggt ccgaatgggc cgaacccgct 1020
cgtctggcta agatcggccg cagcgatcgc atccatagcc tccgcgaccg gctgcagaac 1080
agcgggcagt tcggtttcag gcaggtcttg caacgtgaca ccctgtgcac ggcgggagat 1140
gcaataggtc aggctctcgc tgaattcccc aatgtcaagc acttccggaa tcgggagcgc 1200
ggccgatgca aagtgccgat aaacataacg atctttgtag aaaccatcgg cgcagctatt 1260
tacccgcagg acatatccac gccctcctac atcgaagctg aaagcacgag attcttcgcc 1320
ctccgagagc tgcatcaggt cggagacgct gtcgaacttt tcgatcagaa acttctcgac 1380
agacgtcgcg gtgagttcag gcttttccat gggtatatct ccttcttaaa gttaaacaaa 1440
attatttcta gagggaaacc gttgtggtct ccctatagtg agtcgtatta atttcgcggg 1500
atcgagatct gatcaacctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc 1560
gtattgggcg ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc 1620
ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 1680
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1740
cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 1800
caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 1860
gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc 1920
tcccttcggg aagcgtggcg ctttctcaat gctcacgctg taggtatctc agttcggtgt 1980
aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg 2040
ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg 2100
cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 2160
tgaagtggtg gcctaactac ggctacacta gaaggacagt atttggtatc tgcgctctgc 2220
tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg 2280
ctggtagcgg tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc 2340
aagaagatcc tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt 2400
aagggatttt ggtcatgaca ttaacctata aaaataggcg tatcacgagg ccctttcgtc 2460
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 2520
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 2580
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 2640
accatatgga catattgtcg ttagaacgcg gctacaatta atacataacc ttatgtatca 2700
tacacatacg atttaggtga cactatagaa cggcgcgcca agctgggtct agaactagaa 2760
acgtgatgcc acttgttatt gaagtcgatt acagcatcta ttctgtttta ctatttataa 2820
ctttgccatt tctgactttt gaaaactatc tctggatttc ggtatcgctt tgtgaagatc 2880
gagcaaaaga gacgttttgt ggacgcaatg gtccaaatcc gttctacatg aacaaattgg 2940
tcacaatttc cactaaaagt aaataaatgg caagttaaaa aaggaatatg cattttactg 3000
attgcctagg tgagctccaa gagaagttga atctacacgt ctaccaaccg ctaaaaaaag 3060
aaaaacattg aatatgtaac ctgattccat tagcttttga cttcttcaac agattctcta 3120
cttagatttc taacagaaat attattacta gcacatcatt ttcagtctca ctacagcaaa 3180
aaatccaacg gcacaataca gacaacagga gatatcagac tacagagata gatagatgct 3240
actgcatgta gtaagttaaa taaaaggaaa ataaaatgtc ttgctaccaa aactactaca 3300
gactatgatg ctcaccacag gccaaatcct gcaactagga cagcattatc ttatatatat 3360
tgtacaaaac aagcatcaag gaacatttgg tctaggcaat cagtacctcg ttctaccatc 3420
accctcagtt atcacatcct tgaaggatcc attactggga atcatcggca acacatgctc 3480
ctgatggggc acaatgacat caagaaggta ggggccaggg gtgtccaaca ttctctgaat 3540
tgccgctcta agctcttcct tcttcgtcac tcgcgctgcc ggtatcccac aagcatcagc 3600
aaacttgagc atgtttggga atatctcgct ctcgctagac ggatctccaa gataggtgtg 3660
agctctattg gacttgtaga acctatcctc caactgaacc accataccca aatgctgatt 3720
gttcaacaac aatatcttaa ctgggagatt ctccactctt atagtggcca actcctgaac 3780
attcatgatg aaactaccat ccccatcaat gtcaaccaca acagccccag ggttagcaac 3840
agcagcacca atagccgcag gcaatccaaa acccatggct ccaagacccc ctgaggtcaa 3900
ccactgcctc ggtctcttgt acttgtaaaa ctgcgcagcc cacatttgat gctgcccaac 3960
cccagtacta acaatagcat ctccattagt caactcatca agaacctcga tagcatgctg 4020
cggagaaatc gcgtcctgga atgtcttgta acccaatgga aacttgtgtt tctgcacatt 4080
aatctcttct ctccaacctc caagatcaaa cttaccctcc actcctttct cctccaaaat 4140
catattaatt cccttcaagg ccaacttcaa atccgcgcaa accgacacgt gcgcctgctt 4200
gttcttccca atctcggcag aatcaatatc aatgtgaaca atcttagccc tactagcaaa 4260
agcctcaagc ttcccagtaa cacggtcatc aaaccttacc ccaaaggcaa gcaacaaatc 4320
actattgtca acagcatagt tagcataaac agtaccatgc atacccagca tctgaaggga 4380
atattcatca ccaataggaa aagttccaag acccattaaa gtgctagcaa cgggaatacc 4440
agtgagttca acaaagcgcc tcaattcagc actggaattc aaactgccac cgccgacgta 4500
gagaacgggc ttttgggcct ccatgatgag tctgacaatg tgttccaatt gggcctcggc 4560
ggggggcctg ggcagcctgg cgaggtaacc ggggaggtta acgggctcgt cccaattagg 4620
cacggcgagt tgctgctgaa cgtctttggg aatgtcgatg aggaccggac cggggcggcc 4680
ggaggtggcg acgaagaaag cctcggcgac gacgcggggg atgtcgtcga cgtcgaggat 4740
gaggtagttg tgcttcgtga tggatctgct cacctccacg atcggggttt cttggaaggc 4800
gtcggtgccg atcatccggc gggcgacctg gccggtgatg gcgacgactg ggacgctgtc 4860
cattaaagcg tcggcgaggc cgctcacgag gttggtggcg ccggggccgg aggtggcaat 4920
gcagacgccg gggaggccgg aggaacgcgc gtagccttcg gcggcgaaga cgccgccctg 4980
ctcgtggcgc gggagcacgt tgcggatggc ggcggagcgc gtgagcgcct ggtggatctc 5040
catcgacgca ccgccggggt acgcgaacac cgtcgtcacg ccctgcctct ccagcgcctc 5100
cacaaggatg tccgcgccct tgcgaggttc gccggaggcg aaccgtgaca cgaagggctc 5160
cgtggtcggc gcttccttgg tgaagggcgc cgccgtgggg ggtttggaga tggaacattt 5220
gattttgaga gcgtggttgg gtttggtgag ggtttgatga gagagaggga gggtggatct 5280
agtaatgcgt ttggggaagg tggggtgtga agaggaagaa gagaatcggg tggttctgga 5340
agcggtggcc gccattgtgt tgtgtggcat ggttatactt caaaaactgc acaacaagcc 5400
tagagttagt acctaaacag taaatttaca acagagagca aagacacatg caaaaatttc 5460
agccataaaa aaagttataa tagaatttaa agcaaaagtt tcatttttta aacatatata 5520
caaacaaact ggatttgaag gaagggatta attcccctgc tcaaagtttg aattcctatt 5580
gtgacctata ctcgaataaa attgaagcct aaggaatgta tgagaaacaa gaaaacaaaa 5640
caaaactaca gacaaacaag tacaattaca aaattcgcta aaattctgta atcaccaaac 5700
cccatctcag tcagcacaag gcccaaggtt tattttgaaa taaaaaaaaa gtgattttat 5760
ttctcataag ctaaaagaaa gaaaggcaat tatgaaatga tttcgactag atctgaaagt 5820
caaacgcgta ttccgcagat attaaagaaa gagtagagtt tcacatggat cctagatgga 5880
cccagttgag gaaaaagcaa ggcaaagcaa accagaagtg caagatccga aattgaacca 5940
cggaatctag gatttggtag agggagaaga aaagtacctt gagaggtaga agagaagaga 6000
agagcagaga gatatatgaa cgagtgtgtc ttggtctcaa ctctgaagcg atacgagttt 6060
agaggggagc attgagttcc aatttatagg gaaaccgggt ggcaggggtg agttaatgac 6120
ggaaaagccc ctaagtaacg agattggatt gtgggttaga ttcaaccgtt tgcatccgcg 6180
gcttagattg gggaagtcag agtgaatctc aaccgttgac tgagttgaaa attgaatgta 6240
gcaaccaatt gagccaaccc cagcctttgc cctttgattt tgatttgttt gttgcatact 6300
ttttatttgt cttctggttc tgactctctt tctctcgttt caatgccagg ttgcctactc 6360
ccacaccact cacaagaaga ttctactgtt agtattaaat attttttaat gtattaaatg 6420
atgaatgctt ttgtaaacag aacaagacta tgtctaataa gtgtcttgca acatttttta 6480
agaaattaaa aaaaatatat ttattatcaa aatcaaatgt atgaaaaatc atgaataata 6540
taattttata cattttttta aaaaatcttt taatttctta attaatatct taaaaataat 6600
gattaatatt taacccaaaa taattagtat gattggtaag gaagatatcc atgttatgtt 6660
tggatgtgag tttgatctag agcaaagctt actagagtcg acctgcagcc cctccaccgc 6720
ggtggcggcc gctctagaga tccgtcaaca tggtggagca cgacactctc gtctactcca 6780
agaatatcaa agatacagtc tcagaagacc aaagggctat tgagactttt caacaaaggg 6840
taatatcggg aaacctcctc ggattccatt gcccagctat ctgtcacttc atcaaaagga 6900
cagtagaaaa ggaaggtggc acctacaaat gccatcattg cgataaagga aaggctatcg 6960
ttcaagatgc ctctgccgac agtggtccca aagatggacc cccacccacg aggagcatcg 7020
tggaaaaaga agacgttcca accacgtctt caaagcaagt ggattgatgt gatgatccta 7080
tgcgtatggt atgacgtgtg ttcaagatga tgacttcaaa cctacctatg acgtatggta 7140
tgacgtgtgt cgactgatga cttagatcca ctcgagcggc tataaatacg tacctacgca 7200
ccctgcgcta ccatccctag agctgcagct tatttttaca acaattacca acaacaacaa 7260
acaacaaaca acattacaat tactatttac aattacagtc gacccatcaa caagtttgta 7320
caaaaaagct gaacgagaaa cgtaaaatga tataaatatc aatatattaa attagatttt 7380
gcataaaaaa cagactacat aatactgtaa aacacaacat atccagtcat attggcggcc 7440
gcattaggca ccccaggctt tacactttat gcttccggct cgtataatgt gtggattttg 7500
agttaggatc cgtcgagatt ttcaggagct aaggaagcta aaatggagaa aaaaatcact 7560
ggatatacca ccgttgatat atcccaatgg catcgtaaag aacattttga ggcatttcag 7620
tcagttgctc aatgtaccta taaccagacc gttcagctgg atattacggc ctttttaaag 7680
accgtaaaga aaaataagca caagttttat ccggccttta ttcacattct tgcccgcctg 7740
atgaatgctc atccggaatt ccgtatggca atgaaagacg gtgagctggt gatatgggat 7800
agtgttcacc cttgttacac cgttttccat gagcaaactg aaacgttttc atcgctctgg 7860
agtgaatacc acgacgattt ccggcagttt ctacacatat attcgcaaga tgtggcgtgt 7920
tacggtgaaa acctggccta tttccctaaa gggtttattg agaatatgtt tttcgtctca 7980
gccaatccct gggtgagttt caccagtttt gatttaaacg tggccaatat ggacaacttc 8040
ttcgcccccg ttttcaccat gggcaaatat tatacgcaag gcgacaaggt gctgatgccg 8100
ctggcgattc aggttcatca tgccgtttgt gatggcttcc atgtcggcag aatgcttaat 8160
gaattacaac agtactgcga tgagtggcag ggcggggcgt aaagatctgg atccggctta 8220
ctaaaagcca gataacagta tgcgtatttg cgcgctgatt tttgcggtat aagaatatat 8280
actgatatgt atacccgaag tatgtcaaaa agaggtatgc tatgaagcag cgtattacag 8340
tgacagttga cagcgacagc tatcagttgc tcaaggcata tatgatgtca atatctccgg 8400
tctggtaagc acaaccatgc agaatgaagc ccgtcgtctg cgtgccgaac gctggaaagc 8460
ggaaaatcag gaagggatgg ctgaggtcgc ccggtttatt gaaatgaacg gctcttttgc 8520
tgacgagaac aggggctggt gaaatgcagt ttaaggttta cacctataaa agagagagcc 8580
gttatcgtct gtttgtggat gtacagagtg atattattga cacgcccggg cgacggatgg 8640
tgatccccct ggccagtgca cgtctgctgt cagataaagt ctcccgtgaa ctttacccgg 8700
tggtgcatat cggggatgaa agctggcgca tgatgaccac cgatatggcc agtgtgccgg 8760
tctccgttat cggggaagaa gtggctgatc tcagccaccg cgaaaatgac atcaaaaacg 8820
ccattaacct gatgttctgg ggaatataaa tgtcaggctc ccttatacac agccagtctg 8880
caggtcgacc atagtgactg gatatgttgt gttttacagt attatgtagt ctgtttttta 8940
tgcaaaatct aatttaatat attgatattt atatcatttt acgtttctcg ttcagctttc 9000
ttgtacaaag tggttgataa cctagacttg tccatcttct ggattggcca acttaattaa 9060
tgtatgaaat aaaaggatgc acacatagtg acatgctaat cactataatg tgggcatcaa 9120
agttgtgtgt tatgtgtaat ta 9142
<210> SEQ ID NO 6
<211> LENGTH: 49911
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PHP23236 construct
<400> SEQUENCE: 6
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60
taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120
atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180
gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240
ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300
caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360
gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420
ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480
tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta 540
aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600
ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660
cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720
ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780
gcggcctcct cctcctctca cggcacggca gctacggggg attcctttcc caccgctcct 840
tcgctttccc ttcctcgccc gccgtaataa atagacaccc cctccacacc ctctttcccc 900
aacctcgtgt tgttcggagc gcacacacac acaaccagat ctcccccaaa tccacccgtc 960
ggcacctccg cttcaaggta cgccgctcgt cctccccccc cccccctctc taccttctct 1020
agatcggcgt tccggtccat ggttagggcc cggtagttct acttctgttc atgtttgtgt 1080
tagatccgtg tttgtgttag atccgtgctg ctagcgttcg tacacggatg cgacctgtac 1140
gtcagacacg ttctgattgc taacttgcca gtgtttctct ttggggaatc ctgggatggc 1200
tctagccgtt ccgcagacgg gatcgatttc atgatttttt ttgtttcgtt gcatagggtt 1260
tggtttgccc ttttccttta tttcaatata tgccgtgcac ttgtttgtcg ggtcatcttt 1320
tcatgctttt ttttgtcttg gttgtgatga tgtggtctgg ttgggcggtc gttctagatc 1380
ggagtagaat tctgtttcaa actacctggt ggatttatta attttggatc tgtatgtgtg 1440
tgccatacat attcatagtt acgaattgaa gatgatggat ggaaatatcg atctaggata 1500
ggtatacatg ttgatgcggg ttttactgat gcatatacag agatgctttt tgttcgcttg 1560
gttgtgatga tgtggtgtgg ttgggcggtc gttcattcgt tctagatcgg agtagaatac 1620
tgtttcaaac tacctggtgt atttattaat tttggaactg tatgtgtgtg tcatacatct 1680
tcatagttac gagtttaaga tggatggaaa tatcgatcta ggataggtat acatgttgat 1740
gtgggtttta ctgatgcata tacatgatgg catatgcagc atctattcat atgctctaac 1800
cttgagtacc tatctattat aataaacaag tatgttttat aattattttg atcttgatat 1860
acttggatga tggcatatgc agcagctata tgtggatttt tttagccctg ccttcatacg 1920
ctatttattt gcttggtact gtttcttttg tcgatgctca ccctgttgtt tggtgttact 1980
tctgcaggtc gactctagag gatccacaag tttgtacaaa aaagctgaac gagaaacgta 2040
aaatgatata aatatcaata tattaaatta gattttgcat aaaaaacaga ctacataata 2100
ctgtaaaaca caacatatcc agtcactatg gcggccgcat taggcacccc aggctttaca 2160
ctttatgctt ccggctcgta taatgtgtgg attttgagtt aggatttaaa tacgcgttga 2220
tccggcttac taaaagccag ataacagtat gcgtatttgc gcgctgattt ttgcggtata 2280
agaatatata ctgatatgta tacccgaagt atgtcaaaaa gaggtatgct atgaagcagc 2340
gtattacagt gacagttgac agcgacagct atcagttgct caaggcatat atgatgtcaa 2400
tatctccggt ctggtaagca caaccatgca gaatgaagcc cgtcgtctgc gtgccgaacg 2460
ctggaaagcg gaaaatcagg aagggatggc tgaggtcgcc cggtttattg aaatgaacgg 2520
ctcttttgct gacgagaaca ggggctggtg aaatgcagtt taaggtttac acctataaaa 2580
gagagagccg ttatcgtctg tttgtggatg tacagagtga tatcattgac acgcccggtc 2640
gacggatggt gatccccctg gccagtgcac gtctgctgtc agataaagtc tcccgtgaac 2700
tttacccggt ggtgcatatc ggggatgaaa gctggcgcat gatgaccacc gatatggcca 2760
gtgtgccggt ctccgttatc ggggaagaag tggctgatct cagccaccgc gaaaatgaca 2820
tcaaaaacgc cattaacctg atgttctggg gaatataaat gtcaggctcc cttatacaca 2880
gccagtctgc aggtcgacca tagtgactgg atatgttgtg ttttacagta ttatgtagtc 2940
tgttttttat gcaaaatcta atttaatata ttgatattta tatcatttta cgtttctcgt 3000
tcagctttct tgtacaaagt ggtgttaacc tagacttgtc catcttctgg attggccaac 3060
ttaattaatg tatgaaataa aaggatgcac acatagtgac atgctaatca ctataatgtg 3120
ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct gaataaaaga gaaagagatc 3180
atccatattt cttatcctaa atgaatgtca cgtgtcttta taattctttg atgaaccaga 3240
tgcatttcat taaccaaatc catatacata taaatattaa tcatatataa ttaatatcaa 3300
ttgggttagc aaaacaaatc tagtctaggt gtgttttgcg aattgcggcc gccaccgcgg 3360
tggagctcga attccggtcc gggtcacctt tgtccaccaa gatggaactg cggccgctca 3420
ttaattaagt caggcgcgcc tctagttgaa gacacgttca tgtcttcatc gtaagaagac 3480
actcagtagt cttcggccag aatggccatc tggattcagc aggcctagaa ggccatttaa 3540
atcctgagga tctggtcttc ctaaggaccc gggatatcgg accgattaaa ctttaattcg 3600
gtccgaagct tgcatgcctg cagtgcagcg tgacccggtc gtgcccctct ctagagataa 3660
tgagcattgc atgtctaagt tataaaaaat taccacatat tttttttgtc acacttgttt 3720
gaagtgcagt ttatctatct ttatacatat atttaaactt tactctacga ataatataat 3780
ctatagtact acaataatat cagtgtttta gagaatcata taaatgaaca gttagacatg 3840
gtctaaagga caattgagta ttttgacaac aggactctac agttttatct ttttagtgtg 3900
catgtgttct cctttttttt tgcaaatagc ttcacctata taatacttca tccattttat 3960
tagtacatcc atttagggtt tagggttaat ggtttttata gactaatttt tttagtacat 4020
ctattttatt ctattttagc ctctaaatta agaaaactaa aactctattt tagttttttt 4080
atttaataat ttagatataa aatagaataa aataaagtga ctaaaaatta aacaaatacc 4140
ctttaagaaa ttaaaaaaac taaggaaaca tttttcttgt ttcgagtaga taatgccagc 4200
ctgttaaacg ccgtcgacga gtctaacgga caccaaccag cgaaccagca gcgtcgcgtc 4260
gggccaagcg aagcagacgg cacggcatct ctgtcgctgc ctctggaccc ctctcgagag 4320
ttccgctcca ccgttggact tgctccgctg tcggcatcca gaaattgcgt ggcggagcgg 4380
cagacgtgag ccggcacggc aggcggcctc ctcctcctct cacggcaccg gcagctacgg 4440
gggattcctt tcccaccgct ccttcgcttt cccttcctcg cccgccgtaa taaatagaca 4500
ccccctccac accctctttc cccaacctcg tgttgttcgg agcgcacaca cacacaacca 4560
gatctccccc aaatccaccc gtcggcacct ccgcttcaag gtacgccgct cgtcctcccc 4620
cccccccctc tctaccttct ctagatcggc gttccggtcc atgcatggtt agggcccggt 4680
agttctactt ctgttcatgt ttgtgttaga tccgtgtttg tgttagatcc gtgctgctag 4740
cgttcgtaca cggatgcgac ctgtacgtca gacacgttct gattgctaac ttgccagtgt 4800
ttctctttgg ggaatcctgg gatggctcta gccgttccgc agacgggatc gatttcatga 4860
ttttttttgt ttcgttgcat agggtttggt ttgccctttt cctttatttc aatatatgcc 4920
gtgcacttgt ttgtcgggtc atcttttcat gctttttttt gtcttggttg tgatgatgtg 4980
gtctggttgg gcggtcgttc tagatcggag tagaattctg tttcaaacta cctggtggat 5040
ttattaattt tggatctgta tgtgtgtgcc atacatattc atagttacga attgaagatg 5100
atggatggaa atatcgatct aggataggta tacatgttga tgcgggtttt actgatgcat 5160
atacagagat gctttttgtt cgcttggttg tgatgatgtg gtgtggttgg gcggtcgttc 5220
attcgttcta gatcggagta gaatactgtt tcaaactacc tggtgtattt attaattttg 5280
gaactgtatg tgtgtgtcat acatcttcat agttacgagt ttaagatgga tggaaatatc 5340
gatctaggat aggtatacat gttgatgtgg gttttactga tgcatataca tgatggcata 5400
tgcagcatct attcatatgc tctaaccttg agtacctatc tattataata aacaagtatg 5460
ttttataatt attttgatct tgatatactt ggatgatggc atatgcagca gctatatgtg 5520
gattttttta gccctgcctt catacgctat ttatttgctt ggtactgttt cttttgtcga 5580
tgctcaccct gttgtttggt gttacttctg caggtcgact ttaacttagc ctaggatcca 5640
cacgacacca tgtcccccga gcgccgcccc gtcgagatcc gcccggccac cgccgccgac 5700
atggccgccg tgtgcgacat cgtgaaccac tacatcgaga cctccaccgt gaacttccgc 5760
accgagccgc agaccccgca ggagtggatc gacgacctgg agcgcctcca ggaccgctac 5820
ccgtggctcg tggccgaggt ggagggcgtg gtggccggca tcgcctacgc cggcccgtgg 5880
aaggcccgca acgcctacga ctggaccgtg gagtccaccg tgtacgtgtc ccaccgccac 5940
cagcgcctcg gcctcggctc caccctctac acccacctcc tcaagagcat ggaggcccag 6000
ggcttcaagt ccgtggtggc cgtgatcggc ctcccgaacg acccgtccgt gcgcctccac 6060
gaggccctcg gctacaccgc ccgcggcacc ctccgcgccg ccggctacaa gcacggcggc 6120
tggcacgacg tcggcttctg gcagcgcgac ttcgagctgc cggccccgcc gcgcccggtg 6180
cgcccggtga cgcagatctg agtcgaaacc tagacttgtc catcttctgg attggccaac 6240
ttaattaatg tatgaaataa aaggatgcac acatagtgac atgctaatca ctataatgtg 6300
ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct gaataaaaga gaaagagatc 6360
atccatattt cttatcctaa atgaatgtca cgtgtcttta taattctttg atgaaccaga 6420
tgcatttcat taaccaaatc catatacata taaatattaa tcatatataa ttaatatcaa 6480
ttgggttagc aaaacaaatc tagtctaggt gtgttttgcg aattgcggcc gccaccgcgg 6540
tggagctcga attcattccg attaatcgtg gcctcttgct cttcaggatg aagagctatg 6600
tttaaacgtg caagcgctac tagacaattc agtacattaa aaacgtccgc aatgtgttat 6660
taagttgtct aagcgtcaat ttggtttaca ccacaatata tcctgccacc agccagccaa 6720
cagctccccg accggcagct cggcacaaaa tcaccactcg atacaggcag cccatcagtc 6780
cgggacggcg tcagcgggag agccgttgta aggcggcaga ctttgctcat gttaccgatg 6840
ctattcggaa gaacggcaac taagctgccg ggtttgaaac acggatgatc tcgcggaggg 6900
tagcatgttg attgtaacga tgacagagcg ttgctgcctg tgatcaaata tcatctccct 6960
cgcagagatc cgaattatca gccttcttat tcatttctcg cttaaccgtg acaggctgtc 7020
gatcttgaga actatgccga cataatagga aatcgctgga taaagccgct gaggaagctg 7080
agtggcgcta tttctttaga agtgaacgtt gacgatcgtc gaccgtaccc cgatgaatta 7140
attcggacgt acgttctgaa cacagctgga tacttacttg ggcgattgtc atacatgaca 7200
tcaacaatgt acccgtttgt gtaaccgtct cttggaggtt cgtatgacac tagtggttcc 7260
cctcagcttg cgactagatg ttgaggccta acattttatt agagagcagg ctagttgctt 7320
agatacatga tcttcaggcc gttatctgtc agggcaagcg aaaattggcc atttatgacg 7380
accaatgccc cgcagaagct cccatctttg ccgccataga cgccgcgccc cccttttggg 7440
gtgtagaaca tccttttgcc agatgtggaa aagaagttcg ttgtcccatt gttggcaatg 7500
acgtagtagc cggcgaaagt gcgagaccca tttgcgctat atataagcct acgatttccg 7560
ttgcgactat tgtcgtaatt ggatgaacta ttatcgtagt tgctctcaga gttgtcgtaa 7620
tttgatggac tattgtcgta attgcttatg gagttgtcgt agttgcttgg agaaatgtcg 7680
tagttggatg gggagtagtc atagggaaga cgagcttcat ccactaaaac aattggcagg 7740
tcagcaagtg cctgccccga tgccatcgca agtacgaggc ttagaaccac cttcaacaga 7800
tcgcgcatag tcttccccag ctctctaacg cttgagttaa gccgcgccgc gaagcggcgt 7860
cggcttgaac gaattgttag acattatttg ccgactacct tggtgatctc gcctttcacg 7920
tagtgaacaa attcttccaa ctgatctgcg cgcgaggcca agcgatcttc ttgtccaaga 7980
taagcctgcc tagcttcaag tatgacgggc tgatactggg ccggcaggcg ctccattgcc 8040
cagtcggcag cgacatcctt cggcgcgatt ttgccggtta ctgcgctgta ccaaatgcgg 8100
gacaacgtaa gcactacatt tcgctcatcg ccagcccagt cgggcggcga gttccatagc 8160
gttaaggttt catttagcgc ctcaaataga tcctgttcag gaaccggatc aaagagttcc 8220
tccgccgctg gacctaccaa ggcaacgcta tgttctcttg cttttgtcag caagatagcc 8280
agatcaatgt cgatcgtggc tggctcgaag atacctgcaa gaatgtcatt gcgctgccat 8340
tctccaaatt gcagttcgcg cttagctgga taacgccacg gaatgatgtc gtcgtgcaca 8400
acaatggtga cttctacagc gcggagaatc tcgctctctc caggggaagc cgaagtttcc 8460
aaaaggtcgt tgatcaaagc tcgccgcgtt gtttcatcaa gccttacagt caccgtaacc 8520
agcaaatcaa tatcactgtg tggcttcagg ccgccatcca ctgcggagcc gtacaaatgt 8580
acggccagca acgtcggttc gagatggcgc tcgatgacgc caactacctc tgatagttga 8640
gtcgatactt cggcgatcac cgcttccctc atgatgttta actcctgaat taagccgcgc 8700
cgcgaagcgg tgtcggcttg aatgaattgt taggcgtcat cctgtgctcc cgagaaccag 8760
taccagtaca tcgctgtttc gttcgagact tgaggtctag ttttatacgt gaacaggtca 8820
atgccgccga gagtaaagcc acattttgcg tacaaattgc aggcaggtac attgttcgtt 8880
tgtgtctcta atcgtatgcc aaggagctgt ctgcttagtg cccacttttt cgcaaattcg 8940
atgagactgt gcgcgactcc tttgcctcgg tgcgtgtgcg acacaacaat gtgttcgata 9000
gaggctagat cgttccatgt tgagttgagt tcaatcttcc cgacaagctc ttggtcgatg 9060
aatgcgccat agcaagcaga gtcttcatca gagtcatcat ccgagatgta atccttccgg 9120
taggggctca cacttctggt agatagttca aagccttggt cggataggtg cacatcgaac 9180
acttcacgaa caatgaaatg gttctcagca tccaatgttt ccgccacctg ctcagggatc 9240
accgaaatct tcatatgacg cctaacgcct ggcacagcgg atcgcaaacc tggcgcggct 9300
tttggcacaa aaggcgtgac aggtttgcga atccgttgct gccacttgtt aacccttttg 9360
ccagatttgg taactataat ttatgttaga ggcgaagtct tgggtaaaaa ctggcctaaa 9420
attgctgggg atttcaggaa agtaaacatc accttccggc tcgatgtcta ttgtagatat 9480
atgtagtgta tctacttgat cgggggatct gctgcctcgc gcgtttcggt gatgacggtg 9540
aaaacctctg acacatgcag ctcccggaga cggtcacagc ttgtctgtaa gcggatgccg 9600
ggagcagaca agcccgtcag ggcgcgtcag cgggtgttgg cgggtgtcgg ggcgcagcca 9660
tgacccagtc acgtagcgat agcggagtgt atactggctt aactatgcgg catcagagca 9720
gattgtactg agagtgcacc atatgcggtg tgaaataccg cacagatgcg taaggagaaa 9780
ataccgcatc aggcgctctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg 9840
gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg 9900
ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa 9960
ggccgcgttg ctggcgtttt tccataggct ccgcccccct gacgagcatc acaaaaatcg 10020
acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc 10080
tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc 10140
ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagttc 10200
ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg 10260
ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc 10320
actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga 10380
gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg gtatctgcgc 10440
tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac 10500
caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg 10560
atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga acgaaaactc 10620
acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa 10680
ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta 10740
ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt 10800
tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat ctggccccag 10860
tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcag caataaacca 10920
gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc 10980
tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt 11040
tgttgccatt gctgcagggg gggggggggg gggggacttc cattgttcat tccacggaca 11100
aaaacagaga aaggaaacga cagaggccaa aaagcctcgc tttcagcacc tgtcgtttcc 11160
tttcttttca gagggtattt taaataaaaa cattaagtta tgacgaagaa gaacggaaac 11220
gccttaaacc ggaaaatttt cataaatagc gaaaacccgc gaggtcgccg ccccgtaacc 11280
tacctgtcgg atcaccggaa aggacccgta aagtgataat gattatcatc tacatatcac 11340
aacgtgcgtg gaggccatca aaccacgtca aataatcaat tatgacgcag gtatcgtatt 11400
aattgatctg catcaactta acgtaaaaac aacttcagac aatacaaatc agcgacactg 11460
aatacggggc aacctcatgt cccccccccc cccccccctg caggcatcgt ggtgtcacgc 11520
tcgtcgtttg gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga 11580
tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt 11640
aagttggccg cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc 11700
atgccatccg taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa 11760
tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa cacgggataa taccgcgcca 11820
catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca 11880
aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct 11940
tcagcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc 12000
gcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa 12060
tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt 12120
tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc 12180
taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt 12240
cgtcttcaag aattcggagc ttttgccatt ctcaccggat tcagtcgtca ctcatggtga 12300
tttctcactt gataacctta tttttgacga ggggaaatta ataggttgta ttgatgttgg 12360
acgagtcgga atcgcagacc gataccagga tcttgccatc ctatggaact gcctcggtga 12420
gttttctcct tcattacaga aacggctttt tcaaaaatat ggtattgata atcctgatat 12480
gaataaattg cagtttcatt tgatgctcga tgagtttttc taatcagaat tggttaattg 12540
gttgtaacac tggcagagca ttacgctgac ttgacgggac ggcggctttg ttgaataaat 12600
cgaacttttg ctgagttgaa ggatcagatc acgcatcttc ccgacaacgc agaccgttcc 12660
gtggcaaagc aaaagttcaa aatcaccaac tggtccacct acaacaaagc tctcatcaac 12720
cgtggctccc tcactttctg gctggatgat ggggcgattc aggcctggta tgagtcagca 12780
acaccttctt cacgaggcag acctcagcgc cagaaggccg ccagagaggc cgagcgcggc 12840
cgtgaggctt ggacgctagg gcagggcatg aaaaagcccg tagcgggctg ctacgggcgt 12900
ctgacgcggt ggaaaggggg aggggatgtt gtctacatgg ctctgctgta gtgagtgggt 12960
tgcgctccgg cagcggtcct gatcaatcgt caccctttct cggtccttca acgttcctga 13020
caacgagcct ccttttcgcc aatccatcga caatcaccgc gagtccctgc tcgaacgctg 13080
cgtccggacc ggcttcgtcg aaggcgtcta tcgcggcccg caacagcggc gagagcggag 13140
cctgttcaac ggtgccgccg cgctcgccgg catcgctgtc gccggcctgc tcctcaagca 13200
cggccccaac agtgaagtag ctgattgtca tcagcgcatt gacggcgtcc ccggccgaaa 13260
aacccgcctc gcagaggaag cgaagctgcg cgtcggccgt ttccatctgc ggtgcgcccg 13320
gtcgcgtgcc ggcatggatg cgcgcgccat cgcggtaggc gagcagcgcc tgcctgaagc 13380
tgcgggcatt cccgatcaga aatgagcgcc agtcgtcgtc ggctctcggc accgaatgcg 13440
tatgattctc cgccagcatg gcttcggcca gtgcgtcgag cagcgcccgc ttgttcctga 13500
agtgccagta aagcgccggc tgctgaaccc ccaaccgttc cgccagtttg cgtgtcgtca 13560
gaccgtctac gccgacctcg ttcaacaggt ccagggcggc acggatcact gtattcggct 13620
gcaactttgt catgcttgac actttatcac tgataaacat aatatgtcca ccaacttatc 13680
agtgataaag aatccgcgcg ttcaatcgga ccagcggagg ctggtccgga ggccagacgt 13740
gaaacccaac atacccctga tcgtaattct gagcactgtc gcgctcgacg ctgtcggcat 13800
cggcctgatt atgccggtgc tgccgggcct cctgcgcgat ctggttcact cgaacgacgt 13860
caccgcccac tatggcattc tgctggcgct gtatgcgttg gtgcaatttg cctgcgcacc 13920
tgtgctgggc gcgctgtcgg atcgtttcgg gcggcggcca atcttgctcg tctcgctggc 13980
cggcgccact gtcgactacg ccatcatggc gacagcgcct ttcctttggg ttctctatat 14040
cgggcggatc gtggccggca tcaccggggc gactggggcg gtagccggcg cttatattgc 14100
cgatatcact gatggcgatg agcgcgcgcg gcacttcggc ttcatgagcg cctgtttcgg 14160
gttcgggatg gtcgcgggac ctgtgctcgg tgggctgatg ggcggtttct ccccccacgc 14220
tccgttcttc gccgcggcag ccttgaacgg cctcaatttc ctgacgggct gtttcctttt 14280
gccggagtcg cacaaaggcg aacgccggcc gttacgccgg gaggctctca acccgctcgc 14340
ttcgttccgg tgggcccggg gcatgaccgt cgtcgccgcc ctgatggcgg tcttcttcat 14400
catgcaactt gtcggacagg tgccggccgc gctttgggtc attttcggcg aggatcgctt 14460
tcactgggac gcgaccacga tcggcatttc gcttgccgca tttggcattc tgcattcact 14520
cgcccaggca atgatcaccg gccctgtagc cgcccggctc ggcgaaaggc gggcactcat 14580
gctcggaatg attgccgacg gcacaggcta catcctgctt gccttcgcga cacggggatg 14640
gatggcgttc ccgatcatgg tcctgcttgc ttcgggtggc atcggaatgc cggcgctgca 14700
agcaatgttg tccaggcagg tggatgagga acgtcagggg cagctgcaag gctcactggc 14760
ggcgctcacc agcctgacct cgatcgtcgg acccctcctc ttcacggcga tctatgcggc 14820
ttctataaca acgtggaacg ggtgggcatg gattgcaggc gctgccctct acttgctctg 14880
cctgccggcg ctgcgtcgcg ggctttggag cggcgcaggg caacgagccg atcgctgatc 14940
gtggaaacga taggcctatg ccatgcgggt caaggcgact tccggcaagc tatacgcgcc 15000
ctaggagtgc ggttggaacg ttggcccagc cagatactcc cgatcacgag caggacgccg 15060
atgatttgaa gcgcactcag cgtctgatcc aagaacaacc atcctagcaa cacggcggtc 15120
cccgggctga gaaagcccag taaggaaaca actgtaggtt cgagtcgcga gatcccccgg 15180
aaccaaagga agtaggttaa acccgctccg atcaggccga gccacgccag gccgagaaca 15240
ttggttcctg taggcatcgg gattggcgga tcaaacacta aagctactgg aacgagcaga 15300
agtcctccgg ccgccagttg ccaggcggta aaggtgagca gaggcacggg aggttgccac 15360
ttgcgggtca gcacggttcc gaacgccatg gaaaccgccc ccgccaggcc cgctgcgacg 15420
ccgacaggat ctagcgctgc gtttggtgtc aacaccaaca gcgccacgcc cgcagttccg 15480
caaatagccc ccaggaccgc catcaatcgt atcgggctac ctagcagagc ggcagagatg 15540
aacacgacca tcagcggctg cacagcgcct accgtcgccg cgaccccgcc cggcaggcgg 15600
tagaccgaaa taaacaacaa gctccagaat agcgaaatat taagtgcgcc gaggatgaag 15660
atgcgcatcc accagattcc cgttggaatc tgtcggacga tcatcacgag caataaaccc 15720
gccggcaacg cccgcagcag cataccggcg acccctcggc ctcgctgttc gggctccacg 15780
aaaacgccgg acagatgcgc cttgtgagcg tccttggggc cgtcctcctg tttgaagacc 15840
gacagcccaa tgatctcgcc gtcgatgtag gcgccgaatg ccacggcatc tcgcaaccgt 15900
tcagcgaacg cctccatggg ctttttctcc tcgtgctcgt aaacggaccc gaacatctct 15960
ggagctttct tcagggccga caatcggatc tcgcggaaat cctgcacgtc ggccgctcca 16020
agccgtcgaa tctgagcctt aatcacaatt gtcaatttta atcctctgtt tatcggcagt 16080
tcgtagagcg cgccgtgcgt cccgagcgat actgagcgaa gcaagtgcgt cgagcagtgc 16140
ccgcttgttc ctgaaatgcc agtaaagcgc tggctgctga acccccagcc ggaactgacc 16200
ccacaaggcc ctagcgtttg caatgcacca ggtcatcatt gacccaggcg tgttccacca 16260
ggccgctgcc tcgcaactct tcgcaggctt cgccgacctg ctcgcgccac ttcttcacgc 16320
gggtggaatc cgatccgcac atgaggcgga aggtttccag cttgagcggg tacggctccc 16380
ggtgcgagct gaaatagtcg aacatccgtc gggccgtcgg cgacagcttg cggtacttct 16440
cccatatgaa tttcgtgtag tggtcgccag caaacagcac gacgatttcc tcgtcgatca 16500
ggacctggca acgggacgtt ttcttgccac ggtccaggac gcggaagcgg tgcagcagcg 16560
acaccgattc caggtgccca acgcggtcgg acgtgaagcc catcgccgtc gcctgtaggc 16620
gcgacaggca ttcctcggcc ttcgtgtaat accggccatt gatcgaccag cccaggtcct 16680
ggcaaagctc gtagaacgtg aaggtgatcg gctcgccgat aggggtgcgc ttcgcgtact 16740
ccaacacctg ctgccacacc agttcgtcat cgtcggcccg cagctcgacg ccggtgtagg 16800
tgatcttcac gtccttgttg acgtggaaaa tgaccttgtt ttgcagcgcc tcgcgcggga 16860
ttttcttgtt gcgcgtggtg aacagggcag agcgggccgt gtcgtttggc atcgctcgca 16920
tcgtgtccgg ccacggcgca atatcgaaca aggaaagctg catttccttg atctgctgct 16980
tcgtgtgttt cagcaacgcg gcctgcttgg cctcgctgac ctgttttgcc aggtcctcgc 17040
cggcggtttt tcgcttcttg gtcgtcatag ttcctcgcgt gtcgatggtc atcgacttcg 17100
ccaaacctgc cgcctcctgt tcgagacgac gcgaacgctc cacggcggcc gatggcgcgg 17160
gcagggcagg gggagccagt tgcacgctgt cgcgctcgat cttggccgta gcttgctgga 17220
ccatcgagcc gacggactgg aaggtttcgc ggggcgcacg catgacggtg cggcttgcga 17280
tggtttcggc atcctcggcg gaaaaccccg cgtcgatcag ttcttgcctg tatgccttcc 17340
ggtcaaacgt ccgattcatt caccctcctt gcgggattgc cccgactcac gccggggcaa 17400
tgtgccctta ttcctgattt gacccgcctg gtgccttggt gtccagataa tccaccttat 17460
cggcaatgaa gtcggtcccg tagaccgtct ggccgtcctt ctcgtacttg gtattccgaa 17520
tcttgccctg cacgaatacc agcgacccct tgcccaaata cttgccgtgg gcctcggcct 17580
gagagccaaa acacttgatg cggaagaagt cggtgcgctc ctgcttgtcg ccggcatcgt 17640
tgcgccactc ttcattaacc gctatatcga aaattgcttg cggcttgtta gaattgccat 17700
gacgtacctc ggtgtcacgg gtaagattac cgataaactg gaactgatta tggctcatat 17760
cgaaagtctc cttgagaaag gagactctag tttagctaaa cattggttcc gctgtcaaga 17820
actttagcgg ctaaaatttt gcgggccgcg accaaaggtg cgaggggcgg cttccgctgt 17880
gtacaaccag atatttttca ccaacatcct tcgtctgctc gatgagcggg gcatgacgaa 17940
acatgagctg tcggagaggg caggggtttc aatttcgttt ttatcagact taaccaacgg 18000
taaggccaac ccctcgttga aggtgatgga ggccattgcc gacgccctgg aaactcccct 18060
acctcttctc ctggagtcca ccgaccttga ccgcgaggca ctcgcggaga ttgcgggtca 18120
tcctttcaag agcagcgtgc cgcccggata cgaacgcatc agtgtggttt tgccgtcaca 18180
taaggcgttt atcgtaaaga aatggggcga cgacacccga aaaaagctgc gtggaaggct 18240
ctgacgccaa gggttagggc ttgcacttcc ttctttagcc gctaaaacgg ccccttctct 18300
gcgggccgtc ggctcgcgca tcatatcgac atcctcaacg gaagccgtgc cgcgaatggc 18360
atcgggcggg tgcgctttga cagttgtttt ctatcagaac ccctacgtcg tgcggttcga 18420
ttagctgttt gtcttgcagg ctaaacactt tcggtatatc gtttgcctgt gcgataatgt 18480
tgctaatgat ttgttgcgta ggggttactg aaaagtgagc gggaaagaag agtttcagac 18540
catcaaggag cgggccaagc gcaagctgga acgcgacatg ggtgcggacc tgttggccgc 18600
gctcaacgac ccgaaaaccg ttgaagtcat gctcaacgcg gacggcaagg tgtggcacga 18660
acgccttggc gagccgatgc ggtacatctg cgacatgcgg cccagccagt cgcaggcgat 18720
tatagaaacg gtggccggat tccacggcaa agaggtcacg cggcattcgc ccatcctgga 18780
aggcgagttc cccttggatg gcagccgctt tgccggccaa ttgccgccgg tcgtggccgc 18840
gccaaccttt gcgatccgca agcgcgcggt cgccatcttc acgctggaac agtacgtcga 18900
ggcgggcatc atgacccgcg agcaatacga ggtcattaaa agcgccgtcg cggcgcatcg 18960
aaacatcctc gtcattggcg gtactggctc gggcaagacc acgctcgtca acgcgatcat 19020
caatgaaatg gtcgccttca acccgtctga gcgcgtcgtc atcatcgagg acaccggcga 19080
aatccagtgc gccgcagaga acgccgtcca ataccacacc agcatcgacg tctcgatgac 19140
gctgctgctc aagacaacgc tgcgtatgcg ccccgaccgc atcctggtcg gtgaggtacg 19200
tggccccgaa gcccttgatc tgttgatggc ctggaacacc gggcatgaag gaggtgccgc 19260
caccctgcac gcaaacaacc ccaaagcggg cctgagccgg ctcgccatgc ttatcagcat 19320
gcacccggat tcaccgaaac ccattgagcc gctgattggc gaggcggttc atgtggtcgt 19380
ccatatcgcc aggaccccta gcggccgtcg agtgcaagaa attctcgaag ttcttggtta 19440
cgagaacggc cagtacatca ccaaaaccct gtaaggagta tttccaatga caacggctgt 19500
tccgttccgt ctgaccatga atcgcggcat tttgttctac cttgccgtgt tcttcgttct 19560
cgctctcgcg ttatccgcgc atccggcgat ggcctcggaa ggcaccggcg gcagcttgcc 19620
atatgagagc tggctgacga acctgcgcaa ctccgtaacc ggcccggtgg ccttcgcgct 19680
gtccatcatc ggcatcgtcg tcgccggcgg cgtgctgatc ttcggcggcg aactcaacgc 19740
cttcttccga accctgatct tcctggttct ggtgatggcg ctgctggtcg gcgcgcagaa 19800
cgtgatgagc accttcttcg gtcgtggtgc cgaaatcgcg gccctcggca acggggcgct 19860
gcaccaggtg caagtcgcgg cggcggatgc cgtgcgtgcg gtagcggctg gacggctcgc 19920
ctaatcatgg ctctgcgcac gatccccatc cgtcgcgcag gcaaccgaga aaacctgttc 19980
atgggtggtg atcgtgaact ggtgatgttc tcgggcctga tggcgtttgc gctgattttc 20040
agcgcccaag agctgcgggc caccgtggtc ggtctgatcc tgtggttcgg ggcgctctat 20100
gcgttccgaa tcatggcgaa ggccgatccg aagatgcggt tcgtgtacct gcgtcaccgc 20160
cggtacaagc cgtattaccc ggcccgctcg accccgttcc gcgagaacac caatagccaa 20220
gggaagcaat accgatgatc caagcaattg cgattgcaat cgcgggcctc ggcgcgcttc 20280
tgttgttcat cctctttgcc cgcatccgcg cggtcgatgc cgaactgaaa ctgaaaaagc 20340
atcgttccaa ggacgccggc ctggccgatc tgctcaacta cgccgctgtc gtcgatgacg 20400
gcgtaatcgt gggcaagaac ggcagcttta tggctgcctg gctgtacaag ggcgatgaca 20460
acgcaagcag caccgaccag cagcgcgaag tagtgtccgc ccgcatcaac caggccctcg 20520
cgggcctggg aagtgggtgg atgatccatg tggacgccgt gcggcgtcct gctccgaact 20580
acgcggagcg gggcctgtcg gcgttccctg accgtctgac ggcagcgatt gaagaagagc 20640
gctcggtctt gccttgctcg tcggtgatgt acttcaccag ctccgcgaag tcgctcttct 20700
tgatggagcg catggggacg tgcttggcaa tcacgcgcac cccccggccg ttttagcggc 20760
taaaaaagtc atggctctgc cctcgggcgg accacgccca tcatgacctt gccaagctcg 20820
tcctgcttct cttcgatctt cgccagcagg gcgaggatcg tggcatcacc gaaccgcgcc 20880
gtgcgcgggt cgtcggtgag ccagagtttc agcaggccgc ccaggcggcc caggtcgcca 20940
ttgatgcggg ccagctcgcg gacgtgctca tagtccacga cgcccgtgat tttgtagccc 21000
tggccgacgg ccagcaggta ggccgacagg ctcatgccgg ccgccgccgc cttttcctca 21060
atcgctcttc gttcgtctgg aaggcagtac accttgatag gtgggctgcc cttcctggtt 21120
ggcttggttt catcagccat ccgcttgccc tcatctgtta cgccggcggt agccggccag 21180
cctcgcagag caggattccc gttgagcacc gccaggtgcg aataagggac agtgaagaag 21240
gaacacccgc tcgcgggtgg gcctacttca cctatcctgc ccggctgacg ccgttggata 21300
caccaaggaa agtctacacg aaccctttgg caaaatcctg tatatcgtgc gaaaaaggat 21360
ggatataccg aaaaaatcgc tataatgacc ccgaagcagg gttatgcagc ggaaaagcgc 21420
tgcttccctg ctgttttgtg gaatatctac cgactggaaa caggcaaatg caggaaatta 21480
ctgaactgag gggacaggcg agagacgatg ccaaagagct acaccgacga gctggccgag 21540
tgggttgaat cccgcgcggc caagaagcgc cggcgtgatg aggctgcggt tgcgttcctg 21600
gcggtgaggg cggatgtcga ggcggcgtta gcgtccggct atgcgctcgt caccatttgg 21660
gagcacatgc gggaaacggg gaaggtcaag ttctcctacg agacgttccg ctcgcacgcc 21720
aggcggcaca tcaaggccaa gcccgccgat gtgcccgcac cgcaggccaa ggctgcggaa 21780
cccgcgccgg cacccaagac gccggagcca cggcggccga agcagggggg caaggctgaa 21840
aagccggccc ccgctgcggc cccgaccggc ttcaccttca acccaacacc ggacaaaaag 21900
gatctactgt aatggcgaaa attcacatgg ttttgcaggg caagggcggg gtcggcaagt 21960
cggccatcgc cgcgatcatt gcgcagtaca agatggacaa ggggcagaca cccttgtgca 22020
tcgacaccga cccggtgaac gcgacgttcg agggctacaa ggccctgaac gtccgccggc 22080
tgaacatcat ggccggcgac gaaattaact cgcgcaactt cgacaccctg gtcgagctga 22140
ttgcgccgac caaggatgac gtggtgatcg acaacggtgc cagctcgttc gtgcctctgt 22200
cgcattacct catcagcaac caggtgccgg ctctgctgca agaaatgggg catgagctgg 22260
tcatccatac cgtcgtcacc ggcggccagg ctctcctgga cacggtgagc ggcttcgccc 22320
agctcgccag ccagttcccg gccgaagcgc ttttcgtggt ctggctgaac ccgtattggg 22380
ggcctatcga gcatgagggc aagagctttg agcagatgaa ggcgtacacg gccaacaagg 22440
cccgcgtgtc gtccatcatc cagattccgg ccctcaagga agaaacctac ggccgcgatt 22500
tcagcgacat gctgcaagag cggctgacgt tcgaccaggc gctggccgat gaatcgctca 22560
cgatcatgac gcggcaacgc ctcaagatcg tgcggcgcgg cctgtttgaa cagctcgacg 22620
cggcggccgt gctatgagcg accagattga agagctgatc cgggagattg cggccaagca 22680
cggcatcgcc gtcggccgcg acgacccggt gctgatcctg cataccatca acgcccggct 22740
catggccgac agtgcggcca agcaagagga aatccttgcc gcgttcaagg aagagctgga 22800
agggatcgcc catcgttggg gcgaggacgc caaggccaaa gcggagcgga tgctgaacgc 22860
ggccctggcg gccagcaagg acgcaatggc gaaggtaatg aaggacagcg ccgcgcaggc 22920
ggccgaagcg atccgcaggg aaatcgacga cggccttggc cgccagctcg cggccaaggt 22980
cgcggacgcg cggcgcgtgg cgatgatgaa catgatcgcc ggcggcatgg tgttgttcgc 23040
ggccgccctg gtggtgtggg cctcgttatg aatcgcagag gcgcagatga aaaagcccgg 23100
cgttgccggg ctttgttttt gcgttagctg ggcttgtttg acaggcccaa gctctgactg 23160
cgcccgcgct cgcgctcctg ggcctgtttc ttctcctgct cctgcttgcg catcagggcc 23220
tggtgccgtc gggctgcttc acgcatcgaa tcccagtcgc cggccagctc gggatgctcc 23280
gcgcgcatct tgcgcgtcgc cagttcctcg atcttgggcg cgtgaatgcc catgccttcc 23340
ttgatttcgc gcaccatgtc cagccgcgtg tgcagggtct gcaagcgggc ttgctgttgg 23400
gcctgctgct gctgccaggc ggcctttgta cgcggcaggg acagcaagcc gggggcattg 23460
gactgtagct gctgcaaacg cgcctgctga cggtctacga gctgttctag gcggtcctcg 23520
atgcgctcca cctggtcatg ctttgcctgc acgtagagcg caagggtctg ctggtaggtc 23580
tgctcgatgg gcgcggattc taagagggcc tgctgttccg tctcggcctc ctgggccgcc 23640
tgtagcaaat cctcgccgct gttgccgctg gactgcttta ctgccgggga ctgctgttgc 23700
cctgctcgcg ccgtcgtcgc agttcggctt gcccccactc gattgactgc ttcatttcga 23760
gccgcagcga tgcgatctcg gattgcgtca acggacgggg cagcgcggag gtgtccggct 23820
tctccttggg tgagtcggtc gatgccatag ccaaaggttt ccttccaaaa tgcgtccatt 23880
gctggaccgt gtttctcatt gatgcccgca agcatcttcg gcttgaccgc caggtcaagc 23940
gcgccttcat gggcggtcat gacggacgcc gccatgacct tgccgccgtt gttctcgatg 24000
tagccgcgta atgaggcaat ggtgccgccc atcgtcagcg tgtcatcgac aacgatgtac 24060
ttctggccgg ggatcacctc cccctcgaaa gtcgggttga acgccaggcg atgatctgaa 24120
ccggctccgg ttcgggcgac cttctcccgc tgcacaatgt ccgtttcgac ctcaaggcca 24180
aggcggtcgg ccagaacgac cgccatcatg gccggaatct tgttgttccc cgccgcctcg 24240
acggcgagga ctggaacgat gcggggcttg tcgtcgccga tcagcgtctt gagctgggca 24300
acagtgtcgt ccgaaatcag gcgctcgacc aaattaagcg ccgcttccgc gtcgccctgc 24360
ttcgcagcct ggtattcagg ctcgttggtc aaagaaccaa ggtcgccgtt gcgaaccacc 24420
ttcgggaagt ctccccacgg tgcgcgctcg gctctgctgt agctgctcaa gacgcctccc 24480
tttttagccg ctaaaactct aacgagtgcg cccgcgactc aacttgacgc tttcggcact 24540
tacctgtgcc ttgccacttg cgtcataggt gatgcttttc gcactcccga tttcaggtac 24600
tttatcgaaa tctgaccggg cgtgcattac aaagttcttc cccacctgtt ggtaaatgct 24660
gccgctatct gcgtggacga tgctgccgtc gtggcgctgc gacttatcgg ccttttgggc 24720
catatagatg ttgtaaatgc caggtttcag ggccccggct ttatctacct tctggttcgt 24780
ccatgcgcct tggttctcgg tctggacaat tctttgccca ttcatgacca ggaggcggtg 24840
tttcattggg tgactcctga cggttgcctc tggtgttaaa cgtgtcctgg tcgcttgccg 24900
gctaaaaaaa agccgacctc ggcagttcga ggccggcttt ccctagagcc gggcgcgtca 24960
aggttgttcc atctatttta gtgaactgcg ttcgatttat cagttacttt cctcccgctt 25020
tgtgtttcct cccactcgtt tccgcgtcta gccgacccct caacatagcg gcctcttctt 25080
gggctgcctt tgcctcttgc cgcgcttcgt cacgctcggc ttgcaccgtc gtaaagcgct 25140
cggcctgcct ggccgcctct tgcgccgcca acttcctttg ctcctggtgg gcctcggcgt 25200
cggcctgcgc cttcgctttc accgctgcca actccgtgcg caaactctcc gcttcgcgcc 25260
tggtggcgtc gcgctcgccg cgaagcgcct gcatttcctg gttggccgcg tccagggtct 25320
tgcggctctc ttctttgaat gcgcgggcgt cctggtgagc gtagtccagc tcggcgcgca 25380
gctcctgcgc tcgacgctcc acctcgtcgg cccgctgcgt cgccagcgcg gcccgctgct 25440
cggctcctgc cagggcggtg cgtgcttcgg ccagggcttg ccgctggcgt gcggccagct 25500
cggccgcctc ggcggcctgc tgctctagca atgtaacgcg cgcctgggct tcttccagct 25560
cgcgggcctg cgcctcgaag gcgtcggcca gctccccgcg cacggcttcc aactcgttgc 25620
gctcacgatc ccagccggct tgcgctgcct gcaacgattc attggcaagg gcctgggcgg 25680
cttgccagag ggcggccacg gcctggttgc cggcctgctg caccgcgtcc ggcacctgga 25740
ctgccagcgg ggcggcctgc gccgtgcgct ggcgtcgcca ttcgcgcatg ccggcgctgg 25800
cgtcgttcat gttgacgcgg gcggccttac gcactgcatc cacggtcggg aagttctccc 25860
ggtcgccttg ctcgaacagc tcgtccgcag ccgcaaaaat gcggtcgcgc gtctctttgt 25920
tcagttccat gttggctccg gtaattggta agaataataa tactcttacc taccttatca 25980
gcgcaagagt ttagctgaac agttctcgac ttaacggcag gttttttagc ggctgaaggg 26040
caggcaaaaa aagccccgca cggtcggcgg gggcaaaggg tcagcgggaa ggggattagc 26100
gggcgtcggg cttcttcatg cgtcggggcc gcgcttcttg ggatggagca cgacgaagcg 26160
cgcacgcgca tcgtcctcgg ccctatcggc ccgcgtcgcg gtcaggaact tgtcgcgcgc 26220
taggtcctcc ctggtgggca ccaggggcat gaactcggcc tgctcgatgt aggtccactc 26280
catgaccgca tcgcagtcga ggccgcgttc cttcaccgtc tcttgcaggt cgcggtacgc 26340
ccgctcgttg agcggctggt aacgggccaa ttggtcgtaa atggctgtcg gccatgagcg 26400
gcctttcctg ttgagccagc agccgacgac gaagccggca atgcaggccc ctggcacaac 26460
caggccgacg ccgggggcag gggatggcag cagctcgcca accaggaacc ccgccgcgat 26520
gatgccgatg ccggtcaacc agcccttgaa actatccggc cccgaaacac ccctgcgcat 26580
tgcctggatg ctgcgccgga tagcttgcaa catcaggagc cgtttctttt gttcgtcagt 26640
catggtccgc cctcaccagt tgttcgtatc ggtgtcggac gaactgaaat cgcaagagct 26700
gccggtatcg gtccagccgc tgtccgtgtc gctgctgccg aagcacggcg aggggtccgc 26760
gaacgccgca gacggcgtat ccggccgcag cgcatcgccc agcatggccc cggtcagcga 26820
gccgccggcc aggtagccca gcatggtgct gttggtcgcc ccggccacca gggccgacgt 26880
gacgaaatcg ccgtcattcc ctctggattg ttcgctgctc ggcggggcag tgcgccgcgc 26940
cggcggcgtc gtggatggct cgggttggct ggcctgcgac ggccggcgaa aggtgcgcag 27000
cagctcgtta tcgaccggct gcggcgtcgg ggccgccgcc ttgcgctgcg gtcggtgttc 27060
cttcttcggc tcgcgcagct tgaacagcat gatcgcggaa accagcagca acgccgcgcc 27120
tacgcctccc gcgatgtaga acagcatcgg attcattctt cggtcctcct tgtagcggaa 27180
ccgttgtctg tgcggcgcgg gtggcccgcg ccgctgtctt tggggatcag ccctcgatga 27240
gcgcgaccag tttcacgtcg gcaaggttcg cctcgaactc ctggccgtcg tcctcgtact 27300
tcaaccaggc atagccttcc gccggcggcc gacggttgag gataaggcgg gcagggcgct 27360
cgtcgtgctc gacctggacg atggcctttt tcagcttgtc cgggtccggc tccttcgcgc 27420
ccttttcctt ggcgtcctta ccgtcctggt cgccgtcctc gccgtcctgg ccgtcgccgg 27480
cctccgcgtc acgctcggca tcagtctggc cgttgaaggc atcgacggtg ttgggatcgc 27540
ggcccttctc gtccaggaac tcgcgcagca gcttgaccgt gccgcgcgtg atttcctggg 27600
tgtcgtcgtc aagccacgcc tcgacttcct ccgggcgctt cttgaaggcc gtcaccagct 27660
cgttcaccac ggtcacgtcg cgcacgcggc cggtgttgaa cgcatcggcg atcttctccg 27720
gcaggtccag cagcgtgacg tgctgggtga tgaacgccgg cgacttgccg atttccttgg 27780
cgatatcgcc tttcttcttg cccttcgcca gctcgcggcc aatgaagtcg gcaatttcgc 27840
gcggggtcag ctcgttgcgt tgcaggttct cgataacctg gtcggcttcg ttgtagtcgt 27900
tgtcgatgaa cgccgggatg gacttcttgc cggcccactt cgagccacgg tagcggcggg 27960
cgccgtgatt gatgatatag cggcccggct gctcctggtt ctcgcgcacc gaaatgggtg 28020
acttcacccc gcgctctttg atcgtggcac cgatttccgc gatgctctcc ggggaaaagc 28080
cggggttgtc ggccgtccgc ggctgatgcg gatcttcgtc gatcaggtcc aggtccagct 28140
cgatagggcc ggaaccgccc tgagacgccg caggagcgtc caggaggctc gacaggtcgc 28200
cgatgctatc caaccccagg ccggacggct gcgccgcgcc tgcggcttcc tgagcggccg 28260
cagcggtgtt tttcttggtg gtcttggctt gagccgcagt cattgggaaa tctccatctt 28320
cgtgaacacg taatcagcca gggcgcgaac ctctttcgat gccttgcgcg cggccgtttt 28380
cttgatcttc cagaccggca caccggatgc gagggcatcg gcgatgctgc tgcgcaggcc 28440
aacggtggcc ggaatcatca tcttggggta cgcggccagc agctcggctt ggtggcgcgc 28500
gtggcgcgga ttccgcgcat cgaccttgct gggcaccatg ccaaggaatt gcagcttggc 28560
gttcttctgg cgcacgttcg caatggtcgt gaccatcttc ttgatgccct ggatgctgta 28620
cgcctcaagc tcgatggggg acagcacata gtcggccgcg aagagggcgg ccgccaggcc 28680
gacgccaagg gtcggggccg tgtcgatcag gcacacgtcg aagccttggt tcgccagggc 28740
cttgatgttc gccccgaaca gctcgcgggc gtcgtccagc gacagccgtt cggcgttcgc 28800
cagtaccggg ttggactcga tgagggcgag gcgcgcggcc tggccgtcgc cggctgcggg 28860
tgcggtttcg gtccagccgc cggcagggac agcgccgaac agcttgcttg catgcaggcc 28920
ggtagcaaag tccttgagcg tgtaggacgc attgccctgg gggtccaggt cgatcacggc 28980
aacccgcaag ccgcgctcga aaaagtcgaa ggcaagatgc acaagggtcg aagtcttgcc 29040
gacgccgcct ttctggttgg ccgtgaccaa agttttcatc gtttggtttc ctgttttttc 29100
ttggcgtccg cttcccactt ccggacgatg tacgcctgat gttccggcag aaccgccgtt 29160
acccgcgcgt acccctcggg caagttcttg tcctcgaacg cggcccacac gcgatgcacc 29220
gcttgcgaca ctgcgcccct ggtcagtccc agcgacgttg cgaacgtcgc ctgtggcttc 29280
ccatcgacta agacgccccg cgctatctcg atggtctgct gccccacttc cagcccctgg 29340
atcgcctcct ggaactggct ttcggtaagc cgtttcttca tggataacac ccataatttg 29400
ctccgcgcct tggttgaaca tagcggtgac agccgccagc acatgagaga agtttagcta 29460
aacatttctc gcacgtcaac acctttagcc gctaaaactc gtccttggcg taacaaaaca 29520
aaagcccgga aaccgggctt tcgtctcttg ccgcttatgg ctctgcaccc ggctccatca 29580
ccaacaggtc gcgcacgcgc ttcactcggt tgcggatcga cactgccagc ccaacaaagc 29640
cggttgccgc cgccgccagg atcgcgccga tgatgccggc cacaccggcc atcgcccacc 29700
aggtcgccgc cttccggttc cattcctgct ggtactgctt cgcaatgctg gacctcggct 29760
caccataggc tgaccgctcg atggcgtatg ccgcttctcc ccttggcgta aaacccagcg 29820
ccgcaggcgg cattgccatg ctgcccgccg ctttcccgac cacgacgcgc gcaccaggct 29880
tgcggtccag accttcggcc acggcgagct gcgcaaggac ataatcagcc gccgacttgg 29940
ctccacgcgc ctcgatcagc tcttgcactc gcgcgaaatc cttggcctcc acggccgcca 30000
tgaatcgcgc acgcggcgaa ggctccgcag ggccggcgtc gtgatcgccg ccgagaatgc 30060
ccttcaccaa gttcgacgac acgaaaatca tgctgacggc tatcaccatc atgcagacgg 30120
atcgcacgaa cccgctgaat tgaacacgag cacggcaccc gcgaccacta tgccaagaat 30180
gcccaaggta aaaattgccg gccccgccat gaagtccgtg aatgccccga cggccgaagt 30240
gaagggcagg ccgccaccca ggccgccgcc ctcactgccc ggcacctggt cgctgaatgt 30300
cgatgccagc acctgcggca cgtcaatgct tccgggcgtc gcgctcgggc tgatcgccca 30360
tcccgttact gccccgatcc cggcaatggc aaggactgcc agcgctgcca tttttggggt 30420
gaggccgttc gcggccgagg ggcgcagccc ctggggggat gggaggcccg cgttagcggg 30480
ccgggagggt tcgagaaggg ggggcacccc ccttcggcgt gcgcggtcac gcgcacaggg 30540
cgcagccctg gttaaaaaca aggtttataa atattggttt aaaagcaggt taaaagacag 30600
gttagcggtg gccgaaaaac gggcggaaac ccttgcaaat gctggatttt ctgcctgtgg 30660
acagcccctc aaatgtcaat aggtgcgccc ctcatctgtc agcactctgc ccctcaagtg 30720
tcaaggatcg cgcccctcat ctgtcagtag tcgcgcccct caagtgtcaa taccgcaggg 30780
cacttatccc caggcttgtc cacatcatct gtgggaaact cgcgtaaaat caggcgtttt 30840
cgccgatttg cgaggctggc cagctccacg tcgccggccg aaatcgagcc tgcccctcat 30900
ctgtcaacgc cgcgccgggt gagtcggccc ctcaagtgtc aacgtccgcc cctcatctgt 30960
cagtgagggc caagttttcc gcgaggtatc cacaacgccg gcggccgcgg tgtctcgcac 31020
acggcttcga cggcgtttct ggcgcgtttg cagggccata gacggccgcc agcccagcgg 31080
cgagggcaac cagcccggtg agcgtcggaa aggcgctgga agccccgtag cgacgcggag 31140
aggggcgaga caagccaagg gcgcaggctc gatgcgcagc acgacatagc cggttctcgc 31200
aaggacgaga atttccctgc ggtgcccctc aagtgtcaat gaaagtttcc aacgcgagcc 31260
attcgcgaga gccttgagtc cacgctagat gagagctttg ttgtaggtgg accagttggt 31320
gattttgaac ttttgctttg ccacggaacg gtctgcgttg tcgggaagat gcgtgatctg 31380
atccttcaac tcagcaaaag ttcgatttat tcaacaaagc cacgttgtgt ctcaaaatct 31440
ctgatgttac attgcacaag ataaaaatat atcatcatga acaataaaac tgtctgctta 31500
cataaacagt aatacaaggg gtgttatgag ccatattcaa cgggaaacgt cttgctcgac 31560
tctagagctc gttcctcgag gaacggtacc tgcggggaag cttacaataa tgtgtgttgt 31620
taagtcttgt tgcctgtcat cgtctgactg actttcgtca taaatcccgg cctccgtaac 31680
ccagctttgg gcaagctcac ggatttgatc cggcggaacg ggaatatcga gatgccgggc 31740
tgaacgctgc agttccagct ttccctttcg ggacaggtac tccagctgat tgattatctg 31800
ctgaagggtc ttggttccac ctcctggcac aatgcgaatg attacttgag cgcgatcggg 31860
catccaattt tctcccgtca ggtgcgtggt caagtgctac aaggcacctt tcagtaacga 31920
gcgaccgtcg atccgtcgcc gggatacgga caaaatggag cgcagtagtc catcgagggc 31980
ggcgaaagcc tcgccaaaag caatacgttc atctcgcaca gcctccagat ccgatcgagg 32040
gtcttcggcg taggcagata gaagcatgga tacattgctt gagagtattc cgatggactg 32100
aagtatggct tccatctttt ctcgtgtgtc tgcatctatt tcgagaaagc ccccgatgcg 32160
gcgcaccgca acgcgaattg ccatactatc cgaaagtccc agcaggcgcg cttgatagga 32220
aaaggtttca tactcggccg atcgcagacg ggcactcacg accttgaacc cttcaacttt 32280
cagggatcga tgctggttga tggtagtctc actcgacgtg gctctggtgt gttttgacat 32340
agcttcctcc aaagaaagcg gaaggtctgg atactccagc acgaaatgtg cccgggtaga 32400
cggatggaag tctagccctg ctcaatatga aatcaacagt acatttacag tcaatactga 32460
atatacttgc tacatttgca attgtcttat aacgaatgtg aaataaaaat agtgtaacaa 32520
cgcttttact catcgataat cacaaaaaca tttatacgaa caaaaataca aatgcactcc 32580
ggtttcacag gataggcggg atcagaatat gcaacttttg acgttttgtt ctttcaaagg 32640
gggtgctggc aaaaccaccg cactcatggg cctttgcgct gctttggcaa atgacggtaa 32700
acgagtggcc ctctttgatg ccgacgaaaa ccggcctctg acgcgatgga gagaaaacgc 32760
cttacaaagc agtactggga tcctcgctgt gaagtctatt ccgccgacga aatgcccctt 32820
cttgaagcag cctatgaaaa tgccgagctc gaaggatttg attatgcgtt ggccgatacg 32880
cgtggcggct cgagcgagct caacaacaca atcatcgcta gctcaaacct gcttctgatc 32940
cccaccatgc taacgccgct cgacatcgat gaggcactat ctacctaccg ctacgtcatc 33000
gagctgctgt tgagtgaaaa tttggcaatt cctacagctg ttttgcgcca acgcgtcccg 33060
gtcggccgat tgacaacatc gcaacgcagg atgtcagaga cgctagagag ccttccagtt 33120
gtaccgtctc ccatgcatga aagagatgca tttgccgcga tgaaagaacg cggcatgttg 33180
catcttacat tactaaacac gggaactgat ccgacgatgc gcctcataga gaggaatctt 33240
cggattgcga tggaggaagt cgtggtcatt tcgaaactga tcagcaaaat cttggaggct 33300
tgaagatggc aattcgcaag cccgcattgt cggtcggcga agcacggcgg cttgctggtg 33360
ctcgacccga gatccaccat cccaacccga cacttgttcc ccagaagctg gacctccagc 33420
acttgcctga aaaagccgac gagaaagacc agcaacgtga gcctctcgtc gccgatcaca 33480
tttacagtcc cgatcgacaa cttaagctaa ctgtggatgc ccttagtcca cctccgtccc 33540
cgaaaaagct ccaggttttt ctttcagcgc gaccgcccgc gcctcaagtg tcgaaaacat 33600
atgacaacct cgttcggcaa tacagtccct cgaagtcgct acaaatgatt ttaaggcgcg 33660
cgttggacga tttcgaaagc atgctggcag atggatcatt tcgcgtggcc ccgaaaagtt 33720
atccgatccc ttcaactaca gaaaaatccg ttctcgttca gacctcacgc atgttcccgg 33780
ttgcgttgct cgaggtcgct cgaagtcatt ttgatccgtt ggggttggag accgctcgag 33840
ctttcggcca caagctggct accgccgcgc tcgcgtcatt ctttgctgga gagaagccat 33900
cgagcaattg gtgaagaggg acctatcgga acccctcacc aaatattgag tgtaggtttg 33960
aggccgctgg ccgcgtcctc agtcaccttt tgagccagat aattaagagc caaatgcaat 34020
tggctcaggc tgccatcgtc cccccgtgcg aaacctgcac gtccgcgtca aagaaataac 34080
cggcacctct tgctgttttt atcagttgag ggcttgacgg atccgcctca agtttgcggc 34140
gcagccgcaa aatgagaaca tctatactcc tgtcgtaaac ctcctcgtcg cgtactcgac 34200
tggcaatgag aagttgctcg cgcgatagaa cgtcgcgggg tttctctaaa aacgcgagga 34260
gaagattgaa ctcacctgcc gtaagtttca cctcaccgcc agcttcggac atcaagcgac 34320
gttgcctgag attaagtgtc cagtcagtaa aacaaaaaga ccgtcggtct ttggagcgga 34380
caacgttggg gcgcacgcgc aaggcaaccc gaatgcgtgc aagaaactct ctcgtactaa 34440
acggcttagc gataaaatca cttgctccta gctcgagtgc aacaacttta tccgtctcct 34500
caaggcggtc gccactgata attatgattg gaatatcaga ctttgccgcc agatttcgaa 34560
cgatctcaag cccatcttca cgacctaaat ttagatcaac aaccacgaca tcgaccgtcg 34620
cggaagagag tactctagtg aactgggtgc tgtcggctac cgcggtcact ttgaaggcgt 34680
ggatcgtaag gtattcgata ataagatgcc gcatagcgac atcgtcatcg ataagaagaa 34740
cgtgtttcaa cggctcacct ttcaatctaa aatctgaacc cttgttcaca gcgcttgaga 34800
aattttcacg tgaaggatgt acaatcatct ccagctaaat gggcagttcg tcagaattgc 34860
ggctgaccgc ggatgacgaa aatgcgaacc aagtatttca attttatgac aaaagttctc 34920
aatcgttgtt acaagtgaaa cgcttcgagg ttacagctac tattgattaa ggagatcgcc 34980
tatggtctcg ccccggcgtc gtgcgtccgc cgcgagccag atctcgccta cttcataaac 35040
gtcctcatag gcacggaatg gaatgatgac atcgatcgcc gtagagagca tgtcaatcag 35100
tgtgcgatct tccaagctag caccttgggc gctacttttg acaagggaaa acagtttctt 35160
gaatccttgg attggattcg cgccgtgtat tgttgaaatc gatcccggat gtcccgagac 35220
gacttcactc agataagccc atgctgcatc gtcgcgcatc tcgccaagca atatccggtc 35280
cggccgcata cgcagacttg cttggagcaa gtgctcggcg ctcacagcac ccagcccagc 35340
accgttcttg gagtagagta gtctaacatg attatcgtgt ggaatgacga gttcgagcgt 35400
atcttctatg gtgattagcc tttcctgggg ggggatggcg ctgatcaagg tcttgctcat 35460
tgttgtcttg ccgcttccgg tagggccaca tagcaacatc gtcagtcggc tgacgacgca 35520
tgcgtgcaga aacgcttcca aatccccgtt gtcaaaatgc tgaaggatag cttcatcatc 35580
ctgattttgg cgtttccttc gtgtctgcca ctggttccac ctcgaagcat cataacggga 35640
ggagacttct ttaagaccag aaacacgcga gcttggccgt cgaatggtca agctgacggt 35700
gcccgaggga acggtcggcg gcagacagat ttgtagtcgt tcaccaccag gaagttcagt 35760
ggcgcagagg gggttacgtg gtccgacatc ctgctttctc agcgcgcccg ctaaaatagc 35820
gatatcttca agatcatcat aagagacggg caaaggcatc ttggtaaaaa tgccggcttg 35880
gcgcacaaat gcctctccag gtcgattgat cgcaatttct tcagtcttcg ggtcatcgag 35940
ccattccaaa atcggcttca gaagaaagcg tagttgcgga tccacttcca tttacaatgt 36000
atcctatctc taagcggaaa tttgaattca ttaagagcgg cggttcctcc cccgcgtggc 36060
gccgccagtc aggcggagct ggtaaacacc aaagaaatcg aggtcccgtg ctacgaaaat 36120
ggaaacggtg tcaccctgat tcttcttcag ggttggcggt atgttgatgg ttgccttaag 36180
ggctgtctca gttgtctgct caccgttatt ttgaaagctg ttgaagctca tcccgccacc 36240
cgagctgccg gcgtaggtgc tagctgcctg gaaggcgcct tgaacaacac tcaagagcat 36300
agctccgcta aaacgctgcc agaagtggct gtcgaccgag cccggcaatc ctgagcgacc 36360
gagttcgtcc gcgcttggcg atgttaacga gatcatcgca tggtcaggtg tctcggcgcg 36420
atcccacaac acaaaaacgc gcccatctcc ctgttgcaag ccacgctgta tttcgccaac 36480
aacggtggtg ccacgatcaa gaagcacgat attgttcgtt gttccacgaa tatcctgagg 36540
caagacacac tttacatagc ctgccaaatt tgtgtcgatt gcggtttgca agatgcacgg 36600
aattattgtc ccttgcgtta ccataaaatc ggggtgcggc aagagcgtgg cgctgctggg 36660
ctgcagctcg gtgggtttca tacgtatcga caaatcgttc tcgccggaca cttcgccatt 36720
cggcaaggag ttgtcgtcac gcttgccttc ttgtcttcgg cccgtgtcgc cctgaatggc 36780
gcgtttgctg accccttgat cgccgctgct atatgcaaaa atcggtgttt cttccggccg 36840
tggctcatgc cgctccggtt cgcccctcgg cggtagagga gcagcaggct gaacagcctc 36900
ttgaaccgct ggaggatccg gcggcacctc aatcggagct ggatgaaatg gcttggtgtt 36960
tgttgcgatc aaagttgacg gcgatgcgtt ctcattcacc ttcttttggc gcccacctag 37020
ccaaatgagg cttaatgata acgcgagaac gacacctccg acgatcaatt tctgagaccc 37080
cgaaagacgc cggcgatgtt tgtcggagac cagggatcca gatgcatcaa cctcatgtgc 37140
cgcttgctga ctatcgttat tcatcccttc gcccccttca ggacgcgttt cacatcgggc 37200
ctcaccgtgc ccgtttgcgg cctttggcca acgggatcgt aagcggtgtt ccagatacat 37260
agtactgtgt ggccatccct cagacgccaa cctcgggaaa ccgaagaaat ctcgacatcg 37320
ctccctttaa ctgaatagtt ggcaacagct tccttgccat caggattgat ggtgtagatg 37380
gagggtatgc gtacattgcc cggaaagtgg aataccgtcg taaatccatt gtcgaagact 37440
tcgagtggca acagcgaacg atcgccttgg gcgacgtagt gccaattact gtccgccgca 37500
ccaagggctg tgacaggctg atccaataaa ttctcagctt tccgttgata ttgtgcttcc 37560
gcgtgtagtc tgtccacaac agccttctgt tgtgcctccc ttcgccgagc cgccgcatcg 37620
tcggcggggt aggcgaattg gacgctgtaa tagagatcgg gctgctcttt atcgaggtgg 37680
gacagagtct tggaacttat actgaaaaca taacggcgca tcccggagtc gcttgcggtt 37740
agcacgatta ctggctgagg cgtgaggacc tggcttgcct tgaaaaatag ataatttccc 37800
cgcggtaggg ctgctagatc tttgctattt gaaacggcaa ccgctgtcac cgtttcgttc 37860
gtggcgaatg ttacgaccaa agtagctcca accgccgtcg agaggcgcac cacttgatcg 37920
ggattgtaag ccaaataacg catgcgcgga tctagcttgc ccgccattgg agtgtcttca 37980
gcctccgcac cagtcgcagc ggcaaataaa catgctaaaa tgaaaagtgc ttttctgatc 38040
atggttcgct gtggcctacg tttgaaacgg tatcttccga tgtctgatag gaggtgacaa 38100
ccagacctgc cgggttggtt agtctcaatc tgccgggcaa gctggtcacc ttttcgtagc 38160
gaactgtcgc ggtccacgta ctcaccacag gcattttgcc gtcaacgacg agggtccttt 38220
tatagcgaat ttgctgcgtg cttggagtta catcatttga agcgatgtgc tcgacctcca 38280
ccctgccgcg tttgccaaga atgacttgag gcgaactggg attgggatag ttgaagaatt 38340
gctggtaatc ctggcgcact gttggggcac tgaagttcga taccaggtcg taggcgtact 38400
gagcggtgtc ggcatcataa ctctcgcgca ggcgaacgta ctcccacaat gaggcgttaa 38460
cgacggcctc ctcttgagtt gcaggcaatc gcgagacaga cacctcgctg tcaacggtgc 38520
cgtccggccg tatccataga tatacgggca caagcctgct caacggcacc attgtggcta 38580
tagcgaacgc ttgagcaaca tttcccaaaa tcgcgatagc tgcgacagct gcaatgagtt 38640
tggagagacg tcgcgccgat ttcgctcgcg cggtttgaaa ggcttctact tccttatagt 38700
gctcggcaag gctttcgcgc gccactagca tggcatattc aggccccgtc atagcgtcca 38760
cccgaattgc cgagctgaag atctgacgga gtaggctgcc atcgccccac attcagcggg 38820
aagatcgggc ctttgcagct cgctaatgtg tcgtttgtct ggcagccgct caaagcgaca 38880
actaggcaca gcaggcaata cttcatagaa ttctccattg aggcgaattt ttgcgcgacc 38940
tagcctcgct caacctgagc gaagcgacgg tacaagctgc tggcagattg ggttgcgccg 39000
ctccagtaac tgcctccaat gttgccggcg atcgccggca aagcgacaat gagcgcatcc 39060
cctgtcagaa aaaacatatc gagttcgtaa agaccaatga tcttggccgc ggtcgtaccg 39120
gcgaaggtga ttacaccaag cataagggtg agcgcagtcg cttcggttag gatgacgatc 39180
gttgccacga ggtttaagag gagaagcaag agaccgtagg tgataagttg cccgatccac 39240
ttagctgcga tgtcccgcgt gcgatcaaaa atatatccga cgaggatcag aggcccgatc 39300
gcgagaagca ctttcgtgag aattccaacg gcgtcgtaaa ctccgaaggc agaccagagc 39360
gtgccgtaaa ggacccactg tgccccttgg aaagcaagga tgtcctggtc gttcatcgga 39420
ccgatttcgg atgcgatttt ctgaaaaacg gcctgggtca cggcgaacat tgtatccaac 39480
tgtgccggaa cagtctgcag aggcaagccg gttacactaa actgctgaac aaagtttggg 39540
accgtctttt cgaagatgga aaccacatag tcttggtagt tagcctgccc aacaattaga 39600
gcaacaacga tggtgaccgt gatcacccga gtgataccgc tacgggtatc gacttcgccg 39660
cgtatgacta aaataccctg aacaataatc caaagagtga cacaggcgat caatggcgca 39720
ctcaccgcct cctggatagt ctcaagcatc gagtccaagc ctgtcgtgaa ggctacatcg 39780
aagatcgtat gaatggccgt aaacggcgcc ggaatcgtga aattcatcga ttggacctga 39840
acttgactgg tttgtcgcat aatgttggat aaaatgagct cgcattcggc gaggatgcgg 39900
gcggatgaac aaatcgccca gccttagggg agggcaccaa agatgacagc ggtcttttga 39960
tgctccttgc gttgagcggc cgcctcttcc gcctcgtgaa ggccggcctg cgcggtagtc 40020
atcgttaata ggcttgtcgc ctgtacattt tgaatcattg cgtcatggat ctgcttgaga 40080
agcaaaccat tggtcacggt tgcctgcatg atattgcgag atcgggaaag ctgagcagac 40140
gtatcagcat tcgccgtcaa gcgtttgtcc atcgtttcca gattgtcagc cgcaatgcca 40200
gcgctgtttg cggaaccggt gatctgcgat cgcaacaggt ccgcttcagc atcactaccc 40260
acgactgcac gatctgtatc gctggtgatc gcacgtgccg tggtcgacat tggcattcgc 40320
ggcgaaaaca tttcattgtc taggtccttc gtcgaaggat actgattttt ctggttgagc 40380
gaagtcagta gtccagtaac gccgtaggcc gacgtcaaca tcgtaaccat cgctatagtc 40440
tgagtgagat tctccgcagt cgcgagcgca gtcgcgagcg tctcagcctc cgttgccggg 40500
tcgctaacaa caaactgcgc ccgcgcgggc tgaatatata gaaagctgca ggtcaaaact 40560
gttgcaataa gttgcgtcgt cttcatcgtt tcctacctta tcaatcttct gcctcgtggt 40620
gacgggccat gaattcgctg agccagccag atgagttgcc ttcttgtgcc tcgcgtagtc 40680
gagttgcaaa gcgcaccgtg ttggcacgcc ccgaaagcac ggcgacatat tcacgcatat 40740
cccgcagatc aaattcgcag atgacgcttc cactttctcg tttaagaaga aacttacggc 40800
tgccgaccgt catgtcttca cggatcgcct gaaattcctt ttcggtacat ttcagtccat 40860
cgacataagc cgatcgatct gcggttggtg atggatagaa aatcttcgtc atacattgcg 40920
caaccaagct ggctcctagc ggcgattcca gaacatgctc tggttgctgc gttgccagta 40980
ttagcatccc gttgtttttt cgaacggtca ggaggaattt gtcgacgaca gtcgaaaatt 41040
tagggtttaa caaataggcg cgaaactcat cgcagctcat cacaaaacgg cggccgtcga 41100
tcatggctcc aatccgatgc aggagatatg ctgcagcggg agcgcatact tcctcgtatt 41160
cgagaagatg cgtcatgtcg aagccggtaa tcgacggatc taactttact tcgtcaactt 41220
cgccgtcaaa tgcccagcca agcgcatggc cccggcacca gcgttggagc cgcgctcctg 41280
cgccttcggc gggcccatgc aacaaaaatt cacgtaaccc cgcgattgaa cgcatttgtg 41340
gatcaaacga gagctgacga tggataccac ggaccagacg gcggttctct tccggagaaa 41400
tcccaccccg accatcactc tcgatgagag ccacgatcca ttcgcgcaga aaatcgtgtg 41460
aggctgctgt gttttctagg ccacgcaacg gcgccaaccc gctgggtgtg cctctgtgaa 41520
gtgccaaata tgttcctcct gtggcgcgaa ccagcaattc gccaccccgg tccttgtcaa 41580
agaacacgac cgtacctgca cggtcgacca tgctctgttc gagcatggct agaacaaaca 41640
tcatgagcgt cgtcttaccc ctcccgatag gcccgaatat tgccgtcatg ccaacatcgt 41700
gctcatgcgg gatatagtcg aaaggcgttc cgccattggt acgaaatcgg gcaatcgcgt 41760
tgccccagtg gcctgagctg gcgccctctg gaaagttttc gaaagagaca aaccctgcga 41820
aattgcgtga agtgattgcg ccagggcgtg tgcgccactt aaaattcccc ggcaattggg 41880
accaataggc cgcttccata ccaatacctt cttggacaac cacggcacct gcatccgcca 41940
ttcgtgtccg agcccgcgcg cccctgtccc caagactatt gagatcgtct gcatagacgc 42000
aaaggctcaa atgatgtgag cccataacga attcgttgct cgcaagtgcg tcctcagcct 42060
cggataattt gccgatttga gtcacggctt tatcgccgga actcagcatc tggctcgatt 42120
tgaggctaag tttcgcgtgc gcttgcgggc gagtcaggaa cgaaaaactc tgcgtgagaa 42180
caagtggaaa atcgagggat agcagcgcgt tgagcatgcc cggccgtgtt tttgcagggt 42240
attcgcgaaa cgaatagatg gatccaacgt aactgtcttt tggcgttctg atctcgagtc 42300
ctcgcttgcc gcaaatgact ctgtcggtat aaatcgaagc gccgagtgag ccgctgacga 42360
ccggaaccgg tgtgaaccga ccagtcatga tcaaccgtag cgcttcgcca atttcggtga 42420
agagcacacc ctgcttctcg cggatgccaa gacgatgcag gccatacgct ttaagagagc 42480
cagcgacaac atgccaaaga tcttccatgt tcctgatctg gcccgtgaga tcgttttccc 42540
tttttccgct tagcttggtg aacctcctct ttaccttccc taaagccgcc tgtgggtaga 42600
caatcaacgt aaggaagtgt tcattgcgga ggagttggcc ggagagcacg cgctgttcaa 42660
aagcttcgtt caggctagcg gcgaaaacac tacggaagtg tcgcggcgcc gatgatggca 42720
cgtcggcatg acgtacgagg tgagcatata ttgacacatg atcatcagcg atattgcgca 42780
acagcgtgtt gaacgcacga caacgcgcat tgcgcatttc agtttcctca agctcgaatg 42840
caacgccatc aattctcgca atggtcatga tcgatccgtc ttcaagaagg acgatatggt 42900
cgctgaggtg gccaatataa gggagataga tctcaccgga tctttcggtc gttccactcg 42960
cgccgagcat cacaccattc ctctccctcg tgggggaacc ctaattggat ttgggctaac 43020
agtagcgccc ccccaaactg cactatcaat gcttcttccc gcggtccgca aaaatagcag 43080
gacgacgctc gccgcattgt agtctcgctc cacgatgagc cgggctgcaa accataacgg 43140
cacgagaacg acttcgtaga gcgggttctg aacgataacg atgacaaagc cggcgaacat 43200
catgaataac cctgccaatg tcagtggcac cccaagaaac aatgcgggcc gtgtggctgc 43260
gaggtaaagg gtcgattctt ccaaacgatc agccatcaac taccgccagt gagcgtttgg 43320
ccgaggaagc tcgccccaaa catgataaca atgccgccga cgacgccggc aaccagccca 43380
agcgaagccc gcccgaacat ccaggagatc ccgatagcga caatgccgag aacagcgagt 43440
gactggccga acggaccaag gataaacgtg catatattgt taaccattgt ggcggggtca 43500
gtgccgccac ccgcagattg cgctgcggcg ggtccggatg aggaaatgct ccatgcaatt 43560
gcaccgcaca agcttggggc gcagctcgat atcacgcgca tcatcgcatt cgagagcgag 43620
aggcgattta gatgtaaacg gtatctctca aagcatcgca tcaatgcgca cctccttagt 43680
ataagtcgaa taagacttga ttgtcgtctg cggatttgcc gttgtcctgg tgtggcggtg 43740
gcggagcgat taaaccgcca gcgccatcct cctgcgagcg gcgctgatat gacccccaaa 43800
catcccacgt ctcttcggat tttagcgcct cgtgatcgtc ttttggaggc tcgattaacg 43860
cgggcaccag cgattgagca gctgtttcaa cttttcgcac gtagccgttt gcaaaaccgc 43920
cgatgaaatt accggtgttg taagcggaga tcgcccgacg aagcgcaaat tgcttctcgt 43980
caatcgtttc gccgcctgca taacgacttt tcagcatgtt tgcagcggca gataatgatg 44040
tgcacgcctg gagcgcaccg tcaggtgtca gaccgagcat agaaaaattt cgagagttta 44100
tttgcatgag gccaacatcc agcgaatgcc gtgcatcgag acggtgcctg acgacttggg 44160
ttgcttggct gtgatcttgc cagtgaagcg tttcgccggt cgtgttgtca tgaatcgcta 44220
aaggatcaaa gcgactctcc accttagcta tcgccgcaag cgtagatgtc gcaactgatg 44280
gggcacactt gcgagcaaca tggtcaaact cagcagatga gagtggcgtg gcaaggctcg 44340
acgaacagaa ggagaccatc aaggcaagag aaagcgaccc cgatctctta agcatacctt 44400
atctccttag ctcgcaacta acaccgcctc tcccgttgga agaagtgcgt tgttttatgt 44460
tgaagattat cgggagggtc ggttactcga aaattttcaa ttgcttcttt atgatttcaa 44520
ttgaagcgag aaacctcgcc cggcgtcttg gaacgcaaca tggaccgaga accgcgcatc 44580
catgactaag caaccggatc gacctattca ggccgcagtt ggtcaggtca ggctcagaac 44640
gaaaatgctc ggcgaggtta cgctgtctgt aaacccattc gatgaacggg aagcttcctt 44700
ccgattgctc ttggcaggaa tattggccca tgcctgcttg cgctttgcaa atgctcttat 44760
cgcgttggta tcatatgcct tgtccgccag cagaaacgca ctctaagcga ttatttgtaa 44820
aaatgtttcg gtcatgcggc ggtcatgggc ttgacccgct gtcagcgcaa gacggatcgg 44880
tcaaccgtcg gcatcgacaa cagcgtgaat cttggtggtc aaaccgccac gggaacgtcc 44940
catacagcca tcgtcttgat cccgctgttt cccgtcgccg catgttggtg gacgcggaca 45000
caggaactgt caatcatgac gacattctat cgaaagcctt ggaaatcaca ctcagaatat 45060
gatcccagac gtctgcctca cgccatcgta caaagcgatt gtagcaggtt gtacaggaac 45120
cgtatcgatc aggaacgtct gcccagggcg ggcccgtccg gaagcgccac aagatgacat 45180
tgatcacccg cgtcaacgcg cggcacgcga cgcggcttat ttgggaacaa aggactgaac 45240
aacagtccat tcgaaatcgg tgacatcaaa gcggggacgg gttatcagtg gcctccaagt 45300
caagcctcaa tgaatcaaaa tcagaccgat ttgcaaacct gatttatgag tgtgcggcct 45360
aaatgatgaa atcgtccttc tagatcgcct ccgtggtgta gcaacacctc gcagtatcgc 45420
cgtgctgacc ttggccaggg aattgactgg caagggtgct ttcacatgac cgctcttttg 45480
gccgcgatag atgatttcgt tgctgctttg ggcacgtaga aggagagaag tcatatcgga 45540
gaaattcctc ctggcgcgag agcctgctct atcgcgacgg catcccactg tcgggaacag 45600
accggatcat tcacgaggcg aaagtcgtca acacatgcgt tataggcatc ttcccttgaa 45660
ggatgatctt gttgctgcca atctggaggt gcggcagccg caggcagatg cgatctcagc 45720
gcaacttgcg gcaaaacatc tcactcacct gaaaaccact agcgagtctc gcgatcagac 45780
gaaggccttt tacttaacga cacaatatcc gatgtctgca tcacaggcgt cgctatccca 45840
gtcaatacta aagcggtgca ggaactaaag attactgatg acttaggcgt gccacgaggc 45900
ctgagacgac gcgcgtagac agttttttga aatcattatc aaagtgatgg cctccgctga 45960
agcctatcac ctctgcgccg gtctgtcgga gagatgggca agcattatta cggtcttcgc 46020
gcccgtacat gcattggacg attgcagggt caatggatct gagatcatcc agaggattgc 46080
cgcccttacc ttccgtttcg agttggagcc agcccctaaa tgagacgaca tagtcgactt 46140
gatgtgacaa tgccaagaga gagatttgct taacccgatt tttttgctca agcgtaagcc 46200
tattgaagct tgccggcatg acgtccgcgc cgaaagaata tcctacaagt aaaacattct 46260
gcacaccgaa atgcttggtg tagacatcga ttatgtgacc aagatcctta gcagtttcgc 46320
ttggggaccg ctccgaccag aaataccgaa gtgaactgac gccaatgaca ggaatccctt 46380
ccgtctgcag ataggtacca tcgatagatc tgctgcctcg cgcgtttcgg tgatgacggt 46440
gaaaacctct gacacatgca gctcccggag acggtcacag cttgtctgta agcggatgcc 46500
gggagcagac aagcccgtca gggcgcgtca gcgggtgttg gcgggtgtcg gggcgcagcc 46560
atgacccagt cacgtagcga tagcggagtg tatactggct taactatgcg gcatcagagc 46620
agattgtact gagagtgcac catatgcggt gtgaaatacc gcacagatgc gtaaggagaa 46680
aataccgcat caggcgctct tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc 46740
ggctgcggcg agcggtatca gctcactcaa aggcggtaat acggttatcc acagaatcag 46800
gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa 46860
aggccgcgtt gctggcgttt ttccataggc tccgcccccc tgacgagcat cacaaaaatc 46920
gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc 46980
ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga tacctgtccg 47040
cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg tatctcagtt 47100
cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc 47160
gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc 47220
cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag 47280
agttcttgaa gtggtggcct aactacggct acactagaag gacagtattt ggtatctgcg 47340
ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa 47400
ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag 47460
gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg aacgaaaact 47520
cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa 47580
attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt 47640
accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt tcatccatag 47700
ttgcctgact ccccgtcgtg tagataacta cgatacggga gggcttacca tctggcccca 47760
gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc 47820
agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt 47880
ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt ttgcgcaacg 47940
ttgttgccat tgctgcaggg gggggggggg ggggggactt ccattgttca ttccacggac 48000
aaaaacagag aaaggaaacg acagaggcca aaaagcctcg ctttcagcac ctgtcgtttc 48060
ctttcttttc agagggtatt ttaaataaaa acattaagtt atgacgaaga agaacggaaa 48120
cgccttaaac cggaaaattt tcataaatag cgaaaacccg cgaggtcgcc gccccgtagt 48180
cggatcaccg gaaaggaccc gtaaagtgat aatgattatc atctacatat cacaacgtgc 48240
gtggaggcca tcaaaccacg tcaaataatc aattatgacg caggtatcgt attaattgat 48300
ctgcatcaac ttaacgtaaa aacaacttca gacaatacaa atcagcgaca ctgaatacgg 48360
ggcaacctca tgtccccccc cccccccccc ctgcaggcat cgtggtgtca cgctcgtcgt 48420
ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca tgatccccca 48480
tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg 48540
ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat 48600
ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta 48660
tgcggcgacc gagttgctct tgcccggcgt caacacggga taataccgcg ccacatagca 48720
gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct 48780
taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat 48840
cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa 48900
agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatattatt 48960
gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa 49020
ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctgac gtctaagaaa 49080
ccattattat catgacatta acctataaaa ataggcgtat cacgaggccc tttcgtcttc 49140
aagaattggt cgacgatctt gctgcgttcg gatattttcg tggagttccc gccacagacc 49200
cggattgaag gcgagatcca gcaactcgcg ccagatcatc ctgtgacgga actttggcgc 49260
gtgatgactg gccaggacgt cggccgaaag agcgacaagc agatcacgct tttcgacagc 49320
gtcggatttg cgatcgagga tttttcggcg ctgcgctacg tccgcgaccg cgttgaggga 49380
tcaagccaca gcagcccact cgaccttcta gccgacccag acgagccaag ggatcttttt 49440
ggaatgctgc tccgtcgtca ggctttccga cgtttgggtg gttgaacaga agtcattatc 49500
gtacggaatg ccaagcactc ccgaggggaa ccctgtggtt ggcatgcaca tacaaatgga 49560
cgaacggata aaccttttca cgccctttta aatatccgtt attctaataa acgctctttt 49620
ctcttaggtt tacccgccaa tatatcctgt caaacactga tagtttaaac tgaaggcggg 49680
aaacgacaat ctgatcatga gcggagaatt aagggagtca cgttatgacc cccgccgatg 49740
acgcgggaca agccgtttta cgtttggaac tgacagaacc gcaacgttga aggagccact 49800
cagcaagctg gtacgattgt aatacgactc actatagggc gaattgagcg ctgtttaaac 49860
gctcttcaac tggaagagcg gttacccgga ccgaagcttg catgcctgca g 49911
<210> SEQ ID NO 7
<211> LENGTH: 36909
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PHP10523 construct
<400> SEQUENCE: 7
tctagagctc gttcctcgag gcctcgaggc ctcgaggaac ggtacctgcg gggaagctta 60
caataatgtg tgttgttaag tcttgttgcc tgtcatcgtc tgactgactt tcgtcataaa 120
tcccggcctc cgtaacccag ctttgggcaa gctcacggat ttgatccggc ggaacgggaa 180
tatcgagatg ccgggctgaa cgctgcagtt ccagctttcc ctttcgggac aggtactcca 240
gctgattgat tatctgctga agggtcttgg ttccacctcc tggcacaatg cgaatgatta 300
cttgagcgcg atcgggcatc caattttctc ccgtcaggtg cgtggtcaag tgctacaagg 360
cacctttcag taacgagcga ccgtcgatcc gtcgccggga tacggacaaa atggagcgca 420
gtagtccatc gagggcggcg aaagcctcgc caaaagcaat acgttcatct cgcacagcct 480
ccagatccga tcgagggtct tcggcgtagg cagatagaag catggataca ttgcttgaga 540
gtattccgat ggactgaagt atggcttcca tcttttctcg tgtgtctgca tctatttcga 600
gaaagccccc gatgcggcgc accgcaacgc gaattgccat actatccgaa agtcccagca 660
ggcgcgcttg ataggaaaag gtttcatact cggccgatcg cagacgggca ctcacgacct 720
tgaacccttc aactttcagg gatcgatgct ggttgatggt agtctcactc gacgtggctc 780
tggtgtgttt tgacatagct tcctccaaag aaagcggaag gtctggatac tccagcacga 840
aatgtgcccg ggtagacgga tggaagtcta gccctgctca atatgaaatc aacagtacat 900
ttacagtcaa tactgaatat acttgctaca tttgcaattg tcttataacg aatgtgaaat 960
aaaaatagtg taacaacgct tttactcatc gataatcaca aaaacattta tacgaacaaa 1020
aatacaaatg cactccggtt tcacaggata ggcgggatca gaatatgcaa cttttgacgt 1080
tttgttcttt caaagggggt gctggcaaaa ccaccgcact catgggcctt tgcgctgctt 1140
tggcaaatga cggtaaacga gtggccctct ttgatgccga cgaaaaccgg cctctgacgc 1200
gatggagaga aaacgcctta caaagcagta ctgggatcct cgctgtgaag tctattccgc 1260
cgacgaaatg ccccttcttg aagcagccta tgaaaatgcc gagctcgaag gatttgatta 1320
tgcgttggcc gatacgcgtg gcggctcgag cgagctcaac aacacaatca tcgctagctc 1380
aaacctgctt ctgatcccca ccatgctaac gccgctcgac atcgatgagg cactatctac 1440
ctaccgctac gtcatcgagc tgctgttgag tgaaaatttg gcaattccta cagctgtttt 1500
gcgccaacgc gtcccggtcg gccgattgac aacatcgcaa cgcaggatgt cagagacgct 1560
agagagcctt ccagttgtac cgtctcccat gcatgaaaga gatgcatttg ccgcgatgaa 1620
agaacgcggc atgttgcatc ttacattact aaacacggga actgatccga cgatgcgcct 1680
catagagagg aatcttcgga ttgcgatgga ggaagtcgtg gtcatttcga aactgatcag 1740
caaaatcttg gaggcttgaa gatggcaatt cgcaagcccg cattgtcggt cggcgaagca 1800
cggcggcttg ctggtgctcg acccgagatc caccatccca acccgacact tgttccccag 1860
aagctggacc tccagcactt gcctgaaaaa gccgacgaga aagaccagca acgtgagcct 1920
ctcgtcgccg atcacattta cagtcccgat cgacaactta agctaactgt ggatgccctt 1980
agtccacctc cgtccccgaa aaagctccag gtttttcttt cagcgcgacc gcccgcgcct 2040
caagtgtcga aaacatatga caacctcgtt cggcaataca gtccctcgaa gtcgctacaa 2100
atgattttaa ggcgcgcgtt ggacgatttc gaaagcatgc tggcagatgg atcatttcgc 2160
gtggccccga aaagttatcc gatcccttca actacagaaa aatccgttct cgttcagacc 2220
tcacgcatgt tcccggttgc gttgctcgag gtcgctcgaa gtcattttga tccgttgggg 2280
ttggagaccg ctcgagcttt cggccacaag ctggctaccg ccgcgctcgc gtcattcttt 2340
gctggagaga agccatcgag caattggtga agagggacct atcggaaccc ctcaccaaat 2400
attgagtgta ggtttgaggc cgctggccgc gtcctcagtc accttttgag ccagataatt 2460
aagagccaaa tgcaattggc tcaggctgcc atcgtccccc cgtgcgaaac ctgcacgtcc 2520
gcgtcaaaga aataaccggc acctcttgct gtttttatca gttgagggct tgacggatcc 2580
gcctcaagtt tgcggcgcag ccgcaaaatg agaacatcta tactcctgtc gtaaacctcc 2640
tcgtcgcgta ctcgactggc aatgagaagt tgctcgcgcg atagaacgtc gcggggtttc 2700
tctaaaaacg cgaggagaag attgaactca cctgccgtaa gtttcacctc accgccagct 2760
tcggacatca agcgacgttg cctgagatta agtgtccagt cagtaaaaca aaaagaccgt 2820
cggtctttgg agcggacaac gttggggcgc acgcgcaagg caacccgaat gcgtgcaaga 2880
aactctctcg tactaaacgg cttagcgata aaatcacttg ctcctagctc gagtgcaaca 2940
actttatccg tctcctcaag gcggtcgcca ctgataatta tgattggaat atcagacttt 3000
gccgccagat ttcgaacgat ctcaagccca tcttcacgac ctaaatttag atcaacaacc 3060
acgacatcga ccgtcgcgga agagagtact ctagtgaact gggtgctgtc ggctaccgcg 3120
gtcactttga aggcgtggat cgtaaggtat tcgataataa gatgccgcat agcgacatcg 3180
tcatcgataa gaagaacgtg tttcaacggc tcacctttca atctaaaatc tgaacccttg 3240
ttcacagcgc ttgagaaatt ttcacgtgaa ggatgtacaa tcatctccag ctaaatgggc 3300
agttcgtcag aattgcggct gaccgcggat gacgaaaatg cgaaccaagt atttcaattt 3360
tatgacaaaa gttctcaatc gttgttacaa gtgaaacgct tcgaggttac agctactatt 3420
gattaaggag atcgcctatg gtctcgcccc ggcgtcgtgc gtccgccgcg agccagatct 3480
cgcctacttc ataaacgtcc tcataggcac ggaatggaat gatgacatcg atcgccgtag 3540
agagcatgtc aatcagtgtg cgatcttcca agctagcacc ttgggcgcta cttttgacaa 3600
gggaaaacag tttcttgaat ccttggattg gattcgcgcc gtgtattgtt gaaatcgatc 3660
ccggatgtcc cgagacgact tcactcagat aagcccatgc tgcatcgtcg cgcatctcgc 3720
caagcaatat ccggtccggc cgcatacgca gacttgcttg gagcaagtgc tcggcgctca 3780
cagcacccag cccagcaccg ttcttggagt agagtagtct aacatgatta tcgtgtggaa 3840
tgacgagttc gagcgtatct tctatggtga ttagcctttc ctgggggggg atggcgctga 3900
tcaaggtctt gctcattgtt gtcttgccgc ttccggtagg gccacatagc aacatcgtca 3960
gtcggctgac gacgcatgcg tgcagaaacg cttccaaatc cccgttgtca aaatgctgaa 4020
ggatagcttc atcatcctga ttttggcgtt tccttcgtgt ctgccactgg ttccacctcg 4080
aagcatcata acgggaggag acttctttaa gaccagaaac acgcgagctt ggccgtcgaa 4140
tggtcaagct gacggtgccc gagggaacgg tcggcggcag acagatttgt agtcgttcac 4200
caccaggaag ttcagtggcg cagagggggt tacgtggtcc gacatcctgc tttctcagcg 4260
cgcccgctaa aatagcgata tcttcaagat catcataaga gacgggcaaa ggcatcttgg 4320
taaaaatgcc ggcttggcgc acaaatgcct ctccaggtcg attgatcgca atttcttcag 4380
tcttcgggtc atcgagccat tccaaaatcg gcttcagaag aaagcgtagt tgcggatcca 4440
cttccattta caatgtatcc tatctctaag cggaaatttg aattcattaa gagcggcggt 4500
tcctcccccg cgtggcgccg ccagtcaggc ggagctggta aacaccaaag aaatcgaggt 4560
cccgtgctac gaaaatggaa acggtgtcac cctgattctt cttcagggtt ggcggtatgt 4620
tgatggttgc cttaagggct gtctcagttg tctgctcacc gttattttga aagctgttga 4680
agctcatccc gccacccgag ctgccggcgt aggtgctagc tgcctggaag gcgccttgaa 4740
caacactcaa gagcatagct ccgctaaaac gctgccagaa gtggctgtcg accgagcccg 4800
gcaatcctga gcgaccgagt tcgtccgcgc ttggcgatgt taacgagatc atcgcatggt 4860
caggtgtctc ggcgcgatcc cacaacacaa aaacgcgccc atctccctgt tgcaagccac 4920
gctgtatttc gccaacaacg gtggtgccac gatcaagaag cacgatattg ttcgttgttc 4980
cacgaatatc ctgaggcaag acacacttta catagcctgc caaatttgtg tcgattgcgg 5040
tttgcaagat gcacggaatt attgtccctt gcgttaccat aaaatcgggg tgcggcaaga 5100
gcgtggcgct gctgggctgc agctcggtgg gtttcatacg tatcgacaaa tcgttctcgc 5160
cggacacttc gccattcggc aaggagttgt cgtcacgctt gccttcttgt cttcggcccg 5220
tgtcgccctg aatggcgcgt ttgctgaccc cttgatcgcc gctgctatat gcaaaaatcg 5280
gtgtttcttc cggccgtggc tcatgccgct ccggttcgcc cctcggcggt agaggagcag 5340
caggctgaac agcctcttga accgctggag gatccggcgg cacctcaatc ggagctggat 5400
gaaatggctt ggtgtttgtt gcgatcaaag ttgacggcga tgcgttctca ttcaccttct 5460
tttggcgccc acctagccaa atgaggctta atgataacgc gagaacgaca cctccgacga 5520
tcaatttctg agaccccgaa agacgccggc gatgtttgtc ggagaccagg gatccagatg 5580
catcaacctc atgtgccgct tgctgactat cgttattcat cccttcgccc ccttcaggac 5640
gcgtttcaca tcgggcctca ccgtgcccgt ttgcggcctt tggccaacgg gatcgtaagc 5700
ggtgttccag atacatagta ctgtgtggcc atccctcaga cgccaacctc gggaaaccga 5760
agaaatctcg acatcgctcc ctttaactga atagttggca acagcttcct tgccatcagg 5820
attgatggtg tagatggagg gtatgcgtac attgcccgga aagtggaata ccgtcgtaaa 5880
tccattgtcg aagacttcga gtggcaacag cgaacgatcg ccttgggcga cgtagtgcca 5940
attactgtcc gccgcaccaa gggctgtgac aggctgatcc aataaattct cagctttccg 6000
ttgatattgt gcttccgcgt gtagtctgtc cacaacagcc ttctgttgtg cctcccttcg 6060
ccgagccgcc gcatcgtcgg cggggtaggc gaattggacg ctgtaataga gatcgggctg 6120
ctctttatcg aggtgggaca gagtcttgga acttatactg aaaacataac ggcgcatccc 6180
ggagtcgctt gcggttagca cgattactgg ctgaggcgtg aggacctggc ttgccttgaa 6240
aaatagataa tttccccgcg gtagggctgc tagatctttg ctatttgaaa cggcaaccgc 6300
tgtcaccgtt tcgttcgtgg cgaatgttac gaccaaagta gctccaaccg ccgtcgagag 6360
gcgcaccact tgatcgggat tgtaagccaa ataacgcatg cgcggatcta gcttgcccgc 6420
cattggagtg tcttcagcct ccgcaccagt cgcagcggca aataaacatg ctaaaatgaa 6480
aagtgctttt ctgatcatgg ttcgctgtgg cctacgtttg aaacggtatc ttccgatgtc 6540
tgataggagg tgacaaccag acctgccggg ttggttagtc tcaatctgcc gggcaagctg 6600
gtcacctttt cgtagcgaac tgtcgcggtc cacgtactca ccacaggcat tttgccgtca 6660
acgacgaggg tccttttata gcgaatttgc tgcgtgcttg gagttacatc atttgaagcg 6720
atgtgctcga cctccaccct gccgcgtttg ccaagaatga cttgaggcga actgggattg 6780
ggatagttga agaattgctg gtaatcctgg cgcactgttg gggcactgaa gttcgatacc 6840
aggtcgtagg cgtactgagc ggtgtcggca tcataactct cgcgcaggcg aacgtactcc 6900
cacaatgagg cgttaacgac ggcctcctct tgagttgcag gcaatcgcga gacagacacc 6960
tcgctgtcaa cggtgccgtc cggccgtatc catagatata cgggcacaag cctgctcaac 7020
ggcaccattg tggctatagc gaacgcttga gcaacatttc ccaaaatcgc gatagctgcg 7080
acagctgcaa tgagtttgga gagacgtcgc gccgatttcg ctcgcgcggt ttgaaaggct 7140
tctacttcct tatagtgctc ggcaaggctt tcgcgcgcca ctagcatggc atattcaggc 7200
cccgtcatag cgtccacccg aattgccgag ctgaagatct gacggagtag gctgccatcg 7260
ccccacattc agcgggaaga tcgggccttt gcagctcgct aatgtgtcgt ttgtctggca 7320
gccgctcaaa gcgacaacta ggcacagcag gcaatacttc atagaattct ccattgaggc 7380
gaatttttgc gcgacctagc ctcgctcaac ctgagcgaag cgacggtaca agctgctggc 7440
agattgggtt gcgccgctcc agtaactgcc tccaatgttg ccggcgatcg ccggcaaagc 7500
gacaatgagc gcatcccctg tcagaaaaaa catatcgagt tcgtaaagac caatgatctt 7560
ggccgcggtc gtaccggcga aggtgattac accaagcata agggtgagcg cagtcgcttc 7620
ggttaggatg acgatcgttg ccacgaggtt taagaggaga agcaagagac cgtaggtgat 7680
aagttgcccg atccacttag ctgcgatgtc ccgcgtgcga tcaaaaatat atccgacgag 7740
gatcagaggc ccgatcgcga gaagcacttt cgtgagaatt ccaacggcgt cgtaaactcc 7800
gaaggcagac cagagcgtgc cgtaaaggac ccactgtgcc ccttggaaag caaggatgtc 7860
ctggtcgttc atcggaccga tttcggatgc gattttctga aaaacggcct gggtcacggc 7920
gaacattgta tccaactgtg ccggaacagt ctgcagaggc aagccggtta cactaaactg 7980
ctgaacaaag tttgggaccg tcttttcgaa gatggaaacc acatagtctt ggtagttagc 8040
ctgcccaaca attagagcaa caacgatggt gaccgtgatc acccgagtga taccgctacg 8100
ggtatcgact tcgccgcgta tgactaaaat accctgaaca ataatccaaa gagtgacaca 8160
ggcgatcaat ggcgcactca ccgcctcctg gatagtctca agcatcgagt ccaagcctgt 8220
cgtgaaggct acatcgaaga tcgtatgaat ggccgtaaac ggcgccggaa tcgtgaaatt 8280
catcgattgg acctgaactt gactggtttg tcgcataatg ttggataaaa tgagctcgca 8340
ttcggcgagg atgcgggcgg atgaacaaat cgcccagcct taggggaggg caccaaagat 8400
gacagcggtc ttttgatgct ccttgcgttg agcggccgcc tcttccgcct cgtgaaggcc 8460
ggcctgcgcg gtagtcatcg ttaataggct tgtcgcctgt acattttgaa tcattgcgtc 8520
atggatctgc ttgagaagca aaccattggt cacggttgcc tgcatgatat tgcgagatcg 8580
ggaaagctga gcagacgtat cagcattcgc cgtcaagcgt ttgtccatcg tttccagatt 8640
gtcagccgca atgccagcgc tgtttgcgga accggtgatc tgcgatcgca acaggtccgc 8700
ttcagcatca ctacccacga ctgcacgatc tgtatcgctg gtgatcgcac gtgccgtggt 8760
cgacattggc attcgcggcg aaaacatttc attgtctagg tccttcgtcg aaggatactg 8820
atttttctgg ttgagcgaag tcagtagtcc agtaacgccg taggccgacg tcaacatcgt 8880
aaccatcgct atagtctgag tgagattctc cgcagtcgcg agcgcagtcg cgagcgtctc 8940
agcctccgtt gccgggtcgc taacaacaaa ctgcgcccgc gcgggctgaa tatatagaaa 9000
gctgcaggtc aaaactgttg caataagttg cgtcgtcttc atcgtttcct accttatcaa 9060
tcttctgcct cgtggtgacg ggccatgaat tcgctgagcc agccagatga gttgccttct 9120
tgtgcctcgc gtagtcgagt tgcaaagcgc accgtgttgg cacgccccga aagcacggcg 9180
acatattcac gcatatcccg cagatcaaat tcgcagatga cgcttccact ttctcgttta 9240
agaagaaact tacggctgcc gaccgtcatg tcttcacgga tcgcctgaaa ttccttttcg 9300
gtacatttca gtccatcgac ataagccgat cgatctgcgg ttggtgatgg atagaaaatc 9360
ttcgtcatac attgcgcaac caagctggct cctagcggcg attccagaac atgctctggt 9420
tgctgcgttg ccagtattag catcccgttg ttttttcgaa cggtcaggag gaatttgtcg 9480
acgacagtcg aaaatttagg gtttaacaaa taggcgcgaa actcatcgca gctcatcaca 9540
aaacggcggc cgtcgatcat ggctccaatc cgatgcagga gatatgctgc agcgggagcg 9600
catacttcct cgtattcgag aagatgcgtc atgtcgaagc cggtaatcga cggatctaac 9660
tttacttcgt caacttcgcc gtcaaatgcc cagccaagcg catggccccg gcaccagcgt 9720
tggagccgcg ctcctgcgcc ttcggcgggc ccatgcaaca aaaattcacg taaccccgcg 9780
attgaacgca tttgtggatc aaacgagagc tgacgatgga taccacggac cagacggcgg 9840
ttctcttccg gagaaatccc accccgacca tcactctcga tgagagccac gatccattcg 9900
cgcagaaaat cgtgtgaggc tgctgtgttt tctaggccac gcaacggcgc caacccgctg 9960
ggtgtgcctc tgtgaagtgc caaatatgtt cctcctgtgg cgcgaaccag caattcgcca 10020
ccccggtcct tgtcaaagaa cacgaccgta cctgcacggt cgaccatgct ctgttcgagc 10080
atggctagaa caaacatcat gagcgtcgtc ttacccctcc cgataggccc gaatattgcc 10140
gtcatgccaa catcgtgctc atgcgggata tagtcgaaag gcgttccgcc attggtacga 10200
aatcgggcaa tcgcgttgcc ccagtggcct gagctggcgc cctctggaaa gttttcgaaa 10260
gagacaaacc ctgcgaaatt gcgtgaagtg attgcgccag ggcgtgtgcg ccacttaaaa 10320
ttccccggca attgggacca ataggccgct tccataccaa taccttcttg gacaaccacg 10380
gcacctgcat ccgccattcg tgtccgagcc cgcgcgcccc tgtccccaag actattgaga 10440
tcgtctgcat agacgcaaag gctcaaatga tgtgagccca taacgaattc gttgctcgca 10500
agtgcgtcct cagcctcgga taatttgccg atttgagtca cggctttatc gccggaactc 10560
agcatctggc tcgatttgag gctaagtttc gcgtgcgctt gcgggcgagt caggaacgaa 10620
aaactctgcg tgagaacaag tggaaaatcg agggatagca gcgcgttgag catgcccggc 10680
cgtgtttttg cagggtattc gcgaaacgaa tagatggatc caacgtaact gtcttttggc 10740
gttctgatct cgagtcctcg cttgccgcaa atgactctgt cggtataaat cgaagcgccg 10800
agtgagccgc tgacgaccgg aaccggtgtg aaccgaccag tcatgatcaa ccgtagcgct 10860
tcgccaattt cggtgaagag cacaccctgc ttctcgcgga tgccaagacg atgcaggcca 10920
tacgctttaa gagagccagc gacaacatgc caaagatctt ccatgttcct gatctggccc 10980
gtgagatcgt tttccctttt tccgcttagc ttggtgaacc tcctctttac cttccctaaa 11040
gccgcctgtg ggtagacaat caacgtaagg aagtgttcat tgcggaggag ttggccggag 11100
agcacgcgct gttcaaaagc ttcgttcagg ctagcggcga aaacactacg gaagtgtcgc 11160
ggcgccgatg atggcacgtc ggcatgacgt acgaggtgag catatattga cacatgatca 11220
tcagcgatat tgcgcaacag cgtgttgaac gcacgacaac gcgcattgcg catttcagtt 11280
tcctcaagct cgaatgcaac gccatcaatt ctcgcaatgg tcatgatcga tccgtcttca 11340
agaaggacga tatggtcgct gaggtggcca atataaggga gatagatctc accggatctt 11400
tcggtcgttc cactcgcgcc gagcatcaca ccattcctct ccctcgtggg ggaaccctaa 11460
ttggatttgg gctaacagta gcgccccccc aaactgcact atcaatgctt cttcccgcgg 11520
tccgcaaaaa tagcaggacg acgctcgccg cattgtagtc tcgctccacg atgagccggg 11580
ctgcaaacca taacggcacg agaacgactt cgtagagcgg gttctgaacg ataacgatga 11640
caaagccggc gaacatcatg aataaccctg ccaatgtcag tggcacccca agaaacaatg 11700
cgggccgtgt ggctgcgagg taaagggtcg attcttccaa acgatcagcc atcaactacc 11760
gccagtgagc gtttggccga ggaagctcgc cccaaacatg ataacaatgc cgccgacgac 11820
gccggcaacc agcccaagcg aagcccgccc gaacatccag gagatcccga tagcgacaat 11880
gccgagaaca gcgagtgact ggccgaacgg accaaggata aacgtgcata tattgttaac 11940
cattgtggcg gggtcagtgc cgccacccgc agattgcgct gcggcgggtc cggatgagga 12000
aatgctccat gcaattgcac cgcacaagct tggggcgcag ctcgatatca cgcgcatcat 12060
cgcattcgag agcgagaggc gatttagatg taaacggtat ctctcaaagc atcgcatcaa 12120
tgcgcacctc cttagtataa gtcgaataag acttgattgt cgtctgcgga tttgccgttg 12180
tcctggtgtg gcggtggcgg agcgattaaa ccgccagcgc catcctcctg cgagcggcgc 12240
tgatatgacc cccaaacatc ccacgtctct tcggatttta gcgcctcgtg atcgtctttt 12300
ggaggctcga ttaacgcggg caccagcgat tgagcagctg tttcaacttt tcgcacgtag 12360
ccgtttgcaa aaccgccgat gaaattaccg gtgttgtaag cggagatcgc ccgacgaagc 12420
gcaaattgct tctcgtcaat cgtttcgccg cctgcataac gacttttcag catgtttgca 12480
gcggcagata atgatgtgca cgcctggagc gcaccgtcag gtgtcagacc gagcatagaa 12540
aaatttcgag agtttatttg catgaggcca acatccagcg aatgccgtgc atcgagacgg 12600
tgcctgacga cttgggttgc ttggctgtga tcttgccagt gaagcgtttc gccggtcgtg 12660
ttgtcatgaa tcgctaaagg atcaaagcga ctctccacct tagctatcgc cgcaagcgta 12720
gatgtcgcaa ctgatggggc acacttgcga gcaacatggt caaactcagc agatgagagt 12780
ggcgtggcaa ggctcgacga acagaaggag accatcaagg caagagaaag cgaccccgat 12840
ctcttaagca taccttatct ccttagctcg caactaacac cgcctctccc gttggaagaa 12900
gtgcgttgtt ttatgttgaa gattatcggg agggtcggtt actcgaaaat tttcaattgc 12960
ttctttatga tttcaattga agcgagaaac ctcgcccggc gtcttggaac gcaacatgga 13020
ccgagaaccg cgcatccatg actaagcaac cggatcgacc tattcaggcc gcagttggtc 13080
aggtcaggct cagaacgaaa atgctcggcg aggttacgct gtctgtaaac ccattcgatg 13140
aacgggaagc ttccttccga ttgctcttgg caggaatatt ggcccatgcc tgcttgcgct 13200
ttgcaaatgc tcttatcgcg ttggtatcat atgccttgtc cgccagcaga aacgcactct 13260
aagcgattat ttgtaaaaat gtttcggtca tgcggcggtc atgggcttga cccgctgtca 13320
gcgcaagacg gatcggtcaa ccgtcggcat cgacaacagc gtgaatcttg gtggtcaaac 13380
cgccacggga acgtcccata cagccatcgt cttgatcccg ctgtttcccg tcgccgcatg 13440
ttggtggacg cggacacagg aactgtcaat catgacgaca ttctatcgaa agccttggaa 13500
atcacactca gaatatgatc ccagacgtct gcctcacgcc atcgtacaaa gcgattgtag 13560
caggttgtac aggaaccgta tcgatcagga acgtctgccc agggcgggcc cgtccggaag 13620
cgccacaaga tgacattgat cacccgcgtc aacgcgcggc acgcgacgcg gcttatttgg 13680
gaacaaagga ctgaacaaca gtccattcga aatcggtgac atcaaagcgg ggacgggtta 13740
tcagtggcct ccaagtcaag cctcaatgaa tcaaaatcag accgatttgc aaacctgatt 13800
tatgagtgtg cggcctaaat gatgaaatcg tccttctaga tcgcctccgt ggtgtagcaa 13860
cacctcgcag tatcgccgtg ctgaccttgg ccagggaatt gactggcaag ggtgctttca 13920
catgaccgct cttttggccg cgatagatga tttcgttgct gctttgggca cgtagaagga 13980
gagaagtcat atcggagaaa ttcctcctgg cgcgagagcc tgctctatcg cgacggcatc 14040
ccactgtcgg gaacagaccg gatcattcac gaggcgaaag tcgtcaacac atgcgttata 14100
ggcatcttcc cttgaaggat gatcttgttg ctgccaatct ggaggtgcgg cagccgcagg 14160
cagatgcgat ctcagcgcaa cttgcggcaa aacatctcac tcacctgaaa accactagcg 14220
agtctcgcga tcagacgaag gccttttact taacgacaca atatccgatg tctgcatcac 14280
aggcgtcgct atcccagtca atactaaagc ggtgcaggaa ctaaagatta ctgatgactt 14340
aggcgtgcca cgaggcctga gacgacgcgc gtagacagtt ttttgaaatc attatcaaag 14400
tgatggcctc cgctgaagcc tatcacctct gcgccggtct gtcggagaga tgggcaagca 14460
ttattacggt cttcgcgccc gtacatgcat tggacgattg cagggtcaat ggatctgaga 14520
tcatccagag gattgccgcc cttaccttcc gtttcgagtt ggagccagcc cctaaatgag 14580
acgacatagt cgacttgatg tgacaatgcc aagagagaga tttgcttaac ccgatttttt 14640
tgctcaagcg taagcctatt gaagcttgcc ggcatgacgt ccgcgccgaa agaatatcct 14700
acaagtaaaa cattctgcac accgaaatgc ttggtgtaga catcgattat gtgaccaaga 14760
tccttagcag tttcgcttgg ggaccgctcc gaccagaaat accgaagtga actgacgcca 14820
atgacaggaa tcccttccgt ctgcagatag gtaccatcga tagatctgct gcctcgcgcg 14880
tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg tcacagcttg 14940
tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg gtgttggcgg 15000
gtgtcggggc gcagccatga cccagtcacg tagcgatagc ggagtgtata ctggcttaac 15060
tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga aataccgcac 15120
agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct cactgactcg 15180
ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg 15240
ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag 15300
gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg cccccctgac 15360
gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga 15420
taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt 15480
accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc 15540
tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc 15600
cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta 15660
agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat 15720
gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca 15780
gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct 15840
tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt 15900
acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct 15960
cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa aaggatcttc 16020
acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa 16080
acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc gatctgtcta 16140
tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat acgggagggc 16200
ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc ggctccagat 16260
ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc tgcaacttta 16320
tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag ttcgccagtt 16380
aatagtttgc gcaacgttgt tgccattgct gcaggggggg gggggggggg gttccattgt 16440
tcattccacg gacaaaaaca gagaaaggaa acgacagagg ccaaaaagct cgctttcagc 16500
acctgtcgtt tcctttcttt tcagagggta ttttaaataa aaacattaag ttatgacgaa 16560
gaagaacgga aacgccttaa accggaaaat tttcataaat agcgaaaacc cgcgaggtcg 16620
ccgccccgta acctgtcgga tcaccggaaa ggacccgtaa agtgataatg attatcatct 16680
acatatcaca acgtgcgtgg aggccatcaa accacgtcaa ataatcaatt atgacgcagg 16740
tatcgtatta attgatctgc atcaacttaa cgtaaaaaca acttcagaca atacaaatca 16800
gcgacactga atacggggca acctcatgtc cccccccccc ccccccctgc aggcatcgtg 16860
gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg gttcccaacg atcaaggcga 16920
gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt 16980
gtcagaagta agttggccgc agtgttatca ctcatggtta tggcagcact gcataattct 17040
cttactgtca tgccatccgt aagatgcttt tctgtgactg gtgagtactc aaccaagtca 17100
ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaac acgggataat 17160
accgcgccac atagcagaac tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga 17220
aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac tcgtgcaccc 17280
aactgatctt cagcatcttt tactttcacc agcgtttctg ggtgagcaaa aacaggaagg 17340
caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact catactcttc 17400
ctttttcaat attattgaag catttatcag ggttattgtc tcatgagcgg atacatattt 17460
gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg aaaagtgcca 17520
cctgacgtct aagaaaccat tattatcatg acattaacct ataaaaatag gcgtatcacg 17580
aggccctttc gtcttcaaga attcggagct tttgccattc tcaccggatt cagtcgtcac 17640
tcatggtgat ttctcacttg ataaccttat ttttgacgag gggaaattaa taggttgtat 17700
tgatgttgga cgagtcggaa tcgcagaccg ataccaggat cttgccatcc tatggaactg 17760
cctcggtgag ttttctcctt cattacagaa acggcttttt caaaaatatg gtattgataa 17820
tcctgatatg aataaattgc agtttcattt gatgctcgat gagtttttct aatcagaatt 17880
ggttaattgg ttgtaacact ggcagagcat tacgctgact tgacgggacg gcggctttgt 17940
tgaataaatc gaacttttgc tgagttgaag gatcagatca cgcatcttcc cgacaacgca 18000
gaccgttccg tggcaaagca aaagttcaaa atcaccaact ggtccaccta caacaaagct 18060
ctcatcaacc gtggctccct cactttctgg ctggatgatg gggcgattca ggcctggtat 18120
gagtcagcaa caccttcttc acgaggcaga cctcagcgcc agaaggccgc cagagaggcc 18180
gagcgcggcc gtgaggcttg gacgctaggg cagggcatga aaaagcccgt agcgggctgc 18240
tacgggcgtc tgacgcggtg gaaaggggga ggggatgttg tctacatggc tctgctgtag 18300
tgagtgggtt gcgctccggc agcggtcctg atcaatcgtc accctttctc ggtccttcaa 18360
cgttcctgac aacgagcctc cttttcgcca atccatcgac aatcaccgcg agtccctgct 18420
cgaacgctgc gtccggaccg gcttcgtcga aggcgtctat cgcggcccgc aacagcggcg 18480
agagcggagc ctgttcaacg gtgccgccgc gctcgccggc atcgctgtcg ccggcctgct 18540
cctcaagcac ggccccaaca gtgaagtagc tgattgtcat cagcgcattg acggcgtccc 18600
cggccgaaaa acccgcctcg cagaggaagc gaagctgcgc gtcggccgtt tccatctgcg 18660
gtgcgcccgg tcgcgtgccg gcatggatgc gcgcgccatc gcggtaggcg agcagcgcct 18720
gcctgaagct gcgggcattc ccgatcagaa atgagcgcca gtcgtcgtcg gctctcggca 18780
ccgaatgcgt atgattctcc gccagcatgg cttcggccag tgcgtcgagc agcgcccgct 18840
tgttcctgaa gtgccagtaa agcgccggct gctgaacccc caaccgttcc gccagtttgc 18900
gtgtcgtcag accgtctacg ccgacctcgt tcaacaggtc cagggcggca cggatcactg 18960
tattcggctg caactttgtc atgcttgaca ctttatcact gataaacata atatgtccac 19020
caacttatca gtgataaaga atccgcgcgt tcaatcggac cagcggaggc tggtccggag 19080
gccagacgtg aaacccaaca tacccctgat cgtaattctg agcactgtcg cgctcgacgc 19140
tgtcggcatc ggcctgatta tgccggtgct gccgggcctc ctgcgcgatc tggttcactc 19200
gaacgacgtc accgcccact atggcattct gctggcgctg tatgcgttgg tgcaatttgc 19260
ctgcgcacct gtgctgggcg cgctgtcgga tcgtttcggg cggcggccaa tcttgctcgt 19320
ctcgctggcc ggcgccactg tcgactacgc catcatggcg acagcgcctt tcctttgggt 19380
tctctatatc gggcggatcg tggccggcat caccggggcg actggggcgg tagccggcgc 19440
ttatattgcc gatatcactg atggcgatga gcgcgcgcgg cacttcggct tcatgagcgc 19500
ctgtttcggg ttcgggatgg tcgcgggacc tgtgctcggt gggctgatgg gcggtttctc 19560
cccccacgct ccgttcttcg ccgcggcagc cttgaacggc ctcaatttcc tgacgggctg 19620
tttccttttg ccggagtcgc acaaaggcga acgccggccg ttacgccggg aggctctcaa 19680
cccgctcgct tcgttccggt gggcccgggg catgaccgtc gtcgccgccc tgatggcggt 19740
cttcttcatc atgcaacttg tcggacaggt gccggccgcg ctttgggtca ttttcggcga 19800
ggatcgcttt cactgggacg cgaccacgat cggcatttcg cttgccgcat ttggcattct 19860
gcattcactc gcccaggcaa tgatcaccgg ccctgtagcc gcccggctcg gcgaaaggcg 19920
ggcactcatg ctcggaatga ttgccgacgg cacaggctac atcctgcttg ccttcgcgac 19980
acggggatgg atggcgttcc cgatcatggt cctgcttgct tcgggtggca tcggaatgcc 20040
ggcgctgcaa gcaatgttgt ccaggcaggt ggatgaggaa cgtcaggggc agctgcaagg 20100
ctcactggcg gcgctcacca gcctgacctc gatcgtcgga cccctcctct tcacggcgat 20160
ctatgcggct tctataacaa cgtggaacgg gtgggcatgg attgcaggcg ctgccctcta 20220
cttgctctgc ctgccggcgc tgcgtcgcgg gctttggagc ggcgcagggc aacgagccga 20280
tcgctgatcg tggaaacgat aggcctatgc catgcgggtc aaggcgactt ccggcaagct 20340
atacgcgccc taggagtgcg gttggaacgt tggcccagcc agatactccc gatcacgagc 20400
aggacgccga tgatttgaag cgcactcagc gtctgatcca agaacaacca tcctagcaac 20460
acggcggtcc ccgggctgag aaagcccagt aaggaaacaa ctgtaggttc gagtcgcgag 20520
atcccccgga accaaaggaa gtaggttaaa cccgctccga tcaggccgag ccacgccagg 20580
ccgagaacat tggttcctgt aggcatcggg attggcggat caaacactaa agctactgga 20640
acgagcagaa gtcctccggc cgccagttgc caggcggtaa aggtgagcag aggcacggga 20700
ggttgccact tgcgggtcag cacggttccg aacgccatgg aaaccgcccc cgccaggccc 20760
gctgcgacgc cgacaggatc tagcgctgcg tttggtgtca acaccaacag cgccacgccc 20820
gcagttccgc aaatagcccc caggaccgcc atcaatcgta tcgggctacc tagcagagcg 20880
gcagagatga acacgaccat cagcggctgc acagcgccta ccgtcgccgc gaccccgccc 20940
ggcaggcggt agaccgaaat aaacaacaag ctccagaata gcgaaatatt aagtgcgccg 21000
aggatgaaga tgcgcatcca ccagattccc gttggaatct gtcggacgat catcacgagc 21060
aataaacccg ccggcaacgc ccgcagcagc ataccggcga cccctcggcc tcgctgttcg 21120
ggctccacga aaacgccgga cagatgcgcc ttgtgagcgt ccttggggcc gtcctcctgt 21180
ttgaagaccg acagcccaat gatctcgccg tcgatgtagg cgccgaatgc cacggcatct 21240
cgcaaccgtt cagcgaacgc ctccatgggc tttttctcct cgtgctcgta aacggacccg 21300
aacatctctg gagctttctt cagggccgac aatcggatct cgcggaaatc ctgcacgtcg 21360
gccgctccaa gccgtcgaat ctgagcctta atcacaattg tcaattttaa tcctctgttt 21420
atcggcagtt cgtagagcgc gccgtgcgtc ccgagcgata ctgagcgaag caagtgcgtc 21480
gagcagtgcc cgcttgttcc tgaaatgcca gtaaagcgct ggctgctgaa cccccagccg 21540
gaactgaccc cacaaggccc tagcgtttgc aatgcaccag gtcatcattg acccaggcgt 21600
gttccaccag gccgctgcct cgcaactctt cgcaggcttc gccgacctgc tcgcgccact 21660
tcttcacgcg ggtggaatcc gatccgcaca tgaggcggaa ggtttccagc ttgagcgggt 21720
acggctcccg gtgcgagctg aaatagtcga acatccgtcg ggccgtcggc gacagcttgc 21780
ggtacttctc ccatatgaat ttcgtgtagt ggtcgccagc aaacagcacg acgatttcct 21840
cgtcgatcag gacctggcaa cgggacgttt tcttgccacg gtccaggacg cggaagcggt 21900
gcagcagcga caccgattcc aggtgcccaa cgcggtcgga cgtgaagccc atcgccgtcg 21960
cctgtaggcg cgacaggcat tcctcggcct tcgtgtaata ccggccattg atcgaccagc 22020
ccaggtcctg gcaaagctcg tagaacgtga aggtgatcgg ctcgccgata ggggtgcgct 22080
tcgcgtactc caacacctgc tgccacacca gttcgtcatc gtcggcccgc agctcgacgc 22140
cggtgtaggt gatcttcacg tccttgttga cgtggaaaat gaccttgttt tgcagcgcct 22200
cgcgcgggat tttcttgttg cgcgtggtga acagggcaga gcgggccgtg tcgtttggca 22260
tcgctcgcat cgtgtccggc cacggcgcaa tatcgaacaa ggaaagctgc atttccttga 22320
tctgctgctt cgtgtgtttc agcaacgcgg cctgcttggc ctcgctgacc tgttttgcca 22380
ggtcctcgcc ggcggttttt cgcttcttgg tcgtcatagt tcctcgcgtg tcgatggtca 22440
tcgacttcgc caaacctgcc gcctcctgtt cgagacgacg cgaacgctcc acggcggccg 22500
atggcgcggg cagggcaggg ggagccagtt gcacgctgtc gcgctcgatc ttggccgtag 22560
cttgctggac catcgagccg acggactgga aggtttcgcg gggcgcacgc atgacggtgc 22620
ggcttgcgat ggtttcggca tcctcggcgg aaaaccccgc gtcgatcagt tcttgcctgt 22680
atgccttccg gtcaaacgtc cgattcattc accctccttg cgggattgcc ccgactcacg 22740
ccggggcaat gtgcccttat tcctgatttg acccgcctgg tgccttggtg tccagataat 22800
ccaccttatc ggcaatgaag tcggtcccgt agaccgtctg gccgtccttc tcgtacttgg 22860
tattccgaat cttgccctgc acgaatacca gcgacccctt gcccaaatac ttgccgtggg 22920
cctcggcctg agagccaaaa cacttgatgc ggaagaagtc ggtgcgctcc tgcttgtcgc 22980
cggcatcgtt gcgccactct tcattaaccg ctatatcgaa aattgcttgc ggcttgttag 23040
aattgccatg acgtacctcg gtgtcacggg taagattacc gataaactgg aactgattat 23100
ggctcatatc gaaagtctcc ttgagaaagg agactctagt ttagctaaac attggttccg 23160
ctgtcaagaa ctttagcggc taaaattttg cgggccgcga ccaaaggtgc gaggggcggc 23220
ttccgctgtg tacaaccaga tatttttcac caacatcctt cgtctgctcg atgagcgggg 23280
catgacgaaa catgagctgt cggagagggc aggggtttca atttcgtttt tatcagactt 23340
aaccaacggt aaggccaacc cctcgttgaa ggtgatggag gccattgccg acgccctgga 23400
aactccccta cctcttctcc tggagtccac cgaccttgac cgcgaggcac tcgcggagat 23460
tgcgggtcat cctttcaaga gcagcgtgcc gcccggatac gaacgcatca gtgtggtttt 23520
gccgtcacat aaggcgttta tcgtaaagaa atggggcgac gacacccgaa aaaagctgcg 23580
tggaaggctc tgacgccaag ggttagggct tgcacttcct tctttagccg ctaaaacggc 23640
cccttctctg cgggccgtcg gctcgcgcat catatcgaca tcctcaacgg aagccgtgcc 23700
gcgaatggca tcgggcgggt gcgctttgac agttgttttc tatcagaacc cctacgtcgt 23760
gcggttcgat tagctgtttg tcttgcaggc taaacacttt cggtatatcg tttgcctgtg 23820
cgataatgtt gctaatgatt tgttgcgtag gggttactga aaagtgagcg ggaaagaaga 23880
gtttcagacc atcaaggagc gggccaagcg caagctggaa cgcgacatgg gtgcggacct 23940
gttggccgcg ctcaacgacc cgaaaaccgt tgaagtcatg ctcaacgcgg acggcaaggt 24000
gtggcacgaa cgccttggcg agccgatgcg gtacatctgc gacatgcggc ccagccagtc 24060
gcaggcgatt atagaaacgg tggccggatt ccacggcaaa gaggtcacgc ggcattcgcc 24120
catcctggaa ggcgagttcc ccttggatgg cagccgcttt gccggccaat tgccgccggt 24180
cgtggccgcg ccaacctttg cgatccgcaa gcgcgcggtc gccatcttca cgctggaaca 24240
gtacgtcgag gcgggcatca tgacccgcga gcaatacgag gtcattaaaa gcgccgtcgc 24300
ggcgcatcga aacatcctcg tcattggcgg tactggctcg ggcaagacca cgctcgtcaa 24360
cgcgatcatc aatgaaatgg tcgccttcaa cccgtctgag cgcgtcgtca tcatcgagga 24420
caccggcgaa atccagtgcg ccgcagagaa cgccgtccaa taccacacca gcatcgacgt 24480
ctcgatgacg ctgctgctca agacaacgct gcgtatgcgc cccgaccgca tcctggtcgg 24540
tgaggtacgt ggccccgaag cccttgatct gttgatggcc tggaacaccg ggcatgaagg 24600
aggtgccgcc accctgcacg caaacaaccc caaagcgggc ctgagccggc tcgccatgct 24660
tatcagcatg cacccggatt caccgaaacc cattgagccg ctgattggcg aggcggttca 24720
tgtggtcgtc catatcgcca ggacccctag cggccgtcga gtgcaagaaa ttctcgaagt 24780
tcttggttac gagaacggcc agtacatcac caaaaccctg taaggagtat ttccaatgac 24840
aacggctgtt ccgttccgtc tgaccatgaa tcgcggcatt ttgttctacc ttgccgtgtt 24900
cttcgttctc gctctcgcgt tatccgcgca tccggcgatg gcctcggaag gcaccggcgg 24960
cagcttgcca tatgagagct ggctgacgaa cctgcgcaac tccgtaaccg gcccggtggc 25020
cttcgcgctg tccatcatcg gcatcgtcgt cgccggcggc gtgctgatct tcggcggcga 25080
actcaacgcc ttcttccgaa ccctgatctt cctggttctg gtgatggcgc tgctggtcgg 25140
cgcgcagaac gtgatgagca ccttcttcgg tcgtggtgcc gaaatcgcgg ccctcggcaa 25200
cggggcgctg caccaggtgc aagtcgcggc ggcggatgcc gtgcgtgcgg tagcggctgg 25260
acggctcgcc taatcatggc tctgcgcacg atccccatcc gtcgcgcagg caaccgagaa 25320
aacctgttca tgggtggtga tcgtgaactg gtgatgttct cgggcctgat ggcgtttgcg 25380
ctgattttca gcgcccaaga gctgcgggcc accgtggtcg gtctgatcct gtggttcggg 25440
gcgctctatg cgttccgaat catggcgaag gccgatccga agatgcggtt cgtgtacctg 25500
cgtcaccgcc ggtacaagcc gtattacccg gcccgctcga ccccgttccg cgagaacacc 25560
aatagccaag ggaagcaata ccgatgatcc aagcaattgc gattgcaatc gcgggcctcg 25620
gcgcgcttct gttgttcatc ctctttgccc gcatccgcgc ggtcgatgcc gaactgaaac 25680
tgaaaaagca tcgttccaag gacgccggcc tggccgatct gctcaactac gccgctgtcg 25740
tcgatgacgg cgtaatcgtg ggcaagaacg gcagctttat ggctgcctgg ctgtacaagg 25800
gcgatgacaa cgcaagcagc accgaccagc agcgcgaagt agtgtccgcc cgcatcaacc 25860
aggccctcgc gggcctggga agtgggtgga tgatccatgt ggacgccgtg cggcgtcctg 25920
ctccgaacta cgcggagcgg ggcctgtcgg cgttccctga ccgtctgacg gcagcgattg 25980
aagaagagcg ctcggtcttg ccttgctcgt cggtgatgta cttcaccagc tccgcgaagt 26040
cgctcttctt gatggagcgc atggggacgt gcttggcaat cacgcgcacc ccccggccgt 26100
tttagcggct aaaaaagtca tggctctgcc ctcgggcgga ccacgcccat catgaccttg 26160
ccaagctcgt cctgcttctc ttcgatcttc gccagcaggg cgaggatcgt ggcatcaccg 26220
aaccgcgccg tgcgcgggtc gtcggtgagc cagagtttca gcaggccgcc caggcggccc 26280
aggtcgccat tgatgcgggc cagctcgcgg acgtgctcat agtccacgac gcccgtgatt 26340
ttgtagccct ggccgacggc cagcaggtag gccgacaggc tcatgccggc cgccgccgcc 26400
ttttcctcaa tcgctcttcg ttcgtctgga aggcagtaca ccttgatagg tgggctgccc 26460
ttcctggttg gcttggtttc atcagccatc cgcttgccct catctgttac gccggcggta 26520
gccggccagc ctcgcagagc aggattcccg ttgagcaccg ccaggtgcga ataagggaca 26580
gtgaagaagg aacacccgct cgcgggtggg cctacttcac ctatcctgcc cggctgacgc 26640
cgttggatac accaaggaaa gtctacacga accctttggc aaaatcctgt atatcgtgcg 26700
aaaaaggatg gatataccga aaaaatcgct ataatgaccc cgaagcaggg ttatgcagcg 26760
gaaaagcgct gcttccctgc tgttttgtgg aatatctacc gactggaaac aggcaaatgc 26820
aggaaattac tgaactgagg ggacaggcga gagacgatgc caaagagcta caccgacgag 26880
ctggccgagt gggttgaatc ccgcgcggcc aagaagcgcc ggcgtgatga ggctgcggtt 26940
gcgttcctgg cggtgagggc ggatgtcgag gcggcgttag cgtccggcta tgcgctcgtc 27000
accatttggg agcacatgcg ggaaacgggg aaggtcaagt tctcctacga gacgttccgc 27060
tcgcacgcca ggcggcacat caaggccaag cccgccgatg tgcccgcacc gcaggccaag 27120
gctgcggaac ccgcgccggc acccaagacg ccggagccac ggcggccgaa gcaggggggc 27180
aaggctgaaa agccggcccc cgctgcggcc ccgaccggct tcaccttcaa cccaacaccg 27240
gacaaaaagg atctactgta atggcgaaaa ttcacatggt tttgcagggc aagggcgggg 27300
tcggcaagtc ggccatcgcc gcgatcattg cgcagtacaa gatggacaag gggcagacac 27360
ccttgtgcat cgacaccgac ccggtgaacg cgacgttcga gggctacaag gccctgaacg 27420
tccgccggct gaacatcatg gccggcgacg aaattaactc gcgcaacttc gacaccctgg 27480
tcgagctgat tgcgccgacc aaggatgacg tggtgatcga caacggtgcc agctcgttcg 27540
tgcctctgtc gcattacctc atcagcaacc aggtgccggc tctgctgcaa gaaatggggc 27600
atgagctggt catccatacc gtcgtcaccg gcggccaggc tctcctggac acggtgagcg 27660
gcttcgccca gctcgccagc cagttcccgg ccgaagcgct tttcgtggtc tggctgaacc 27720
cgtattgggg gcctatcgag catgagggca agagctttga gcagatgaag gcgtacacgg 27780
ccaacaaggc ccgcgtgtcg tccatcatcc agattccggc cctcaaggaa gaaacctacg 27840
gccgcgattt cagcgacatg ctgcaagagc ggctgacgtt cgaccaggcg ctggccgatg 27900
aatcgctcac gatcatgacg cggcaacgcc tcaagatcgt gcggcgcggc ctgtttgaac 27960
agctcgacgc ggcggccgtg ctatgagcga ccagattgaa gagctgatcc gggagattgc 28020
ggccaagcac ggcatcgccg tcggccgcga cgacccggtg ctgatcctgc ataccatcaa 28080
cgcccggctc atggccgaca gtgcggccaa gcaagaggaa atccttgccg cgttcaagga 28140
agagctggaa gggatcgccc atcgttgggg cgaggacgcc aaggccaaag cggagcggat 28200
gctgaacgcg gccctggcgg ccagcaagga cgcaatggcg aaggtaatga aggacagcgc 28260
cgcgcaggcg gccgaagcga tccgcaggga aatcgacgac ggccttggcc gccagctcgc 28320
ggccaaggtc gcggacgcgc ggcgcgtggc gatgatgaac atgatcgccg gcggcatggt 28380
gttgttcgcg gccgccctgg tggtgtgggc ctcgttatga atcgcagagg cgcagatgaa 28440
aaagcccggc gttgccgggc tttgtttttg cgttagctgg gcttgtttga caggcccaag 28500
ctctgactgc gcccgcgctc gcgctcctgg gcctgtttct tctcctgctc ctgcttgcgc 28560
atcagggcct ggtgccgtcg ggctgcttca cgcatcgaat cccagtcgcc ggccagctcg 28620
ggatgctccg cgcgcatctt gcgcgtcgcc agttcctcga tcttgggcgc gtgaatgccc 28680
atgccttcct tgatttcgcg caccatgtcc agccgcgtgt gcagggtctg caagcgggct 28740
tgctgttggg cctgctgctg ctgccaggcg gcctttgtac gcggcaggga cagcaagccg 28800
ggggcattgg actgtagctg ctgcaaacgc gcctgctgac ggtctacgag ctgttctagg 28860
cggtcctcga tgcgctccac ctggtcatgc tttgcctgca cgtagagcgc aagggtctgc 28920
tggtaggtct gctcgatggg cgcggattct aagagggcct gctgttccgt ctcggcctcc 28980
tgggccgcct gtagcaaatc ctcgccgctg ttgccgctgg actgctttac tgccggggac 29040
tgctgttgcc ctgctcgcgc cgtcgtcgca gttcggcttg cccccactcg attgactgct 29100
tcatttcgag ccgcagcgat gcgatctcgg attgcgtcaa cggacggggc agcgcggagg 29160
tgtccggctt ctccttgggt gagtcggtcg atgccatagc caaaggtttc cttccaaaat 29220
gcgtccattg ctggaccgtg tttctcattg atgcccgcaa gcatcttcgg cttgaccgcc 29280
aggtcaagcg cgccttcatg ggcggtcatg acggacgccg ccatgacctt gccgccgttg 29340
ttctcgatgt agccgcgtaa tgaggcaatg gtgccgccca tcgtcagcgt gtcatcgaca 29400
acgatgtact tctggccggg gatcacctcc ccctcgaaag tcgggttgaa cgccaggcga 29460
tgatctgaac cggctccggt tcgggcgacc ttctcccgct gcacaatgtc cgtttcgacc 29520
tcaaggccaa ggcggtcggc cagaacgacc gccatcatgg ccggaatctt gttgttcccc 29580
gccgcctcga cggcgaggac tggaacgatg cggggcttgt cgtcgccgat cagcgtcttg 29640
agctgggcaa cagtgtcgtc cgaaatcagg cgctcgacca aattaagcgc cgcttccgcg 29700
tcgccctgct tcgcagcctg gtattcaggc tcgttggtca aagaaccaag gtcgccgttg 29760
cgaaccacct tcgggaagtc tccccacggt gcgcgctcgg ctctgctgta gctgctcaag 29820
acgcctccct ttttagccgc taaaactcta acgagtgcgc ccgcgactca acttgacgct 29880
ttcggcactt acctgtgcct tgccacttgc gtcataggtg atgcttttcg cactcccgat 29940
ttcaggtact ttatcgaaat ctgaccgggc gtgcattaca aagttcttcc ccacctgttg 30000
gtaaatgctg ccgctatctg cgtggacgat gctgccgtcg tggcgctgcg acttatcggc 30060
cttttgggcc atatagatgt tgtaaatgcc aggtttcagg gccccggctt tatctacctt 30120
ctggttcgtc catgcgcctt ggttctcggt ctggacaatt ctttgcccat tcatgaccag 30180
gaggcggtgt ttcattgggt gactcctgac ggttgcctct ggtgttaaac gtgtcctggt 30240
cgcttgccgg ctaaaaaaaa gccgacctcg gcagttcgag gccggctttc cctagagccg 30300
ggcgcgtcaa ggttgttcca tctattttag tgaactgcgt tcgatttatc agttactttc 30360
ctcccgcttt gtgtttcctc ccactcgttt ccgcgtctag ccgacccctc aacatagcgg 30420
cctcttcttg ggctgccttt gcctcttgcc gcgcttcgtc acgctcggct tgcaccgtcg 30480
taaagcgctc ggcctgcctg gccgcctctt gcgccgccaa cttcctttgc tcctggtggg 30540
cctcggcgtc ggcctgcgcc ttcgctttca ccgctgccaa ctccgtgcgc aaactctccg 30600
cttcgcgcct ggtggcgtcg cgctcgccgc gaagcgcctg catttcctgg ttggccgcgt 30660
ccagggtctt gcggctctct tctttgaatg cgcgggcgtc ctggtgagcg tagtccagct 30720
cggcgcgcag ctcctgcgct cgacgctcca cctcgtcggc ccgctgcgtc gccagcgcgg 30780
cccgctgctc ggctcctgcc agggcggtgc gtgcttcggc cagggcttgc cgctggcgtg 30840
cggccagctc ggccgcctcg gcggcctgct gctctagcaa tgtaacgcgc gcctgggctt 30900
cttccagctc gcgggcctgc gcctcgaagg cgtcggccag ctccccgcgc acggcttcca 30960
actcgttgcg ctcacgatcc cagccggctt gcgctgcctg caacgattca ttggcaaggg 31020
cctgggcggc ttgccagagg gcggccacgg cctggttgcc ggcctgctgc accgcgtccg 31080
gcacctggac tgccagcggg gcggcctgcg ccgtgcgctg gcgtcgccat tcgcgcatgc 31140
cggcgctggc gtcgttcatg ttgacgcggg cggccttacg cactgcatcc acggtcggga 31200
agttctcccg gtcgccttgc tcgaacagct cgtccgcagc cgcaaaaatg cggtcgcgcg 31260
tctctttgtt cagttccatg ttggctccgg taattggtaa gaataataat actcttacct 31320
accttatcag cgcaagagtt tagctgaaca gttctcgact taacggcagg ttttttagcg 31380
gctgaagggc aggcaaaaaa agccccgcac ggtcggcggg ggcaaagggt cagcgggaag 31440
gggattagcg ggcgtcgggc ttcttcatgc gtcggggccg cgcttcttgg gatggagcac 31500
gacgaagcgc gcacgcgcat cgtcctcggc cctatcggcc cgcgtcgcgg tcaggaactt 31560
gtcgcgcgct aggtcctccc tggtgggcac caggggcatg aactcggcct gctcgatgta 31620
ggtccactcc atgaccgcat cgcagtcgag gccgcgttcc ttcaccgtct cttgcaggtc 31680
gcggtacgcc cgctcgttga gcggctggta acgggccaat tggtcgtaaa tggctgtcgg 31740
ccatgagcgg cctttcctgt tgagccagca gccgacgacg aagccggcaa tgcaggcccc 31800
tggcacaacc aggccgacgc cgggggcagg ggatggcagc agctcgccaa ccaggaaccc 31860
cgccgcgatg atgccgatgc cggtcaacca gcccttgaaa ctatccggcc ccgaaacacc 31920
cctgcgcatt gcctggatgc tgcgccggat agcttgcaac atcaggagcc gtttcttttg 31980
ttcgtcagtc atggtccgcc ctcaccagtt gttcgtatcg gtgtcggacg aactgaaatc 32040
gcaagagctg ccggtatcgg tccagccgct gtccgtgtcg ctgctgccga agcacggcga 32100
ggggtccgcg aacgccgcag acggcgtatc cggccgcagc gcatcgccca gcatggcccc 32160
ggtcagcgag ccgccggcca ggtagcccag catggtgctg ttggtcgccc cggccaccag 32220
ggccgacgtg acgaaatcgc cgtcattccc tctggattgt tcgctgctcg gcggggcagt 32280
gcgccgcgcc ggcggcgtcg tggatggctc gggttggctg gcctgcgacg gccggcgaaa 32340
ggtgcgcagc agctcgttat cgaccggctg cggcgtcggg gccgccgcct tgcgctgcgg 32400
tcggtgttcc ttcttcggct cgcgcagctt gaacagcatg atcgcggaaa ccagcagcaa 32460
cgccgcgcct acgcctcccg cgatgtagaa cagcatcgga ttcattcttc ggtcctcctt 32520
gtagcggaac cgttgtctgt gcggcgcggg tggcccgcgc cgctgtcttt ggggatcagc 32580
cctcgatgag cgcgaccagt ttcacgtcgg caaggttcgc ctcgaactcc tggccgtcgt 32640
cctcgtactt caaccaggca tagccttccg ccggcggccg acggttgagg ataaggcggg 32700
cagggcgctc gtcgtgctcg acctggacga tggccttttt cagcttgtcc gggtccggct 32760
ccttcgcgcc cttttccttg gcgtccttac cgtcctggtc gccgtcctcg ccgtcctggc 32820
cgtcgccggc ctccgcgtca cgctcggcat cagtctggcc gttgaaggca tcgacggtgt 32880
tgggatcgcg gcccttctcg tccaggaact cgcgcagcag cttgaccgtg ccgcgcgtga 32940
tttcctgggt gtcgtcgtca agccacgcct cgacttcctc cgggcgcttc ttgaaggccg 33000
tcaccagctc gttcaccacg gtcacgtcgc gcacgcggcc ggtgttgaac gcatcggcga 33060
tcttctccgg caggtccagc agcgtgacgt gctgggtgat gaacgccggc gacttgccga 33120
tttccttggc gatatcgcct ttcttcttgc ccttcgccag ctcgcggcca atgaagtcgg 33180
caatttcgcg cggggtcagc tcgttgcgtt gcaggttctc gataacctgg tcggcttcgt 33240
tgtagtcgtt gtcgatgaac gccgggatgg acttcttgcc ggcccacttc gagccacggt 33300
agcggcgggc gccgtgattg atgatatagc ggcccggctg ctcctggttc tcgcgcaccg 33360
aaatgggtga cttcaccccg cgctctttga tcgtggcacc gatttccgcg atgctctccg 33420
gggaaaagcc ggggttgtcg gccgtccgcg gctgatgcgg atcttcgtcg atcaggtcca 33480
ggtccagctc gatagggccg gaaccgccct gagacgccgc aggagcgtcc aggaggctcg 33540
acaggtcgcc gatgctatcc aaccccaggc cggacggctg cgccgcgcct gcggcttcct 33600
gagcggccgc agcggtgttt ttcttggtgg tcttggcttg agccgcagtc attgggaaat 33660
ctccatcttc gtgaacacgt aatcagccag ggcgcgaacc tctttcgatg ccttgcgcgc 33720
ggccgttttc ttgatcttcc agaccggcac accggatgcg agggcatcgg cgatgctgct 33780
gcgcaggcca acggtggccg gaatcatcat cttggggtac gcggccagca gctcggcttg 33840
gtggcgcgcg tggcgcggat tccgcgcatc gaccttgctg ggcaccatgc caaggaattg 33900
cagcttggcg ttcttctggc gcacgttcgc aatggtcgtg accatcttct tgatgccctg 33960
gatgctgtac gcctcaagct cgatggggga cagcacatag tcggccgcga agagggcggc 34020
cgccaggccg acgccaaggg tcggggccgt gtcgatcagg cacacgtcga agccttggtt 34080
cgccagggcc ttgatgttcg ccccgaacag ctcgcgggcg tcgtccagcg acagccgttc 34140
ggcgttcgcc agtaccgggt tggactcgat gagggcgagg cgcgcggcct ggccgtcgcc 34200
ggctgcgggt gcggtttcgg tccagccgcc ggcagggaca gcgccgaaca gcttgcttgc 34260
atgcaggccg gtagcaaagt ccttgagcgt gtaggacgca ttgccctggg ggtccaggtc 34320
gatcacggca acccgcaagc cgcgctcgaa aaagtcgaag gcaagatgca caagggtcga 34380
agtcttgccg acgccgcctt tctggttggc cgtgaccaaa gttttcatcg tttggtttcc 34440
tgttttttct tggcgtccgc ttcccacttc cggacgatgt acgcctgatg ttccggcaga 34500
accgccgtta cccgcgcgta cccctcgggc aagttcttgt cctcgaacgc ggcccacacg 34560
cgatgcaccg cttgcgacac tgcgcccctg gtcagtccca gcgacgttgc gaacgtcgcc 34620
tgtggcttcc catcgactaa gacgccccgc gctatctcga tggtctgctg ccccacttcc 34680
agcccctgga tcgcctcctg gaactggctt tcggtaagcc gtttcttcat ggataacacc 34740
cataatttgc tccgcgcctt ggttgaacat agcggtgaca gccgccagca catgagagaa 34800
gtttagctaa acatttctcg cacgtcaaca cctttagccg ctaaaactcg tccttggcgt 34860
aacaaaacaa aagcccggaa accgggcttt cgtctcttgc cgcttatggc tctgcacccg 34920
gctccatcac caacaggtcg cgcacgcgct tcactcggtt gcggatcgac actgccagcc 34980
caacaaagcc ggttgccgcc gccgccagga tcgcgccgat gatgccggcc acaccggcca 35040
tcgcccacca ggtcgccgcc ttccggttcc attcctgctg gtactgcttc gcaatgctgg 35100
acctcggctc accataggct gaccgctcga tggcgtatgc cgcttctccc cttggcgtaa 35160
aacccagcgc cgcaggcggc attgccatgc tgcccgccgc tttcccgacc acgacgcgcg 35220
caccaggctt gcggtccaga ccttcggcca cggcgagctg cgcaaggaca taatcagccg 35280
ccgacttggc tccacgcgcc tcgatcagct cttgcactcg cgcgaaatcc ttggcctcca 35340
cggccgccat gaatcgcgca cgcggcgaag gctccgcagg gccggcgtcg tgatcgccgc 35400
cgagaatgcc cttcaccaag ttcgacgaca cgaaaatcat gctgacggct atcaccatca 35460
tgcagacgga tcgcacgaac ccgctgaatt gaacacgagc acggcacccg cgaccactat 35520
gccaagaatg cccaaggtaa aaattgccgg ccccgccatg aagtccgtga atgccccgac 35580
ggccgaagtg aagggcaggc cgccacccag gccgccgccc tcactgcccg gcacctggtc 35640
gctgaatgtc gatgccagca cctgcggcac gtcaatgctt ccgggcgtcg cgctcgggct 35700
gatcgcccat cccgttactg ccccgatccc ggcaatggca aggactgcca gcgctgccat 35760
ttttggggtg aggccgttcg cggccgaggg gcgcagcccc tggggggatg ggaggcccgc 35820
gttagcgggc cgggagggtt cgagaagggg gggcaccccc cttcggcgtg cgcggtcacg 35880
cgcacagggc gcagccctgg ttaaaaacaa ggtttataaa tattggttta aaagcaggtt 35940
aaaagacagg ttagcggtgg ccgaaaaacg ggcggaaacc cttgcaaatg ctggattttc 36000
tgcctgtgga cagcccctca aatgtcaata ggtgcgcccc tcatctgtca gcactctgcc 36060
cctcaagtgt caaggatcgc gcccctcatc tgtcagtagt cgcgcccctc aagtgtcaat 36120
accgcagggc acttatcccc aggcttgtcc acatcatctg tgggaaactc gcgtaaaatc 36180
aggcgttttc gccgatttgc gaggctggcc agctccacgt cgccggccga aatcgagcct 36240
gcccctcatc tgtcaacgcc gcgccgggtg agtcggcccc tcaagtgtca acgtccgccc 36300
ctcatctgtc agtgagggcc aagttttccg cgaggtatcc acaacgccgg cggccgcggt 36360
gtctcgcaca cggcttcgac ggcgtttctg gcgcgtttgc agggccatag acggccgcca 36420
gcccagcggc gagggcaacc agcccggtga gcgtcggaaa ggcgctggaa gccccgtagc 36480
gacgcggaga ggggcgagac aagccaaggg cgcaggctcg atgcgcagca cgacatagcc 36540
ggttctcgca aggacgagaa tttccctgcg gtgcccctca agtgtcaatg aaagtttcca 36600
acgcgagcca ttcgcgagag ccttgagtcc acgctagatg agagctttgt tgtaggtgga 36660
ccagttggtg attttgaact tttgctttgc cacggaacgg tctgcgttgt cgggaagatg 36720
cgtgatctga tccttcaact cagcaaaagt tcgatttatt caacaaagcc acgttgtgtc 36780
tcaaaatctc tgatgttaca ttgcacaaga taaaaatata tcatcatgaa caataaaact 36840
gtctgcttac ataaacagta atacaagggg tgttatgagc catattcaac gggaaacgtc 36900
ttgctcgac 36909
<210> SEQ ID NO 8
<211> LENGTH: 13019
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PHP23235 construct
<400> SEQUENCE: 8
gttacccgga ccgaagctta gcccgggcat gcctgcagtg cagcgtgacc cggtcgtgcc 60
cctctctaga gataatgagc attgcatgtc taagttataa aaaattacca catatttttt 120
ttgtcacact tgtttgaagt gcagtttatc tatctttata catatattta aactttactc 180
tacgaataat ataatctata gtactacaat aatatcagtg ttttagagaa tcatataaat 240
gaacagttag acatggtcta aaggacaatt gagtattttg acaacaggac tctacagttt 300
tatcttttta gtgtgcatgt gttctccttt ttttttgcaa atagcttcac ctatataata 360
cttcatccat tttattagta catccattta gggtttaggg ttaatggttt ttatagacta 420
atttttttag tacatctatt ttattctatt ttagcctcta aattaagaaa actaaaactc 480
tattttagtt tttttattta ataatttaga tataaaatag aataaaataa agtgactaaa 540
aattaaacaa atacccttta agaaattaaa aaaactaagg aaacattttt cttgtttcga 600
gtagataatg ccagcctgtt aaacgccgtc gacgagtcta acggacacca accagcgaac 660
cagcagcgtc gcgtcgggcc aagcgaagca gacggcacgg catctctgtc gctgcctctg 720
gacccctctc gagagttccg ctccaccgtt ggacttgctc cgctgtcggc atccagaaat 780
tgcgtggcgg agcggcagac gtgagccggc acggcaggcg gcctcctcct cctctcacgg 840
cacggcagct acgggggatt cctttcccac cgctccttcg ctttcccttc ctcgcccgcc 900
gtaataaata gacaccccct ccacaccctc tttccccaac ctcgtgttgt tcggagcgca 960
cacacacaca accagatctc ccccaaatcc acccgtcggc acctccgctt caaggtacgc 1020
cgctcgtcct cccccccccc ccctctctac cttctctaga tcggcgttcc ggtccatggt 1080
tagggcccgg tagttctact tctgttcatg tttgtgttag atccgtgttt gtgttagatc 1140
cgtgctgcta gcgttcgtac acggatgcga cctgtacgtc agacacgttc tgattgctaa 1200
cttgccagtg tttctctttg gggaatcctg ggatggctct agccgttccg cagacgggat 1260
cgatttcatg attttttttg tttcgttgca tagggtttgg tttgcccttt tcctttattt 1320
caatatatgc cgtgcacttg tttgtcgggt catcttttca tgcttttttt tgtcttggtt 1380
gtgatgatgt ggtctggttg ggcggtcgtt ctagatcgga gtagaattct gtttcaaact 1440
acctggtgga tttattaatt ttggatctgt atgtgtgtgc catacatatt catagttacg 1500
aattgaagat gatggatgga aatatcgatc taggataggt atacatgttg atgcgggttt 1560
tactgatgca tatacagaga tgctttttgt tcgcttggtt gtgatgatgt ggtgtggttg 1620
ggcggtcgtt cattcgttct agatcggagt agaatactgt ttcaaactac ctggtgtatt 1680
tattaatttt ggaactgtat gtgtgtgtca tacatcttca tagttacgag tttaagatgg 1740
atggaaatat cgatctagga taggtataca tgttgatgtg ggttttactg atgcatatac 1800
atgatggcat atgcagcatc tattcatatg ctctaacctt gagtacctat ctattataat 1860
aaacaagtat gttttataat tattttgatc ttgatatact tggatgatgg catatgcagc 1920
agctatatgt ggattttttt agccctgcct tcatacgcta tttatttgct tggtactgtt 1980
tcttttgtcg atgctcaccc tgttgtttgg tgttacttct gcaggtcgac tctagaggat 2040
ccacaagttt gtacaaaaaa gctgaacgag aaacgtaaaa tgatataaat atcaatatat 2100
taaattagat tttgcataaa aaacagacta cataatactg taaaacacaa catatccagt 2160
cactatggcg gccgcattag gcaccccagg ctttacactt tatgcttccg gctcgtataa 2220
tgtgtggatt ttgagttagg atttaaatac gcgttgatcc ggcttactaa aagccagata 2280
acagtatgcg tatttgcgcg ctgatttttg cggtataaga atatatactg atatgtatac 2340
ccgaagtatg tcaaaaagag gtatgctatg aagcagcgta ttacagtgac agttgacagc 2400
gacagctatc agttgctcaa ggcatatatg atgtcaatat ctccggtctg gtaagcacaa 2460
ccatgcagaa tgaagcccgt cgtctgcgtg ccgaacgctg gaaagcggaa aatcaggaag 2520
ggatggctga ggtcgcccgg tttattgaaa tgaacggctc ttttgctgac gagaacaggg 2580
gctggtgaaa tgcagtttaa ggtttacacc tataaaagag agagccgtta tcgtctgttt 2640
gtggatgtac agagtgatat cattgacacg cccggtcgac ggatggtgat ccccctggcc 2700
agtgcacgtc tgctgtcaga taaagtctcc cgtgaacttt acccggtggt gcatatcggg 2760
gatgaaagct ggcgcatgat gaccaccgat atggccagtg tgccggtctc cgttatcggg 2820
gaagaagtgg ctgatctcag ccaccgcgaa aatgacatca aaaacgccat taacctgatg 2880
ttctggggaa tataaatgtc aggctccctt atacacagcc agtctgcagg tcgaccatag 2940
tgactggata tgttgtgttt tacagtatta tgtagtctgt tttttatgca aaatctaatt 3000
taatatattg atatttatat cattttacgt ttctcgttca gctttcttgt acaaagtggt 3060
gttaacctag acttgtccat cttctggatt ggccaactta attaatgtat gaaataaaag 3120
gatgcacaca tagtgacatg ctaatcacta taatgtgggc atcaaagttg tgtgttatgt 3180
gtaattacta gttatctgaa taaaagagaa agagatcatc catatttctt atcctaaatg 3240
aatgtcacgt gtctttataa ttctttgatg aaccagatgc atttcattaa ccaaatccat 3300
atacatataa atattaatca tatataatta atatcaattg ggttagcaaa acaaatctag 3360
tctaggtgtg ttttgcgaat tgcggccgcc accgcggtgg agctcgaatt ccggtccggg 3420
tcacctttgt ccaccaagat ggaactgcgg ccgctcatta attaagtcag gcgcgcctct 3480
agttgaagac acgttcatgt cttcatcgta agaagacact cagtagtctt cggccagaat 3540
ggccatctgg attcagcagg cctagaaggc catttaaatc ctgaggatct ggtcttccta 3600
aggacccggg atatcggacc gattaaactt taattcggtc cgaagcttgc atgcctgcag 3660
tgcagcgtga cccggtcgtg cccctctcta gagataatga gcattgcatg tctaagttat 3720
aaaaaattac cacatatttt ttttgtcaca cttgtttgaa gtgcagttta tctatcttta 3780
tacatatatt taaactttac tctacgaata atataatcta tagtactaca ataatatcag 3840
tgttttagag aatcatataa atgaacagtt agacatggtc taaaggacaa ttgagtattt 3900
tgacaacagg actctacagt tttatctttt tagtgtgcat gtgttctcct ttttttttgc 3960
aaatagcttc acctatataa tacttcatcc attttattag tacatccatt tagggtttag 4020
ggttaatggt ttttatagac taattttttt agtacatcta ttttattcta ttttagcctc 4080
taaattaaga aaactaaaac tctattttag tttttttatt taataattta gatataaaat 4140
agaataaaat aaagtgacta aaaattaaac aaataccctt taagaaatta aaaaaactaa 4200
ggaaacattt ttcttgtttc gagtagataa tgccagcctg ttaaacgccg tcgacgagtc 4260
taacggacac caaccagcga accagcagcg tcgcgtcggg ccaagcgaag cagacggcac 4320
ggcatctctg tcgctgcctc tggacccctc tcgagagttc cgctccaccg ttggacttgc 4380
tccgctgtcg gcatccagaa attgcgtggc ggagcggcag acgtgagccg gcacggcagg 4440
cggcctcctc ctcctctcac ggcaccggca gctacggggg attcctttcc caccgctcct 4500
tcgctttccc ttcctcgccc gccgtaataa atagacaccc cctccacacc ctctttcccc 4560
aacctcgtgt tgttcggagc gcacacacac acaaccagat ctcccccaaa tccacccgtc 4620
ggcacctccg cttcaaggta cgccgctcgt cctccccccc ccccctctct accttctcta 4680
gatcggcgtt ccggtccatg catggttagg gcccggtagt tctacttctg ttcatgtttg 4740
tgttagatcc gtgtttgtgt tagatccgtg ctgctagcgt tcgtacacgg atgcgacctg 4800
tacgtcagac acgttctgat tgctaacttg ccagtgtttc tctttgggga atcctgggat 4860
ggctctagcc gttccgcaga cgggatcgat ttcatgattt tttttgtttc gttgcatagg 4920
gtttggtttg cccttttcct ttatttcaat atatgccgtg cacttgtttg tcgggtcatc 4980
ttttcatgct tttttttgtc ttggttgtga tgatgtggtc tggttgggcg gtcgttctag 5040
atcggagtag aattctgttt caaactacct ggtggattta ttaattttgg atctgtatgt 5100
gtgtgccata catattcata gttacgaatt gaagatgatg gatggaaata tcgatctagg 5160
ataggtatac atgttgatgc gggttttact gatgcatata cagagatgct ttttgttcgc 5220
ttggttgtga tgatgtggtg tggttgggcg gtcgttcatt cgttctagat cggagtagaa 5280
tactgtttca aactacctgg tgtatttatt aattttggaa ctgtatgtgt gtgtcataca 5340
tcttcatagt tacgagttta agatggatgg aaatatcgat ctaggatagg tatacatgtt 5400
gatgtgggtt ttactgatgc atatacatga tggcatatgc agcatctatt catatgctct 5460
aaccttgagt acctatctat tataataaac aagtatgttt tataattatt ttgatcttga 5520
tatacttgga tgatggcata tgcagcagct atatgtggat ttttttagcc ctgccttcat 5580
acgctattta tttgcttggt actgtttctt ttgtcgatgc tcaccctgtt gtttggtgtt 5640
acttctgcag gtcgacttta acttagccta ggatccacac gacaccatgt cccccgagcg 5700
ccgccccgtc gagatccgcc cggccaccgc cgccgacatg gccgccgtgt gcgacatcgt 5760
gaaccactac atcgagacct ccaccgtgaa cttccgcacc gagccgcaga ccccgcagga 5820
gtggatcgac gacctggagc gcctccagga ccgctacccg tggctcgtgg ccgaggtgga 5880
gggcgtggtg gccggcatcg cctacgccgg cccgtggaag gcccgcaacg cctacgactg 5940
gaccgtggag tccaccgtgt acgtgtccca ccgccaccag cgcctcggcc tcggctccac 6000
cctctacacc cacctcctca agagcatgga ggcccagggc ttcaagtccg tggtggccgt 6060
gatcggcctc ccgaacgacc cgtccgtgcg cctccacgag gccctcggct acaccgcccg 6120
cggcaccctc cgcgccgccg gctacaagca cggcggctgg cacgacgtcg gcttctggca 6180
gcgcgacttc gagctgccgg ccccgccgcg cccggtgcgc ccggtgacgc agatctgagt 6240
cgaaacctag acttgtccat cttctggatt ggccaactta attaatgtat gaaataaaag 6300
gatgcacaca tagtgacatg ctaatcacta taatgtgggc atcaaagttg tgtgttatgt 6360
gtaattacta gttatctgaa taaaagagaa agagatcatc catatttctt atcctaaatg 6420
aatgtcacgt gtctttataa ttctttgatg aaccagatgc atttcattaa ccaaatccat 6480
atacatataa atattaatca tatataatta atatcaattg ggttagcaaa acaaatctag 6540
tctaggtgtg ttttgcgaat tgcggccgcc accgcggtgg agctcgaatt cattccgatt 6600
aatcgtggcc tcttgctctt caggatgaag agctatgttt aaacgtgcaa gcgctactag 6660
acaattcagt acattaaaaa cgtccgcaat gtgttattaa gttgtctaag cgtcaatttg 6720
tttacaccac aatatatcct gccaccagcc agccaacagc tccccgaccg gcagctcggc 6780
acaaaatcac cactcgatac aggcagccca tcagtccggg acggcgtcag cgggagagcc 6840
gttgtaaggc ggcagacttt gctcatgtta ccgatgctat tcggaagaac ggcaactaag 6900
ctgccgggtt tgaaacacgg atgatctcgc ggagggtagc atgttgattg taacgatgac 6960
agagcgttgc tgcctgtgat caaatatcat ctccctcgca gagatccgaa ttatcagcct 7020
tcttattcat ttctcgctta accgtgacag gctgtcgatc ttgagaacta tgccgacata 7080
ataggaaatc gctggataaa gccgctgagg aagctgagtg gcgctatttc tttagaagtg 7140
aacgttgacg atcgtcgacc gtaccccgat gaattaattc ggacgtacgt tctgaacaca 7200
gctggatact tacttgggcg attgtcatac atgacatcaa caatgtaccc gtttgtgtaa 7260
ccgtctcttg gaggttcgta tgacactagt ggttcccctc agcttgcgac tagatgttga 7320
ggcctaacat tttattagag agcaggctag ttgcttagat acatgatctt caggccgtta 7380
tctgtcaggg caagcgaaaa ttggccattt atgacgacca atgccccgca gaagctccca 7440
tctttgccgc catagacgcc gcgcccccct tttggggtgt agaacatcct tttgccagat 7500
gtggaaaaga agttcgttgt cccattgttg gcaatgacgt agtagccggc gaaagtgcga 7560
gacccatttg cgctatatat aagcctacga tttccgttgc gactattgtc gtaattggat 7620
gaactattat cgtagttgct ctcagagttg tcgtaatttg atggactatt gtcgtaattg 7680
cttatggagt tgtcgtagtt gcttggagaa atgtcgtagt tggatgggga gtagtcatag 7740
ggaagacgag cttcatccac taaaacaatt ggcaggtcag caagtgcctg ccccgatgcc 7800
atcgcaagta cgaggcttag aaccaccttc aacagatcgc gcatagtctt ccccagctct 7860
ctaacgcttg agttaagccg cgccgcgaag cggcgtcggc ttgaacgaat tgttagacat 7920
tatttgccga ctaccttggt gatctcgcct ttcacgtagt gaacaaattc ttccaactga 7980
tctgcgcgcg aggccaagcg atcttcttgt ccaagataag cctgcctagc ttcaagtatg 8040
acgggctgat actgggccgg caggcgctcc attgcccagt cggcagcgac atccttcggc 8100
gcgattttgc cggttactgc gctgtaccaa atgcgggaca acgtaagcac tacatttcgc 8160
tcatcgccag cccagtcggg cggcgagttc catagcgtta aggtttcatt tagcgcctca 8220
aatagatcct gttcaggaac cggatcaaag agttcctccg ccgctggacc taccaaggca 8280
acgctatgtt ctcttgcttt tgtcagcaag atagccagat caatgtcgat cgtggctggc 8340
tcgaagatac ctgcaagaat gtcattgcgc tgccattctc caaattgcag ttcgcgctta 8400
gctggataac gccacggaat gatgtcgtcg tgcacaacaa tggtgacttc tacagcgcgg 8460
agaatctcgc tctctccagg ggaagccgaa gtttccaaaa ggtcgttgat caaagctcgc 8520
cgcgttgttt catcaagcct tacagtcacc gtaaccagca aatcaatatc actgtgtggc 8580
ttcaggccgc catccactgc ggagccgtac aaatgtacgg ccagcaacgt cggttcgaga 8640
tggcgctcga tgacgccaac tacctctgat agttgagtcg atacttcggc gatcaccgct 8700
tccctcatga tgtttaactc ctgaattaag ccgcgccgcg aagcggtgtc ggcttgaatg 8760
aattgttagg cgtcatcctg tgctcccgag aaccagtacc agtacatcgc tgtttcgttc 8820
gagacttgag gtctagtttt atacgtgaac aggtcaatgc cgccgagagt aaagccacat 8880
tttgcgtaca aattgcaggc aggtacattg ttcgtttgtg tctctaatcg tatgccaagg 8940
agctgtctgc ttagtgccca ctttttcgca aattcgatga gactgtgcgc gactcctttg 9000
cctcggtgcg tgtgcgacac aacaatgtgt tcgatagagg ctagatcgtt ccatgttgag 9060
ttgagttcaa tcttcccgac aagctcttgg tcgatgaatg cgccatagca agcagagtct 9120
tcatcagagt catcatccga gatgtaatcc ttccggtagg ggctcacact tctggtagat 9180
agttcaaagc cttggtcgga taggtgcaca tcgaacactt cacgaacaat gaaatggttc 9240
tcagcatcca atgtttccgc cacctgctca gggatcaccg aaatcttcat atgacgccta 9300
acgcctggca cagcggatcg caaacctggc gcggcttttg gcacaaaagg cgtgacaggt 9360
ttgcgaatcc gttgctgcca cttgttaacc cttttgccag atttggtaac tataatttat 9420
gttagaggcg aagtcttggg taaaaactgg cctaaaattg ctggggattt caggaaagta 9480
aacatcacct tccggctcga tgtctattgt agatatatgt agtgtatcta cttgatcggg 9540
ggatctgctg cctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 9600
cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 9660
cgtcagcggg tgttggcggg tgtcggggcg cagccatgac ccagtcacgt agcgatagcg 9720
gagtgtatac tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat 9780
gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc 9840
ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca 9900
ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg 9960
agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca 10020
taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa 10080
cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc 10140
tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc 10200
gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct 10260
gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg 10320
tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag 10380
gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta 10440
cggctacact agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg 10500
aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt 10560
tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt 10620
ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag 10680
attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat 10740
ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc 10800
tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat 10860
aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac cgcgagaccc 10920
acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag 10980
aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaagctag 11040
agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgctg cagggggggg 11100
gggggggggg gacttccatt gttcattcca cggacaaaaa cagagaaagg aaacgacaga 11160
ggccaaaaag cctcgctttc agcacctgtc gtttcctttc ttttcagagg gtattttaaa 11220
taaaaacatt aagttatgac gaagaagaac ggaaacgcct taaaccggaa aattttcata 11280
aatagcgaaa acccgcgagg tcgccgcccc gtaacctgtc ggatcaccgg aaaggacccg 11340
taaagtgata atgattatca tctacatatc acaacgtgcg tggaggccat caaaccacgt 11400
caaataatca attatgacgc aggtatcgta ttaattgatc tgcatcaact taacgtaaaa 11460
acaacttcag acaatacaaa tcagcgacac tgaatacggg gcaacctcat gtcccccccc 11520
cccccccccc tgcaggcatc gtggtgtcac gctcgtcgtt tggtatggct tcattcagct 11580
ccggttccca acgatcaagg cgagttacat gatcccccat gttgtgcaaa aaagcggtta 11640
gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg 11700
ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc ttttctgtga 11760
ctggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgctctt 11820
gcccggcgtc aacacgggat aataccgcgc cacatagcag aactttaaaa gtgctcatca 11880
ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttg agatccagtt 11940
cgatgtaacc cactcgtgca cccaactgat cttcagcatc ttttactttc accagcgttt 12000
ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga 12060
aatgttgaat actcatactc ttcctttttc aatattattg aagcatttat cagggttatt 12120
gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata ggggttccgc 12180
gcacatttcc ccgaaaagtg ccacctgacg tctaagaaac cattattatc atgacattaa 12240
cctataaaaa taggcgtatc acgaggccct ttcgtcttca agaattggtc gacgatcttg 12300
ctgcgttcgg atattttcgt ggagttcccg ccacagaccc ggattgaagg cgagatccag 12360
caactcgcgc cagatcatcc tgtgacggaa ctttggcgcg tgatgactgg ccaggacgtc 12420
ggccgaaaga gcgacaagca gatcacgctt ttcgacagcg tcggatttgc gatcgaggat 12480
ttttcggcgc tgcgctacgt ccgcgaccgc gttgagggat caagccacag cagcccactc 12540
gaccttctag ccgacccaga cgagccaagg gatctttttg gaatgctgct ccgtcgtcag 12600
gctttccgac gtttgggtgg ttgaacagaa gtcattatcg tacggaatgc caagcactcc 12660
cgaggggaac cctgtggttg gcatgcacat acaaatggac gaacggataa accttttcac 12720
gcccttttaa atatccgtta ttctaataaa cgctcttttc tcttaggttt acccgccaat 12780
atatcctgtc aaacactgat agtttaaact gaaggcggga aacgacaatc tgatcatgag 12840
cggagaatta agggagtcac gttatgaccc ccgccgatga cgcgggacaa gccgttttac 12900
gtttggaact gacagaaccg caacgttgaa ggagccactc agcaagctgg tacgattgta 12960
atacgactca ctatagggcg aattgagcgc tgtttaaacg ctcttcaact ggaagagcg 13019
<210> SEQ ID NO 9
<211> LENGTH: 2991
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PHP20234 construct
<400> SEQUENCE: 9
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 60
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 120
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 180
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc 240
tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta 300
gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc 360
acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa 420
caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg 480
gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa 540
aacgacggcc agtcttaagc tcgggccctg cagctctaga gctcgaattc tacaggtcac 600
taataccatc taagtagttg gttcatagtg actgcatatg ttgtgtttta cagtattatg 660
tagtctgttt tttatgcaaa atctaattta atatattgat atttatatca ttttacgttt 720
ctcgttcaac tttcttgtac aaagtggccg ttaacggatc cagacttgtc catcttctgg 780
attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac atgctaatca 840
ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct gaataaaaga 900
gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta taattctttg 960
atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa tcatatataa 1020
ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgcg aattgcggca 1080
agcttgcggc cgccccgggc aactttatta tacaaagttg gcattataaa aaagcattgc 1140
ttatcaattt gttgcaacga acaggtcact atcagtcaaa ataaaatcat tatttggagc 1200
tccatggtag cgttaacgcg gccgcgatat cccctatagt gagtcgtatt acatggtcat 1260
agctgtttcc tggcagctct ggcccgtgtc tcaaaatctc tgatgttaca ttgcacaaga 1320
taaaaatata tcatcatgaa caataaaact gtctgcttac ataaacagta atacaagggg 1380
tgttatgagc catattcaac gggaaacgtc gaggccgcga ttaaattcca acatggatgc 1440
tgatttatat gggtataaat gggctcgcga taatgtcggg caatcaggtg cgacaatcta 1500
tcgcttgtat gggaagcccg atgcgccaga gttgtttctg aaacatggca aaggtagcgt 1560
tgccaatgat gttacagatg agatggtcag actaaactgg ctgacggaat ttatgcctct 1620
tccgaccatc aagcatttta tccgtactcc tgatgatgca tggttactca ccactgcgat 1680
ccccggaaaa acagcattcc aggtattaga agaatatcct gattcaggtg aaaatattgt 1740
tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt 1800
taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt 1860
tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga 1920
aatgcataaa cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact 1980
tgataacctt atttttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg 2040
aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc 2100
ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt 2160
gcagtttcat ttgatgctcg atgagttttt ctaatcagaa ttggttaatt ggttgtaaca 2220
ctggcagagc attacgctga cttgacggga cggcgcaagc tcatgaccaa aatcccttaa 2280
cgtgagttac gcgtcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc 2340
ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc 2400
agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt 2460
cagcagagcg cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt 2520
caagaactct gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc 2580
tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa 2640
ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac 2700
ctacaccgaa ctgagatacc tacagcgtga gcattgagaa agcgccacgc ttcccgaagg 2760
gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga 2820
gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact 2880
tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa 2940
cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt t 2991
<210> SEQ ID NO 10
<211> LENGTH: 13278
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PHP22655 construct (destination vector)
<400> SEQUENCE: 10
aagctggtac gattgtaata cgactcacta tagggcgaat tgagcgctgt ttaaacgctc 60
ttcaactgga agagcggtta ccagagctgg tcacctttgt ccaccaagat ggaactgcgg 120
ccgctcatta attaagtcag gcgcgcctct agttgaagac acgttcatgt cttcatcgta 180
agaagacact cagtagtctt cggccagaat ggcccggacc gaagctggcc gctctagaac 240
tagtggatct cgatgtgtag tctacgagaa gggttaaccg tctcttcgtg agaataaccg 300
tggcctaaaa ataagccgat gaggataaat aaaatgtggt ggtacagtac ttcaagaggt 360
ttactcatca agaggatgct tttccgatga gctctagtag tacatcggac ctcacatacc 420
tccattgtgg tgaaatattt tgtgctcatt tagtgatggg taaattttgt ttatgtcact 480
ctaggttttg acatttcagt tttgccactc ttaggttttg acaaataatt tccattccgc 540
ggcaaaagca aaacaatttt attttacttt taccactctt agctttcaca atgtatcaca 600
aatgccactc tagaaattct gtttatgcca cagaatgtga aaaaaaacac tcacttattt 660
gaagccaagg tgttcatggc atggaaatgt gacataaagt aacgttcgtg tataagaaaa 720
aattgtactc ctcgtaacaa gagacggaaa catcatgaga caatcgcgtt tggaaggctt 780
tgcatcacct ttggatgatg cgcatgaatg gagtcgtctg cttgctagcc ttcgcctacc 840
gcccactgag tccgggcggc aactaccatc ggcgaacgac ccagctgacc tctaccgacc 900
ggacttgaat gcgctacctt cgtcagcgac gatggccgcg tacgctggcg acgtgccccc 960
gcatgcatgg cggcacatgg cgagctcaga ccgtgcgtgg ctggctacaa atacgtaccc 1020
cgtgagtgcc ctagctagaa acttacacct gcaactgcga gagcgagcgt gtgagtgtag 1080
ccgagtagat cccccggtcg ccaccatggc ctcctccgag aacgtcatca ccgagttcat 1140
gcgcttcaag gtgcgcatgg agggcaccgt gaacggccac gagttcgaga tcgagggcga 1200
gggcgagggc cgcccctacg agggccacaa caccgtgaag ctgaaggtga ccaagggcgg 1260
ccccctgccc ttcgcctggg acatcctgtc cccccagttc cagtacggct ccaaggtgta 1320
cgtgaagcac cccgccgaca tccccgacta caagaagctg tccttccccg agggcttcaa 1380
gtgggagcgc gtgatgaact tcgaggacgg cggcgtggcg accgtgaccc aggactcctc 1440
cctgcaggac ggctgcttca tctacaaggt gaagttcatc ggcgtgaact tcccctccga 1500
cggccccgtg atgcagaaga agaccatggg ctgggaggcc tccaccgagc gcctgtaccc 1560
ccgcgacggc gtgctgaagg gcgagaccca caaggccctg aagctgaagg acggcggcca 1620
ctacctggtg gagttcaagt ccatctacat ggccaagaag cccgtgcagc tgcccggcta 1680
ctactacgtg gacgccaagc tggacatcac ctcccacaac gaggactaca ccatcgtgga 1740
gcagtacgag cgcaccgagg gccgccacca cctgttcctg tagcggccca tggatattcg 1800
aacgcgtagg taccacatgg ttaacctaga cttgtccatc ttctggattg gccaacttaa 1860
ttaatgtatg aaataaaagg atgcacacat agtgacatgc taatcactat aatgtgggca 1920
tcaaagttgt gtgttatgtg taattactag ttatctgaat aaaagagaaa gagatcatcc 1980
atatttctta tcctaaatga atgtcacgtg tctttataat tctttgatga accagatgca 2040
tttcattaac caaatccata tacatataaa tattaatcat atataattaa tatcaattgg 2100
gttagcaaaa caaatctagt ctaggtgtgt tttgcgaatg cggccgccac cgcggtggag 2160
ctcgaattcc ggtccgggcc tagaaggcca tttaaatcct gaggatctgg tcttcctaag 2220
gacccgggat atcgctatca actttgtata gaaaagttga acgagaaacg taaaatgata 2280
taaatatcaa tatattaaat tagattttgc ataaaaaaca gactacataa tactgtaaaa 2340
cacaacatat ccagtcacta tggtcgacct gcagactggc tgtgtataag ggagcctgac 2400
atttatattc cccagaacat caggttaatg gcgtttttga tgtcattttc gcggtggctg 2460
agatcagcca cttcttcccc gataacggag accggcacac tggccatatc ggtggtcatc 2520
atgcgccagc tttcatcccc gatatgcacc accgggtaaa gttcacgggg gactttatct 2580
gacagcagac gtgcactggc cagggggatc accatccgtc gcccgggcgt gtcaataata 2640
tcactctgta catccacaaa cagacgataa cggctctctc ttttataggt gtaaacctta 2700
aactgcattt caccagcccc tgttctcgtc ggcaaaagag ccgttcattt caataaaccg 2760
ggcgacctca gccatccctt cctgattttc cgctttccag cgttcggcac gcagacgacg 2820
ggcttcattc tgcatggttg tgcttaccga accggagata ttgacatcat atatgccttg 2880
agcaactgat agctgtcgct gtcaactgtc actgtaatac gctgcttcat agcatacctc 2940
tttttgacat acttcgggta tacatatcag tatatattct tataccgcaa aaatcagcgc 3000
gcaaatacgc atactgttat ctggctttta gtaagccgga tcctctagat tacgccccgc 3060
ctgccactca tcgcagtact gttgtaattc attaagcatt ctgccgacat ggaagccatc 3120
acaaacggca tgatgaacct gaatcgccag cggcatcagc accttgtcgc cttgcgtata 3180
atatttgccc atggtgaaaa cgggggcgaa gaagttgtcc atattggcca cgtttaaatc 3240
aaaactggtg aaactcaccc agggattggc tgagacgaaa aacatattct caataaaccc 3300
tttagggaaa taggccaggt tttcaccgta acacgccaca tcttgcgaat atatgtgtag 3360
aaactgccgg aaatcgtcgt ggtattcact ccagagcgat gaaaacgttt cagtttgctc 3420
atggaaaacg gtgtaacaag ggtgaacact atcccatatc accagctcac cgtctttcat 3480
tgccatacgg aattccggat gagcattcat caggcgggca agaatgtgaa taaaggccgg 3540
ataaaacttg tgcttatttt tctttacggt ctttaaaaag gccgtaatat ccagctgaac 3600
ggtctggtta taggtacatt gagcaactga ctgaaatgcc tcaaaatgtt ctttacgatg 3660
ccattgggat atatcaacgg tggtatatcc agtgattttt ttctccattt tagcttcctt 3720
agctcctgaa aatctcgacg gatcctaact caaaatccac acattatacg agccggaagc 3780
ataaagtgta aagcctgggg tgccctaatg cggccgccat agtgactgga tatgttgtgt 3840
tttacagtat tatgtagtct gttttttatg caaaatctaa tttaatatat tgatatttat 3900
atcattttac gtttctcgtt caactttatt atacaaagtt gatagatatc ggaccgatta 3960
aactttaatt cggtccgaag cttgcatgcc tgcagtgcag cgtgacccgg tcgtgcccct 4020
ctctagagat aatgagcatt gcatgtctaa gttataaaaa attaccacat attttttttg 4080
tcacacttgt ttgaagtgca gtttatctat ctttatacat atatttaaac tttactctac 4140
gaataatata atctatagta ctacaataat atcagtgttt tagagaatca tataaatgaa 4200
cagttagaca tggtctaaag gacaattgag tattttgaca acaggactct acagttttat 4260
ctttttagtg tgcatgtgtt ctcctttttt tttgcaaata gcttcaccta tataatactt 4320
catccatttt attagtacat ccatttaggg tttagggtta atggttttta tagactaatt 4380
tttttagtac atctatttta ttctatttta gcctctaaat taagaaaact aaaactctat 4440
tttagttttt ttatttaata atttagatat aaaatagaat aaaataaagt gactaaaaat 4500
taaacaaata ccctttaaga aattaaaaaa actaaggaaa catttttctt gtttcgagta 4560
gataatgcca gcctgttaaa cgccgtcgac gagtctaacg gacaccaacc agcgaaccag 4620
cagcgtcgcg tcgggccaag cgaagcagac ggcacggcat ctctgtcgct gcctctggac 4680
ccctctcgag agttccgctc caccgttgga cttgctccgc tgtcggcatc cagaaattgc 4740
gtggcggagc ggcagacgtg agccggcacg gcaggcggcc tcctcctcct ctcacggcac 4800
cggcagctac gggggattcc tttcccaccg ctccttcgct ttcccttcct cgcccgccgt 4860
aataaataga caccccctcc acaccctctt tccccaacct cgtgttgttc ggagcgcaca 4920
cacacacaac cagatctccc ccaaatccac ccgtcggcac ctccgcttca aggtacgccg 4980
ctcgtcctcc cccccccccc tctctacctt ctctagatcg gcgttccggt ccatgcatgg 5040
ttagggcccg gtagttctac ttctgttcat gtttgtgtta gatccgtgtt tgtgttagat 5100
ccgtgctgct agcgttcgta cacggatgcg acctgtacgt cagacacgtt ctgattgcta 5160
acttgccagt gtttctcttt ggggaatcct gggatggctc tagccgttcc gcagacggga 5220
tcgatttcat gatttttttt gtttcgttgc atagggtttg gtttgccctt ttcctttatt 5280
tcaatatatg ccgtgcactt gtttgtcggg tcatcttttc atgctttttt ttgtcttggt 5340
tgtgatgatg tggtctggtt gggcggtcgt tctagatcgg agtagaattc tgtttcaaac 5400
tacctggtgg atttattaat tttggatctg tatgtgtgtg ccatacatat tcatagttac 5460
gaattgaaga tgatggatgg aaatatcgat ctaggatagg tatacatgtt gatgcgggtt 5520
ttactgatgc atatacagag atgctttttg ttcgcttggt tgtgatgatg tggtgtggtt 5580
gggcggtcgt tcattcgttc tagatcggag tagaatactg tttcaaacta cctggtgtat 5640
ttattaattt tggaactgta tgtgtgtgtc atacatcttc atagttacga gtttaagatg 5700
gatggaaata tcgatctagg ataggtatac atgttgatgt gggttttact gatgcatata 5760
catgatggca tatgcagcat ctattcatat gctctaacct tgagtaccta tctattataa 5820
taaacaagta tgttttataa ttattttgat cttgatatac ttggatgatg gcatatgcag 5880
cagctatatg tggatttttt tagccctgcc ttcatacgct atttatttgc ttggtactgt 5940
ttcttttgtc gatgctcacc ctgttgtttg gtgttacttc tgcaggtcga ctttaactta 6000
gcctaggatc cacacgacac catgtccccc gagcgccgcc ccgtcgagat ccgcccggcc 6060
accgccgccg acatggccgc cgtgtgcgac atcgtgaacc actacatcga gacctccacc 6120
gtgaacttcc gcaccgagcc gcagaccccg caggagtgga tcgacgacct ggagcgcctc 6180
caggaccgct acccgtggct cgtggccgag gtggagggcg tggtggccgg catcgcctac 6240
gccggcccgt ggaaggcccg caacgcctac gactggaccg tggagtccac cgtgtacgtg 6300
tcccaccgcc accagcgcct cggcctcggc tccaccctct acacccacct cctcaagagc 6360
atggaggccc agggcttcaa gtccgtggtg gccgtgatcg gcctcccgaa cgacccgtcc 6420
gtgcgcctcc acgaggccct cggctacacc gcccgcggca ccctccgcgc cgccggctac 6480
aagcacggcg gctggcacga cgtcggcttc tggcagcgcg acttcgagct gccggccccg 6540
ccgcgcccgg tgcgcccggt gacgcagatc tgagtcgaaa cctagacttg tccatcttct 6600
ggattggcca acttaattaa tgtatgaaat aaaaggatgc acacatagtg acatgctaat 6660
cactataatg tgggcatcaa agttgtgtgt tatgtgtaat tactagttat ctgaataaaa 6720
gagaaagaga tcatccatat ttcttatcct aaatgaatgt cacgtgtctt tataattctt 6780
tgatgaacca gatgcatttc attaaccaaa tccatataca tataaatatt aatcatatat 6840
aattaatatc aattgggtta gcaaaacaaa tctagtctag gtgtgttttg cgaattgcgg 6900
ccgccaccgc ggtggagctc gaattcattc cgattaatcg tggcctcttg ctcttcagga 6960
tgaagagcta tgtttaaacg tgcaagcgct actagacaat tcagtacatt aaaaacgtcc 7020
gcaatgtgtt attaagttgt ctaagcgtca atttgtttac accacaatat atcctgccac 7080
cagccagcca acagctcccc gaccggcagc tcggcacaaa atcaccactc gatacaggca 7140
gcccatcagt ccgggacggc gtcagcggga gagccgttgt aaggcggcag actttgctca 7200
tgttaccgat gctattcgga agaacggcaa ctaagctgcc gggtttgaaa cacggatgat 7260
ctcgcggagg gtagcatgtt gattgtaacg atgacagagc gttgctgcct gtgatcaaat 7320
atcatctccc tcgcagagat ccgaattatc agccttctta ttcatttctc gcttaaccgt 7380
gacaggctgt cgatcttgag aactatgccg acataatagg aaatcgctgg ataaagccgc 7440
tgaggaagct gagtggcgct atttctttag aagtgaacgt tgacgatcgt cgaccgtacc 7500
ccgatgaatt aattcggacg tacgttctga acacagctgg atacttactt gggcgattgt 7560
catacatgac atcaacaatg tacccgtttg tgtaaccgtc tcttggaggt tcgtatgaca 7620
ctagtggttc ccctcagctt gcgactagat gttgaggcct aacattttat tagagagcag 7680
gctagttgct tagatacatg atcttcaggc cgttatctgt cagggcaagc gaaaattggc 7740
catttatgac gaccaatgcc ccgcagaagc tcccatcttt gccgccatag acgccgcgcc 7800
ccccttttgg ggtgtagaac atccttttgc cagatgtgga aaagaagttc gttgtcccat 7860
tgttggcaat gacgtagtag ccggcgaaag tgcgagaccc atttgcgcta tatataagcc 7920
tacgatttcc gttgcgacta ttgtcgtaat tggatgaact attatcgtag ttgctctcag 7980
agttgtcgta atttgatgga ctattgtcgt aattgcttat ggagttgtcg tagttgcttg 8040
gagaaatgtc gtagttggat ggggagtagt catagggaag acgagcttca tccactaaaa 8100
caattggcag gtcagcaagt gcctgccccg atgccatcgc aagtacgagg cttagaacca 8160
ccttcaacag atcgcgcata gtcttcccca gctctctaac gcttgagtta agccgcgccg 8220
cgaagcggcg tcggcttgaa cgaattgtta gacattattt gccgactacc ttggtgatct 8280
cgcctttcac gtagtgaaca aattcttcca actgatctgc gcgcgaggcc aagcgatctt 8340
cttgtccaag ataagcctgc ctagcttcaa gtatgacggg ctgatactgg gccggcaggc 8400
gctccattgc ccagtcggca gcgacatcct tcggcgcgat tttgccggtt actgcgctgt 8460
accaaatgcg ggacaacgta agcactacat ttcgctcatc gccagcccag tcgggcggcg 8520
agttccatag cgttaaggtt tcatttagcg cctcaaatag atcctgttca ggaaccggat 8580
caaagagttc ctccgccgct ggacctacca aggcaacgct atgttctctt gcttttgtca 8640
gcaagatagc cagatcaatg tcgatcgtgg ctggctcgaa gatacctgca agaatgtcat 8700
tgcgctgcca ttctccaaat tgcagttcgc gcttagctgg ataacgccac ggaatgatgt 8760
cgtcgtgcac aacaatggtg acttctacag cgcggagaat ctcgctctct ccaggggaag 8820
ccgaagtttc caaaaggtcg ttgatcaaag ctcgccgcgt tgtttcatca agccttacag 8880
tcaccgtaac cagcaaatca atatcactgt gtggcttcag gccgccatcc actgcggagc 8940
cgtacaaatg tacggccagc aacgtcggtt cgagatggcg ctcgatgacg ccaactacct 9000
ctgatagttg agtcgatact tcggcgatca ccgcttccct catgatgttt aactcctgaa 9060
ttaagccgcg ccgcgaagcg gtgtcggctt gaatgaattg ttaggcgtca tcctgtgctc 9120
ccgagaacca gtaccagtac atcgctgttt cgttcgagac ttgaggtcta gttttatacg 9180
tgaacaggtc aatgccgccg agagtaaagc cacattttgc gtacaaattg caggcaggta 9240
cattgttcgt ttgtgtctct aatcgtatgc caaggagctg tctgcttagt gcccactttt 9300
tcgcaaattc gatgagactg tgcgcgactc ctttgcctcg gtgcgtgtgc gacacaacaa 9360
tgtgttcgat agaggctaga tcgttccatg ttgagttgag ttcaatcttc ccgacaagct 9420
cttggtcgat gaatgcgcca tagcaagcag agtcttcatc agagtcatca tccgagatgt 9480
aatccttccg gtaggggctc acacttctgg tagatagttc aaagccttgg tcggataggt 9540
gcacatcgaa cacttcacga acaatgaaat ggttctcagc atccaatgtt tccgccacct 9600
gctcagggat caccgaaatc ttcatatgac gcctaacgcc tggcacagcg gatcgcaaac 9660
ctggcgcggc ttttggcaca aaaggcgtga caggtttgcg aatccgttgc tgccacttgt 9720
taaccctttt gccagatttg gtaactataa tttatgttag aggcgaagtc ttgggtaaaa 9780
actggcctaa aattgctggg gatttcagga aagtaaacat caccttccgg ctcgatgtct 9840
attgtagata tatgtagtgt atctacttga tcgggggatc tgctgcctcg cgcgtttcgg 9900
tgatgacggt gaaaacctct gacacatgca gctcccggag acggtcacag cttgtctgta 9960
agcggatgcc gggagcagac aagcccgtca gggcgcgtca gcgggtgttg gcgggtgtcg 10020
gggcgcagcc atgacccagt cacgtagcga tagcggagtg tatactggct taactatgcg 10080
gcatcagagc agattgtact gagagtgcac catatgcggt gtgaaatacc gcacagatgc 10140
gtaaggagaa aataccgcat caggcgctct tccgcttcct cgctcactga ctcgctgcgc 10200
tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat acggttatcc 10260
acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg 10320
aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc tgacgagcat 10380
cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag 10440
gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga 10500
tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg 10560
tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt 10620
cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac 10680
gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc 10740
ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag gacagtattt 10800
ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc 10860
ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc 10920
agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg 10980
aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag 11040
atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg 11100
tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt 11160
tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga gggcttacca 11220
tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca 11280
gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc 11340
tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt 11400
ttgcgcaacg ttgttgccat tgctgcaggg gggggggggg ggggggactt ccattgttca 11460
ttccacggac aaaaacagag aaaggaaacg acagaggcca aaaagcctcg ctttcagcac 11520
ctgtcgtttc ctttcttttc agagggtatt ttaaataaaa acattaagtt atgacgaaga 11580
agaacggaaa cgccttaaac cggaaaattt tcataaatag cgaaaacccg cgaggtcgcc 11640
gccccgtaac ctgtcggatc accggaaagg acccgtaaag tgataatgat tatcatctac 11700
atatcacaac gtgcgtggag gccatcaaac cacgtcaaat aatcaattat gacgcaggta 11760
tcgtattaat tgatctgcat caacttaacg taaaaacaac ttcagacaat acaaatcagc 11820
gacactgaat acggggcaac ctcatgtccc cccccccccc ccccctgcag gcatcgtggt 11880
gtcacgctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat caaggcgagt 11940
tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt 12000
cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc ataattctct 12060
tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt 12120
ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaacac gggataatac 12180
cgcgccacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa 12240
actctcaagg atcttaccgc tgttgagatc cagttcgatg taacccactc gtgcacccaa 12300
ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca 12360
aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct 12420
ttttcaatat tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga 12480
atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa aagtgccacc 12540
tgacgtctaa gaaaccatta ttatcatgac attaacctat aaaaataggc gtatcacgag 12600
gccctttcgt cttcaagaat tggtcgacga tcttgctgcg ttcggatatt ttcgtggagt 12660
tcccgccaca gacccggatt gaaggcgaga tccagcaact cgcgccagat catcctgtga 12720
cggaactttg gcgcgtgatg actggccagg acgtcggccg aaagagcgac aagcagatca 12780
cgcttttcga cagcgtcgga tttgcgatcg aggatttttc ggcgctgcgc tacgtccgcg 12840
accgcgttga gggatcaagc cacagcagcc cactcgacct tctagccgac ccagacgagc 12900
caagggatct ttttggaatg ctgctccgtc gtcaggcttt ccgacgtttg ggtggttgaa 12960
cagaagtcat tatcgtacgg aatgccaagc actcccgagg ggaaccctgt ggttggcatg 13020
cacatacaaa tggacgaacg gataaacctt ttcacgccct tttaaatatc cgttattcta 13080
ataaacgctc ttttctctta ggtttacccg ccaatatatc ctgtcaaaca ctgatagttt 13140
aaactgaagg cgggaaacga caatctgatc atgagcggag aattaaggga gtcacgttat 13200
gacccccgcc gatgacgcgg gacaagccgt tttacgtttg gaactgacag aaccgcaacg 13260
ttgaaggagc cactcagc 13278
<210> SEQ ID NO 11
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: poly-linker
<400> SEQUENCE: 11
gatcactagt ggcgcgccta ggagatctcg agtagggata acagggtaat 50
<210> SEQ ID NO 12
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: attB1 seqeunce
<400> SEQUENCE: 12
acaagtttgt acaaaaaagc aggct 25
<210> SEQ ID NO 13
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: attB2 sequence
<400> SEQUENCE: 13
accactttgt acaagaaagc tgggt 25
<210> SEQ ID NO 14
<211> LENGTH: 4778
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PHP23112 construct
<400> SEQUENCE: 14
gaaaggccca gtcttccgac tgagcctttc gttttatttg atgcctggca gttccctact 60
ctcgcgttaa cgctagcatg gatgttttcc cagtcacgac gttgtaaaac gacggccagt 120
cttaagctcg ggcccgcgtt aacgctacca tggagctcca aataatgatt ttattttgac 180
tgatagtgac ctgttcgttg caacaaattg ataagcaatg cttttttata atgccaactt 240
tgtatagaaa agttgggccg aattcgagct cggtacggcc agaatggccc ggaccgggtt 300
accgaattcg agctcggtac cctgggatca gcttgcatgc ctgcagtgca gcgtgacccg 360
gtcgtgcccc tctctagaga taatgagcat tgcatgtcta agttataaaa aattaccaca 420
tatttttttt gtcacacttg tttgaagtgc agtttatcta tctttataca tatatttaaa 480
ctttactcta cgaataatat aatctatagt actacaataa tatcagtgtt ttagagaatc 540
atataaatga acagttagac atggtctaaa ggacaattga gtattttgac aacaggactc 600
tacagtttta tctttttagt gtgcatgtgt tctccttttt ttttgcaaat agcttcacct 660
atataatact tcatccattt tattagtaca tccatttagg gtttagggtt aatggttttt 720
atagactaat ttttttagta catctatttt attctatttt agcctctaaa ttaagaaaac 780
taaaactcta ttttagtttt tttatttaat aatttagata taaaatagaa taaaataaag 840
tgactaaaaa ttaaacaaat accctttaag aaattaaaaa aactaaggaa acatttttct 900
tgtttcgagt agataatgcc agcctgttaa acgccgtcga cgagtctaac ggacaccaac 960
cagcgaacca gcagcgtcgc gtcgggccaa gcgaagcaga cggcacggca tctctgtcgc 1020
tgcctctgga cccctctcga gagttccgct ccaccgttgg acttgctccg ctgtcggcat 1080
ccagaaattg cgtggcggag cggcagacgt gagccggcac ggcaggcggc ctcctcctcc 1140
tctcacggca ccggcagcta cgggggattc ctttcccacc gctccttcgc tttcccttcc 1200
tcgcccgccg taataaatag acaccccctc cacaccctct ttccccaacc tcgtgttgtt 1260
cggagcgcac acacacacaa ccagatctcc cccaaatcca cccgtcggca cctccgcttc 1320
aaggtacgcc gctcgtcctc cccccccccc ctctctacct tctctagatc ggcgttccgg 1380
tccatgcatg gttagggccc ggtagttcta cttctgttca tgtttgtgtt agatccgtgt 1440
ttgtgttaga tccgtgctgc tagcgttcgt acacggatgc gacctgtacg tcagacacgt 1500
tctgattgct aacttgccag tgtttctctt tggggaatcc tgggatggct ctagccgttc 1560
cgcagacggg atcgatttca tgattttttt tgtttcgttg catagggttt ggtttgccct 1620
tttcctttat ttcaatatat gccgtgcact tgtttgtcgg gtcatctttt catgcttttt 1680
tttgtcttgg ttgtgatgat gtggtctggt tgggcggtcg ttctagatcg gagtagaatt 1740
ctgtttcaaa ctacctggtg gatttattaa ttttggatct gtatgtgtgt gccatacata 1800
ttcatagtta cgaattgaag atgatggatg gaaatatcga tctaggatag gtatacatgt 1860
tgatgcgggt tttactgatg catatacaga gatgcttttt gttcgcttgg ttgtgatgat 1920
gtggtgtggt tgggcggtcg ttcattcgtt ctagatcgga gtagaatact gtttcaaact 1980
acctggtgta tttattaatt ttggaactgt atgtgtgtgt catacatctt catagttacg 2040
agtttaagat ggatggaaat atcgatctag gataggtata catgttgatg tgggttttac 2100
tgatgcatat acatgatggc atatgcagca tctattcata tgctctaacc ttgagtacct 2160
atctattata ataaacaagt atgttttata attattttga tcttgatata cttggatgat 2220
ggcatatgca gcagctatat gtggattttt ttagccctgc cttcatacgc tatttatttg 2280
cttggtactg tttcttttgt cgatgctcac cctgttgttt ggtgttactt ctgcaggtcg 2340
actctagagg atcagcttgg tcacccggtc cgggcctaga aggccagctt caagtttgta 2400
caaaaaagtt gaacgagaaa cgtaaaatga tataaatatc aatatattaa attagatttt 2460
gcataaaaaa cagactacat aatactgtaa aacacaacat atgcagtcac tatgaatcaa 2520
ctacttagat ggtattagtg acctgtagaa ttcgagctct agagctgcag ggcggccgcg 2580
atatccccta tagtgagtcg tattacatgg tcatagctgt ttcctggcag ctctggcccg 2640
tgtctcaaaa tctctgatgt tacattgcac aagataaaaa tatatcatca tgaacaataa 2700
aactgtctgc ttacataaac agtaatacaa ggggtgttat gagccatatt caacgggaaa 2760
cgtcgaggcc gcgattaaat tccaacatgg atgctgattt atatgggtat aaatgggctc 2820
gcgataatgt cgggcaatca ggtgcgacaa tctatcgctt gtatgggaag cccgatgcgc 2880
cagagttgtt tctgaaacat ggcaaaggta gcgttgccaa tgatgttaca gatgagatgg 2940
tcagactaaa ctggctgacg gaatttatgc ctcttccgac catcaagcat tttatccgta 3000
ctcctgatga tgcatggtta ctcaccactg cgatccccgg aaaaacagca ttccaggtat 3060
tagaagaata tcctgattca ggtgaaaata ttgttgatgc gctggcagtg ttcctgcgcc 3120
ggttgcattc gattcctgtt tgtaattgtc cttttaacag cgatcgcgta tttcgtctcg 3180
ctcaggcgca atcacgaatg aataacggtt tggttgatgc gagtgatttt gatgacgagc 3240
gtaatggctg gcctgttgaa caagtctgga aagaaatgca taaacttttg ccattctcac 3300
cggattcagt cgtcactcat ggtgatttct cacttgataa ccttattttt gacgagggga 3360
aattaatagg ttgtattgat gttggacgag tcggaatcgc agaccgatac caggatcttg 3420
ccatcctatg gaactgcctc ggtgagtttt ctccttcatt acagaaacgg ctttttcaaa 3480
aatatggtat tgataatcct gatatgaata aattgcagtt tcatttgatg ctcgatgagt 3540
ttttctaatc agaattggtt aattggttgt aacactggca gagcattacg ctgacttgac 3600
gggacggcgc aagctcatga ccaaaatccc ttaacgtgag ttacgcgtcg ttccactgag 3660
cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa 3720
tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag 3780
agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg 3840
tccttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat 3900
acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta 3960
ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg 4020
gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc 4080
gtgagcattg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa 4140
gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc 4200
tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt 4260
caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct 4320
tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc 4380
gtattaccgc ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg 4440
agtcagtgag cgaggaagcg gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt 4500
ggccgattca ttaatgcagc tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc 4560
gcaacgcaat taatacgcgt accgctagcc aggaagagtt tgtagaaacg caaaaaggcc 4620
atccgtcagg atggccttct gcttagtttg atgcctggca gtttatggcg ggcgtcctgc 4680
ccgccaccct ccgggccgtt gcttcacaac gttcaaatcc gctcccggcg gatttgtcct 4740
actcaggaga gcgttcaccg acaaacaaca gataaaac 4778
<210> SEQ ID NO 15
<211> LENGTH: 54
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: forward primer VC062
<400> SEQUENCE: 15
ttaaacaagt ttgtacaaaa aagcaggctg caattaaccc tcactaaagg gaac 54
<210> SEQ ID NO 16
<211> LENGTH: 53
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: reverse primer VC063
<400> SEQUENCE: 16
ttaaaccact ttgtacaaga aagctgggtg cgtaatacga ctcactatag ggc 53
<210> SEQ ID NO 17
<211> LENGTH: 788
<212> TYPE: DNA
<213> ORGANISM: Zea mays
<400> SEQUENCE: 17
gcaaacaccg ctccagccgc cttcgctgct gctcgtgtgt ctcgtggaag ctccgcggct 60
ggaccatgga cccggacctg gacctcgacc tagacatgga tatggagacg ctcgccggcg 120
acagcggcgg cgaggccgag cgcaacgaag ccgccgaggc cgaggctgag gtggagcggt 180
acgaggccgc cgaagccgag gccgacatcc tccgcgaccg attccgcctc gccgtcatca 240
gcatcgccac cgccgaagga aagaaggccg gaatgacggt cgccgacccc gttgtttcct 300
gcatcgccga cttggcgttc aagagcgcag agcagctagc aaaggatgca gagttgtttg 360
cacagcatgc cggtcgcaaa tccgtcagga tggatgatgt catactcaca gctcacagga 420
acgagcatct tatgggcctg ctgcggacct tctctcagga gctgaaggga aaggagcctg 480
ccagtgagag gaagagaaag aaatcgtcca agaaggatga gacggtgatc gaggtctgat 540
ttcagatctg tcctcttttt ttttagagag gaaggcatgc atttttatct cgcgaggtcc 600
tcccggcttg tacagcttcc ttgtgtcgat actatcttcc atgtcatttc gcagaacttt 660
tcttctacga accctttcat cctagtcagt ttttctagtc agttattgat ggtacttgag 720
ttgagcttgc tttctcaact gcacatagca ttagtactga gtccaaaaaa aaaaaaaaaa 780
aaaaaaaa 788
<210> SEQ ID NO 18
<211> LENGTH: 157
<212> TYPE: PRT
<213> ORGANISM: Zea mays
<400> SEQUENCE: 18
Met Asp Pro Asp Leu Asp Leu Asp Leu Asp Met Asp Met Glu Thr Leu
1 5 10 15
Ala Gly Asp Ser Gly Gly Glu Ala Glu Arg Asn Glu Ala Ala Glu Ala
20 25 30
Glu Ala Glu Val Glu Arg Tyr Glu Ala Ala Glu Ala Glu Ala Asp Ile
35 40 45
Leu Arg Asp Arg Phe Arg Leu Ala Val Ile Ser Ile Ala Thr Ala Glu
50 55 60
Gly Lys Lys Ala Gly Met Thr Val Ala Asp Pro Val Val Ser Cys Ile
65 70 75 80
Ala Asp Leu Ala Phe Lys Ser Ala Glu Gln Leu Ala Lys Asp Ala Glu
85 90 95
Leu Phe Ala Gln His Ala Gly Arg Lys Ser Val Arg Met Asp Asp Val
100 105 110
Ile Leu Thr Ala His Arg Asn Glu His Leu Met Gly Leu Leu Arg Thr
115 120 125
Phe Ser Gln Glu Leu Lys Gly Lys Glu Pro Ala Ser Glu Arg Lys Arg
130 135 140
Lys Lys Ser Ser Lys Lys Asp Glu Thr Val Ile Glu Val
145 150 155
<210> SEQ ID NO 19
<211> LENGTH: 676
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 19
aaatcccatc tcagtccgcc atggacgcgg agatggacct cctcgccgac gacgacggcg 60
gcgaggccga gaggctggag gccgcggagg cgcaggccga cctcctccgc gatcgcctcc 120
gcctcgccgt catcagcatc gccacctccg aaggaaagaa ggcggggatg gaggtctccg 180
accccgtcgt cgcctgcatc gccgatctgg cctacaagac cgtagagcag ctggctaagg 240
atgttgagtt gtttgcacag catgctggtc gtaaatccat caagatggaa gatgttatac 300
tcacagcaca tagaaatgag catctgatgg gcctcctgcg gacattttct caagaactga 360
agggtaagga gccttccagc gagaggaaga gaaagaaatc ttcgaagaag gacgacaacg 420
tgatgcaaat ctgatttaag tcatgagata aatcttcttc ccatagaaca aagtggtagg 480
ttcaagcagg aaactctgca agtaactcag gctacccact gatcctgtat ttcacacatt 540
tagatgtggt atgacacaat gttgtctgtg gaaagtggag atccttcaca cctgtaaatt 600
cactgaggct gttgtgtcaa gtagtaaatg gcaaaattca gagtttggtt cttaaaaaaa 660
aaaaaaaaaa aaaaaa 676
<210> SEQ ID NO 20
<211> LENGTH: 137
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 20
Met Asp Ala Glu Met Asp Leu Leu Ala Asp Asp Asp Gly Gly Glu Ala
1 5 10 15
Glu Arg Leu Glu Ala Ala Glu Ala Gln Ala Asp Leu Leu Arg Asp Arg
20 25 30
Leu Arg Leu Ala Val Ile Ser Ile Ala Thr Ser Glu Gly Lys Lys Ala
35 40 45
Gly Met Glu Val Ser Asp Pro Val Val Ala Cys Ile Ala Asp Leu Ala
50 55 60
Tyr Lys Thr Val Glu Gln Leu Ala Lys Asp Val Glu Leu Phe Ala Gln
65 70 75 80
His Ala Gly Arg Lys Ser Ile Lys Met Glu Asp Val Ile Leu Thr Ala
85 90 95
His Arg Asn Glu His Leu Met Gly Leu Leu Arg Thr Phe Ser Gln Glu
100 105 110
Leu Lys Gly Lys Glu Pro Ser Ser Glu Arg Lys Arg Lys Lys Ser Ser
115 120 125
Lys Lys Asp Asp Asn Val Met Gln Ile
130 135
<210> SEQ ID NO 21
<211> LENGTH: 513
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (356)..(356)
<223> OTHER INFORMATION: n is a, c, g, t or u
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (364)..(364)
<223> OTHER INFORMATION: n is a, c, g, t or u
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (367)..(367)
<223> OTHER INFORMATION: n is a, c, g, t or u
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (413)..(413)
<223> OTHER INFORMATION: n is a, c, g, t or u
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (437)..(437)
<223> OTHER INFORMATION: n is a, c, g, t or u
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (474)..(474)
<223> OTHER INFORMATION: n is a, c, g, t or u
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (493)..(494)
<223> OTHER INFORMATION: n is a, c, g, t or u
<400> SEQUENCE: 21
cgcgaacagc gaagtcgaaa acgacgcgga aatgaagctc ttgagagata aattcaggct 60
ctccgcaatc tccatcatcg aatctcaagc aaaacaaaac ggcatggaag tatcaaaagt 120
cgtagtcact tgcgttgcgg atttggcctt caagtatacg gagcgcctgg ctagggatct 180
tcatctattt gcgcagcatg cgaatcgtaa atctgtaaat atggaagatg tgatactttg 240
tggacatagg aatgaacatg tatctggcat gttgaggagc ttctccaatg atttaaaagc 300
caaggatcct caatctgaaa ggaagcgaaa gaaagaaccc aaaaagaacg acaaangaac 360
cgcntancgc atatgcctga tgcatatata tgggcctaag aacatatttt ggnacgggta 420
ggtaatttta tgtatanttt tccccccctt aaaatgtttt tgggtttggg aagntagtgc 480
tgggatccat tannccaact taatcaattt atg 513
<210> SEQ ID NO 22
<211> LENGTH: 428
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (415)..(415)
<223> OTHER INFORMATION: n is a, c, g, t or u
<400> SEQUENCE: 22
aaaatcgtag tcacttgcat tgcggatttg gccttcaaat atacagagtg cgtggctagg 60
gatcttcatc tatttgcgca gcatgcgaat cgtaaatctg taaatatgga agatgtgata 120
ctttgtggac ataggaatga acatgtatct ggcatgttga ggagcttctc caatgtttta 180
aaagccaacg atcctcaatc tgaaaggaag cgaaagaaag aaaccaaaaa gaacgacaaa 240
ggaaccgctt agaacatatt ttggtatgat taagtaaaat cttatatata tattatttcc 300
ttacttttat tggacttgtt agctattgct ggaatctatt agtccatctt aatcatttat 360
gggtgccttt aaacttaata cctatgatgt gtgtaattga atcaatttaa tttangagca 420
ttttctat 428
<210> SEQ ID NO 23
<211> LENGTH: 612
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<400> SEQUENCE: 23
aaactcgacg atggaaagcg tggacgcgaa cagcgaagtc gaaaacgacg cggaaatgaa 60
gctcttgaga gataaattca ggctctccgc aatctccatc atcgaatctc aagcaaaaca 120
aaacggcatg gaagtatcaa aagtcgtagt cacttgcgtt gcggatttgg ccttcaagta 180
tacggagcgc ctggctaggg atcttcatct atttgcgcag catgcgaatc gtaaatctgt 240
aaatatggaa gatgtgatac tttgtggaca taggaatgaa catgtatctg gcatgttgag 300
gagcttctcc aatgatttaa aagccaagga tcctcaatct gaaaggaagc gaaagaaaga 360
acccaaaaag aacgacaaag gaaccgctta gcgcatatgc ctgatgcata tatatggtcc 420
taggaacata ttttggtacg gttagttaat tttatgtata tttttctctc ctttatatgt 480
ttttggattt ggtagctagt gctggaatct attagtccat cttaatcatt tatgcatgcc 540
tttaaactta attccagtaa ggcagtaact atgagtgcgt gattgaagta attaatttag 600
aagcattttt tt 612
<210> SEQ ID NO 24
<211> LENGTH: 126
<212> TYPE: PRT
<213> ORGANISM: Glycine max
<400> SEQUENCE: 24
Met Glu Ser Val Asp Ala Asn Ser Glu Val Glu Asn Asp Ala Glu Met
1 5 10 15
Lys Leu Leu Arg Asp Lys Phe Arg Leu Ser Ala Ile Ser Ile Ile Glu
20 25 30
Ser Gln Ala Lys Gln Asn Gly Met Glu Val Ser Lys Val Val Val Thr
35 40 45
Cys Val Ala Asp Leu Ala Phe Lys Tyr Thr Glu Arg Leu Ala Arg Asp
50 55 60
Leu His Leu Phe Ala Gln His Ala Asn Arg Lys Ser Val Asn Met Glu
65 70 75 80
Asp Val Ile Leu Cys Gly His Arg Asn Glu His Val Ser Gly Met Leu
85 90 95
Arg Ser Phe Ser Asn Asp Leu Lys Ala Lys Asp Pro Gln Ser Glu Arg
100 105 110
Lys Arg Lys Lys Glu Pro Lys Lys Asn Asp Lys Gly Thr Ala
115 120 125
<210> SEQ ID NO 25
<211> LENGTH: 578
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<400> SEQUENCE: 25
gttgctgtcg aaaaatctcg acgatggaaa acgcggacgc gaacagcgaa gtcgaaaacg 60
acgcggaaat gaagctcttg agagataaat tcaggctctc cgcaatctcc ataatcgaat 120
ctcaagcaaa acaaaatggc atggaagtag caaaaatcgt agtcacttgc attgcggatt 180
tggccttcaa atatacagag tgcgtggcta gggatcttca tctatttgcg cagcatgcga 240
atcgtaaatc tgtaaatatg gaagatgtga tactttgtgg acataggaat gaacatgtat 300
ctggcatgtt gaggagcttc tccaatgttt taaaagccaa cgatcctcaa tctgaaagga 360
agcgaaagaa agaaaccaaa aagaacgaca aaggaaccgc ttagaacata ttttggtatg 420
attagtaaaa tcttatatat atattatttc cttactttta ttggacttgt tagctattgc 480
tggaatctat tagtccatct taatcattta tgggtgcctt taaacttaat accactcact 540
gtatgatgtg tgtaattgaa tcattttaat ttaggagc 578
<210> SEQ ID NO 26
<211> LENGTH: 126
<212> TYPE: PRT
<213> ORGANISM: Glycine max
<400> SEQUENCE: 26
Met Glu Asn Ala Asp Ala Asn Ser Glu Val Glu Asn Asp Ala Glu Met
1 5 10 15
Lys Leu Leu Arg Asp Lys Phe Arg Leu Ser Ala Ile Ser Ile Ile Glu
20 25 30
Ser Gln Ala Lys Gln Asn Gly Met Glu Val Ala Lys Ile Val Val Thr
35 40 45
Cys Ile Ala Asp Leu Ala Phe Lys Tyr Thr Glu Cys Val Ala Arg Asp
50 55 60
Leu His Leu Phe Ala Gln His Ala Asn Arg Lys Ser Val Asn Met Glu
65 70 75 80
Asp Val Ile Leu Cys Gly His Arg Asn Glu His Val Ser Gly Met Leu
85 90 95
Arg Ser Phe Ser Asn Val Leu Lys Ala Asn Asp Pro Gln Ser Glu Arg
100 105 110
Lys Arg Lys Lys Glu Thr Lys Lys Asn Asp Lys Gly Thr Ala
115 120 125
210> SEQ ID NO 27
<211> LENGTH: 847
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 27
atgtttaaca tttcttacgc caaacgaaac gctaaatatt tatttaaatt gctagcctgg 60
tgtatgatga tcgaggaagc tggacctaac atcggtaaca agcaaaaagt agttctccaa 120
cttagcaaaa tgctaataat gtatatcatt ctccatataa acgctgcgtt ttggacatgg 180
aggggatact taaaacgctg cgttttacac tttgttttcc cgcgtatatt tctcccttta 240
ttatcggata gcccaacaat cacacaggcg aagaaaccta gctattgctt cgccatggac 300
gtcggaggag aagacataag cgatctccag gtagaccaaa tcgttgaaga atattctatg 360
gacgatctca ttagagaccg attcagactc tccgcgatct ctatcgccga agccgaggcg 420
aagaaaaatg gaatggaaat aggtggacct gttgtggcat gtgtggcaga tttagccttc 480
aaatatgcag aaaacgttgc aaaggatctt gaactattcg ctcatcatgc tggacgcaaa 540
gttgtgaaca tggacgatgt tgttctctcc gcgcatagaa acgataactt agcagcatct 600
ttgaggtcac tatgcaatga gctaaaggca aaggagccac aatctgagag gaaacgcaag 660
aaaggatcag ccaagaaaga agacaaagcc agtagtagca atgccgttcg catcacgacc 720
gatctgtaac tcttcaagca gagtgtaaat acacgcactc ctctatatat atatataaac 780
attaactttg atggagaagc tgttattaaa tttttgtgga aaattttata tagaagactt 840
ttgcatt 847
<210> SEQ ID NO 28
<211> LENGTH: 242
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 28
Met Phe Asn Ile Ser Tyr Ala Lys Arg Asn Ala Lys Tyr Leu Phe Lys
1 5 10 15
Leu Leu Ala Trp Cys Met Met Ile Glu Glu Ala Gly Pro Asn Ile Gly
20 25 30
Asn Lys Gln Lys Val Val Leu Gln Leu Ser Lys Met Leu Ile Met Tyr
35 40 45
Ile Ile Leu His Ile Asn Ala Ala Phe Trp Thr Trp Arg Gly Tyr Leu
50 55 60
Lys Arg Cys Val Leu His Phe Val Phe Pro Arg Ile Phe Leu Pro Leu
65 70 75 80
Leu Ser Asp Ser Pro Thr Ile Thr Gln Ala Lys Lys Pro Ser Tyr Cys
85 90 95
Phe Ala Met Asp Val Gly Gly Glu Asp Ile Ser Asp Leu Gln Val Asp
100 105 110
Gln Ile Val Glu Glu Tyr Ser Met Asp Asp Leu Ile Arg Asp Arg Phe
115 120 125
Arg Leu Ser Ala Ile Ser Ile Ala Glu Ala Glu Ala Lys Lys Asn Gly
130 135 140
Met Glu Ile Gly Gly Pro Val Val Ala Cys Val Ala Asp Leu Ala Phe
145 150 155 160
Lys Tyr Ala Glu Asn Val Ala Lys Asp Leu Glu Leu Phe Ala His His
165 170 175
Ala Gly Arg Lys Val Val Asn Met Asp Asp Val Val Leu Ser Ala His
180 185 190
Arg Asn Asp Asn Leu Ala Ala Ser Leu Arg Ser Leu Cys Asn Glu Leu
195 200 205
Lys Ala Lys Glu Pro Gln Ser Glu Arg Lys Arg Lys Lys Gly Ser Ala
210 215 220
Lys Lys Glu Asp Lys Ala Ser Ser Ser Asn Ala Val Arg Ile Thr Thr
225 230 235 240
Asp Leu
<210> SEQ ID NO 29
<211> LENGTH: 665
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 29
atgtttaaca tttcttacgc caaacgaaac gctaaatatt tatttaaatt gctagcctgg 60
taggcgcgta atagagagtg ctatgtttcc ttaaatcaaa gcaaaacata gatgttgttg 120
ccggcaacga ggatggtaat cgataaagcc acaggtgtat gatgatcgag gaagctggac 180
ctaacatcgg taacaagcaa aaagcgaaga aacctagcta ttgcttcgcc atggacgtcg 240
gaggagaaga cataagcgat ctccaggtag accaaatcgt tgaagaatat tctatggacg 300
atctcattag agaccgattc agactctccg cgatctctat cgccgaagcc gaggcgaaga 360
aaaatggaat ggaaataggt ggacctgttg tggcatgtgt ggcagattta gccttcaaat 420
atgcagaaaa cgttgcaaag gatcttgaac tattcgctca tcatgctgga cgcaaagttg 480
tgaacatgga cgatgttgtt ctctccgcgc atagaaacga taacttagca gcatctttga 540
ggtcactatg caatgagcta aaggcaaagg agccacaatc tgagaggaaa cgcaagaaag 600
gatcagccaa gaaagaagac aaagccagta gtagcaatgc cgttcgcatc acgaccgatc 660
tgtaa 665
<210> SEQ ID NO 30
<211> LENGTH: 168
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 30
Met Met Ile Glu Glu Ala Gly Pro Asn Ile Gly Asn Lys Gln Lys Ala
1 5 10 15
Lys Lys Pro Ser Tyr Cys Phe Ala Met Asp Val Gly Gly Glu Asp Ile
20 25 30
Ser Asp Leu Gln Val Asp Gln Ile Val Glu Glu Tyr Ser Met Asp Asp
35 40 45
Leu Ile Arg Asp Arg Phe Arg Leu Ser Ala Ile Ser Ile Ala Glu Ala
50 55 60
Glu Ala Lys Lys Asn Gly Met Glu Ile Gly Gly Pro Val Val Ala Cys
65 70 75 80
Val Ala Asp Leu Ala Phe Lys Tyr Ala Glu Asn Val Ala Lys Asp Leu
85 90 95
Glu Leu Phe Ala His His Ala Gly Arg Lys Val Val Asn Met Asp Asp
100 105 110
Val Val Leu Ser Ala His Arg Asn Asp Asn Leu Ala Ala Ser Leu Arg
115 120 125
Ser Leu Cys Asn Glu Leu Lys Ala Lys Glu Pro Gln Ser Glu Arg Lys
130 135 140
Arg Lys Lys Gly Ser Ala Lys Lys Glu Asp Lys Ala Ser Ser Ser Asn
145 150 155 160
Ala Val Arg Ile Thr Thr Asp Leu
165
<210> SEQ ID NO 31
<211> LENGTH: 669
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 31
atgtttaaca tttcttacgc caaacgaaac gctaaatatt tatttaaatt gctagcctgg 60
taggcgcgta atagagagtg ctatgtttcc ttaaatcaaa gcaaaacata gatgttgttg 120
ccggcaacga ggatggtaat cgataaagcc acaggtgtat gatgatcgag gaagctggac 180
ctaacatcgg taacaagcaa aaagtaggcg aagaaaccta gctattgctt cgccatggac 240
gtcggaggag aagacataag cgatctccag gtagaccaaa tcgttgaaga atattctatg 300
gacgatctca ttagagaccg attcagactc tccgcgatct ctatcgccga agccgaggcg 360
aagaaaaatg gaatggaaat aggtggacct gttgtggcat gtgtggcaga tttagccttc 420
aaatatgcag aaaacgttgc aaaggatctt gaactattcg ctcatcatgc tggacgcaaa 480
gttgtgaaca tggacgatgt tgttctctcc gcgcatagaa acgataactt agcagcatct 540
ttgaggtcac tatgcaatga gctaaaggca aaggagccac aatctgagag gaaacgcaag 600
aaaggatcag ccaagaaaga agacaaagcc agtagtagca atgccgttcg catcacgacc 660
gatctgtaa 669
<210> SEQ ID NO 32
<211> LENGTH: 144
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 32
Met Asp Val Gly Gly Glu Asp Ile Ser Asp Leu Gln Val Asp Gln Ile
1 5 10 15
Val Glu Glu Tyr Ser Met Asp Asp Leu Ile Arg Asp Arg Phe Arg Leu
20 25 30
Ser Ala Ile Ser Ile Ala Glu Ala Glu Ala Lys Lys Asn Gly Met Glu
35 40 45
Ile Gly Gly Pro Val Val Ala Cys Val Ala Asp Leu Ala Phe Lys Tyr
50 55 60
Ala Glu Asn Val Ala Lys Asp Leu Glu Leu Phe Ala His His Ala Gly
65 70 75 80
Arg Lys Val Val Asn Met Asp Asp Val Val Leu Ser Ala His Arg Asn
85 90 95
Asp Asn Leu Ala Ala Ser Leu Arg Ser Leu Cys Asn Glu Leu Lys Ala
100 105 110
Lys Glu Pro Gln Ser Glu Arg Lys Arg Lys Lys Gly Ser Ala Lys Lys
115 120 125
Glu Asp Lys Ala Ser Ser Ser Asn Ala Val Arg Ile Thr Thr Asp Leu
130 135 140
<210> SEQ ID NO 33
<211> LENGTH: 137
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 33
Met Asp Ala Glu Met Asp Leu Leu Ala Asp Asp Asp Gly Gly Glu Ala
1 5 10 15
Glu Arg Leu Glu Ala Ala Glu Ala Gln Ala Asp Leu Leu Arg Asp Arg
20 25 30
Leu Arg Leu Ala Val Ile Ser Ile Ala Thr Ser Glu Gly Lys Lys Ala
35 40 45
Gly Met Glu Val Ser Asp Pro Val Val Ala Cys Ile Ala Asp Leu Ala
50 55 60
Tyr Lys Thr Val Glu Gln Leu Ala Lys Asp Val Glu Leu Phe Ala Gln
65 70 75 80
His Ala Gly Arg Lys Ser Ile Lys Met Glu Asp Val Ile Leu Thr Ala
85 90 95
His Arg Asn Glu His Leu Met Gly Leu Leu Arg Thr Phe Ser Gln Glu
100 105 110
Leu Lys Gly Lys Glu Pro Ser Ser Glu Arg Lys Arg Lys Lys Ser Ser
115 120 125
Lys Lys Asp Asp Asn Val Met Gln Ile
130 135
<210> SEQ ID NO 34
<211> LENGTH: 135
<212> TYPE: PRT
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 34
Met Glu Glu Ala Arg Ser Glu Leu Glu Arg Glu Glu Asp Glu Glu Ala
1 5 10 15
Thr Glu Leu Leu Arg Asp Arg Phe Arg Leu Ser Thr Ile Ser Ile Val
20 25 30
Glu Ala Gln Ala Lys Lys Ser Asp Met Glu Ile Ser Glu Pro Ile Val
35 40 45
Ala Cys Ile Ser Asp Leu Ala Phe Lys Tyr Thr Glu Gln Leu Ala Lys
50 55 60
Asp Leu Glu Leu Phe Ser Gln His Ala Gly Arg Lys Thr Val Asn Met
65 70 75 80
Glu Asp Val Ile Leu Ser Ala His Arg Asn Lys His Leu Ala Ser Ser
85 90 95
Leu Arg Ser Phe Cys Asn Asp Leu Lys Ala Lys Glu Ile Pro Ser Glu
100 105 110
Arg Lys Arg Lys Lys Ala Ser Arg Lys Glu Asp Lys Ala Ser Thr Ser
115 120 125
Val Val His Ile Pro Asp Leu
130 135
<210> SEQ ID NO 35
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: nucleotide sequence of the At5g50930-5'
attB
forward primer
<400> SEQUENCE: 35
ttaaacaagt ttgtacaaaa aagcaggctc aacaatgttt aacatttctt acgcc 55
<210> SEQ ID NO 36
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: nucleotide sequence of the At5g50930-3'
attB
reverse primer
<400> SEQUENCE: 36
ttaaaccact ttgtacaaga aagctgggtt tacagatcgg tcgtgatgcg 50
User Contributions:
Comment about this patent or add new information about this topic: