Patent application title: Isolated human phosphodiesterase proteins, nucleic acid molecules encoding human phosphodiesterase proteins, and uses thereof
Inventors:
Ming-Hui Wei (Germantown, MD, US)
Xin Wang (Bethesda, MD, US)
Gennady V. Merkulov (Baltimore, MD, US)
Valentina Di Francesco (Rockville, MD, US)
Ellen M. Beasley (Darnestown, MD, US)
Assignees:
Applera Corporation
IPC8 Class: AA61K31395FI
USPC Class:
4241341
Class name: Immunoglobulin, antiserum, antibody, or antibody fragment, except conjugate or complex of the same with nonimmunoglobulin material structurally-modified antibody, immunoglobulin, or fragment thereof (e.g., chimeric, humanized, cdr-grafted, mutated, etc.) antibody, immunoglobulin, or fragment thereof fused via peptide linkage to nonimmunoglobulin protein, polypeptide, or fragment thereof (i.e., antibody or immunoglobulin fusion protein or polypeptide)
Publication date: 2009-03-19
Patent application number: 20090074767
Claims:
1. An isolated peptide comprising an amino acid sequence selected from the
group consisting of:(a) an amino acid sequence shown in SEQ ID NO:2;(b)
an amino acid sequence of an allelic variant of an amino acid sequence
shown in SEQ ID NO:2, wherein said allelic variant is encoded by a
nucleic acid molecule that hybridizes under stringent conditions to the
opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;(c)
an amino acid sequence of an ortholog of an amino acid sequence shown in
SEQ ID NO:2, wherein said ortholog is encoded by a nucleic acid molecule
that hybridizes under stringent conditions to the opposite strand of a
nucleic acid molecule shown in SEQ ID NOS:1 or 3; and(d) a fragment of an
amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises
at least 10 contiguous amino acids.
2. An isolated antibody that selectively binds to a peptide of claim 1.
3. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:(a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;(b) a nucleotide sequence that encodes of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;(c) a nucleotide sequence that encodes an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;(d) a nucleotide sequence that encodes a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids; and(e) a nucleotide sequence that is the complement of a nucleotide sequence of (a)-(d).
4. A nucleic acid vector comprising a nucleic acid molecule of claim 3.
5. A host cell containing the vector of claim 4.
6. A method for producing any of the peptides of claim 1 comprising introducing a nucleotide sequence encoding any of the amino acid sequences in (a)-(d) into a host cell, and culturing the host cell under conditions in which the peptides are expressed from the nucleotide sequence.
7. A method for detecting the presence of any of the peptides of claim 1 in a sample, said method comprising contacting said sample with a detection agent that specifically allows detection of the presence of the peptide in the sample and then detecting the presence of the peptide.
8. A method for detecting the presence of a nucleic acid molecule of claim 3 in a sample, said method comprising contacting the sample with an oligonucleotide that hybridizes to said nucleic acid molecule under stringent conditions and determining whether the oligonucleotide binds to said nucleic acid molecule in the sample.
9. A method for identifying a modulator of a peptide of claim 1, said method comprising contacting said peptide with an agent and determining if said agent has modulated the function or activity of said peptide.
10. The method of claim 9, wherein said agent is administered to a host cell comprising an expression vector that expresses said peptide.
11. A method for identifying an agent that binds to any of the peptides of claim 1, said method comprising contacting the peptide with an agent and assaying the contacted mixture to determine whether a complex is formed with the agent bound to the peptide.
12. A pharmaceutical composition comprising an agent identified by the method of claim 11 and a pharmaceutically acceptable carrier therefor.
13. A method for treating a disease or condition mediated by a human phosphodiesterase protein, said method comprising administering to a patient a pharmaceutically effective amount of an agent identified by the method of claim 11.
14. A method for identifying a modulator of the expression of a peptide of claim 1, said method comprising contacting a cell expressing said peptide with an agent, and determining if said agent has modulated the expression of said peptide.
Description:
FIELD OF THE INVENTION
[0001]The present invention is in the field of phosphodiesterase proteins that are related to cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase 2A (PDE2A), recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein phosphorylation and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods. In particular, the phosphodiesterase protein provided by the present invention is a novel alternative splice form of PDE2A.
BACKGROUND OF THE INVENTION
Phosphodiesterases
[0002]In general, phosphodiesterases ("PDEs") catalyze the hydrolysis of a phosphodiester bond. Specific classes of phosphodiesterases include those catalyzing the degradation of cyclilc monophosphates.
[0003]The signaling pathways regulated by PDEs include the transduction of photon capture in the outer segment of a photoreceptor as well as changes in neurotransmitter release from its inner segment. PDEs also regulate the aldosterone production by atrial natriuretic peptide and platelet aggregation by endothelial relaxation factor.
[0004]Experimental data have demonstrated the role of phosphodiesterases in a range of diseases, including inflammatory diseases such as asthma, chronic obstructive pulmonary disease, rheumatoid arthritis and atopy. Drugs that selectively inhibit individual PDE isozymes have a wide variety of different effects on an animals, suggesting specific roles for most of the different PDEs.
[0005]Experimental evidence indicates the existence of several related gene families coding for different phosphodiesterases, and that each of these families contain more than one gene. Furthermore, each gene product is differentially spliced in different tissues to yield different isozymes. Isolation of cDNAs for many of the isozymes has allowed a series of structure/function studies to be initiated. Several of these isozymes are regulated by phosphorylation/dephosphorylation mechanisms.
[0006]Over 30 phosphodiesterases have been identified. Categories of phosphodiesterases include seven major classes. Class I phosphodiesterases include calmodulin-dependent phosphodiesterases which are expressed in tissues such as the brain, testes, sperm, coronary artery, lung, heart, and pancreas. Class II phosphodiesterases include cGMP-stimulated phosphodiesterases which are expressed in tissues such as the brain, adrenal gland, and the heart. Class III phosphodiesterases include cGMP-inhibited phosphodiesterases expressed in tissues such as T-lymphocytes, macrophages, platelets, smooth muscle, heart, and adipose tissue. Class IV phosphodiesterases include cAMP-specific phosphodiesterases which are expressed in tissues such as monocytes, leukocytes, and the central nervous system. Class V phosphodiesterases include cGMP-specific phosphodiesterases which are expressed in tissues such as lung, smooth muscle, platelets, and the aorta. Class VI phosphodiesterases include photoreceptor-specific phosphodiesterases expressed in the retina. Class VII phosphodiesterases include high affinity cAMP-specific phosphodiesterases.
[0007]Cyclic Nucleotide Phosphodiesterases
[0008]As is well-known in the art, a myriad of physiological processes are controlling by causing changes in the steady state levels of the second messengers cAMP and cGMP. One of the major mechanisms by which these levels are controlled is via the cyclic nucleotide PDEs that control their degradation by catalyzing the hydrolysis of a phosphodiester bond, yielding 5'-AMP and 5'-GMP, respectively.
[0009]Experimental data have demonstrated the role of cyclic nucleotide phosphodiesterases in a range of diseases, including inflammatory diseases such as asthma, chronic obstructive pulmonary disease, rheumatoid arthritis and atopy.
[0010]In mammals, four genes are known to code for cAMP-specific PDEs. These genes are known as PDE4A, PDE4B, PDE4C and PDE4D. This was first demonstrated in rats and later in humans and in mice. The four human and four rat genes show a one to one correspondence, in that each of the four human PDE4 genes is more closely related to its homologous rat gene than to any other human gene. The PDE4 genes are located on three different human chromosomes: PDE4B on chromosome 1, PDE4D on chromosome 5; PDE4A on p13.2 of chromosome 19 and PDE4C on p13.1 of chromosome 19. Their four murine homologues are each located in correspondingly conserved regions of the mouse genome. The mammalian PDE4 genes thus comprise a well-conserved multigene family.
[0011]The existence of a large number of mRNA transcripts from many of the mammalian PDE4 genes suggests that the genomic structure of these genes is likely to be complex. Partial genomic sequences have been published for the rat PDE4B and PDE4D genes. However, the published data indicate that sequences at the 5' end of the genes, which would include a number of upstream exons and promoter sites, were not included.
[0012]cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase 2A (PDE2A)
[0013]The novel human protein, and encoding gene, provided by the present invention is an alternative splice form of cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase 2A (PDE2A). Specifically, the phosphodiesterase provided by the present invention differs from known phosphodiesterases, particularly bovine PDE2A1 (gi116569) and human PDE2A3 (gi4505657), in exon 1. These difference are illustrated in the Figures, particularly in the amino acid sequence alignments shown in FIGS. 2 and 3.
[0014]For a further review of PDE2A and related proteins, see Rosman et al., Gene 1997 May 20; 191(1):89-95; Sonnenburg et al., J Biol Chem 1991 Sep. 15; 266(26):17655-61; Trong et al., Biochemistry 1990 Nov. 6; 29(44):10280-8; and Charbonneau et al., Proc Natl Acad Sci USA 1986 December; 83(24):9308-12.
[0015]Phosphodiesterase proteins, particularly alternative splice forms of PDE2A, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown splice forms of phosphodiesterase proteins. The present invention advances the state of the art by providing a previously unidentified human PDE2A alternative splice form.
SUMMARY OF THE INVENTION
[0016]The present invention is based in part on the identification of amino acid sequences of human phosphodiesterase peptides and proteins that are related to PDE2A, as well as allelic variants and other mammalian orthologs thereof. Specifically, the phosphodiesterase protein provided by the present invention is a novel alternative splice form of PDE2A. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate phosphodiesterase activity in cells and tissues that express the phosphodiesterase. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample.
DESCRIPTION OF THE FIGURE SHEETS
[0017]FIG. 1 provides the nucleotide sequence of a cDNA molecule that encodes the phosphodiesterase protein of the present invention. (SEQ ID NO: 1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample.
[0018]FIG. 2 provides the predicted amino acid sequence of the phosphodiesterase of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.
[0019]FIG. 3 provides genomic sequences that span the gene encoding the phosphodiesterase protein of the present invention (SEQ ID NO:3), allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in FIG. 3, SNPs were identified at 231 different nucleotide positions. FIG. 3 also provides a multiple alignment of isoform 1 (11000567083206_pep), human PDE2A3 (gi4505657_pep) and bovine PDE2A1 (gi116569_pep) amino acid sequences, illustrating the differences in exon 1 between the phosphodiesterase of the present invention and known phosphodiesterases.
DETAILED DESCRIPTION OF THE INVENTION
General Description
[0020]The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or sequence homology to protein/peptide/domains identified and characterized within the art as being a phosphodiesterase protein or part of a phosphodiesterase protein and are related to PDE2A. Specifically, the phosphodiesterase protein provided by the present invention is a novel alternative splice form of PDE2A. Utilizing these sequences, additional genomic sequences were assembled and transcript and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human phosphodiesterase peptides and proteins that are related to the PDE2A subfamily, nucleic acid sequences in the form of transcript sequences, cDNA sequences and/or genomic sequences that encode these phosphodiesterase peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the phosphodiesterase of the present invention.
[0021]In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology and/or structural relatedness to known phosphodiesterase proteins of the PDE2A subfamily and the expression pattern observed. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. The art has clearly established the commercial importance of members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known PDE2A family or subfamily of phosphodiesterase proteins.
SPECIFIC EMBODIMENTS
Peptide Molecules
[0022]The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the phosphodiesterase family of proteins and are related to PDE2A (protein sequences are provided in FIG. 2, transcript/cDNA sequences are provided in FIG. 1 and genomic sequences are provided in FIG. 3). Specifically, the phosphodiesterase protein provided by the present invention is a novel alternative splice form of PDE2A. The peptide sequences provided in FIG. 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in FIG. 3, will be referred herein as the phosphodiesterase peptides of the present invention, phosphodiesterase peptides, or peptides/proteins of the present invention.
[0023]The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the phosphodiesterase peptides disclosed in the FIG. 2, (encoded by the nucleic acid molecule shown in FIG. 1, transcript/cDNA or FIG. 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.
[0024]As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).
[0025]In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.
[0026]The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the phosphodiesterase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.
[0027]The isolated phosphodiesterase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. For example, a nucleic acid molecule encoding the phosphodiesterase peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.
[0028]Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in FIG. 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.
[0029]The present invention further provides proteins that consist essentially of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO: 1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.
[0030]The present invention further provides proteins that comprise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein comprises an amino acid sequence when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the phosphodiesterase peptides of the present invention are the naturally occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.
[0031]The phosphodiesterase peptides of the present invention can be attached to heterologous sequences to form chimeric or fusion proteins. Such chimeric and fusion proteins comprise a phosphodiesterase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the phosphodiesterase peptide. "Operatively linked" indicates that the phosphodiesterase peptide and the heterologous protein are fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the phosphodiesterase peptide.
[0032]In some uses, the fusion protein does not affect the activity of the phosphodiesterase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant phosphodiesterase peptide. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.
[0033]A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A phosphodiesterase peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the phosphodiesterase peptide.
[0034]As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.
[0035]Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the phosphodiesterase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.
[0036]To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
[0037]The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
[0038]The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol. Biol. 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)). When utilizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.
[0039]Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides of the present invention can readily be identified as having complete sequence identity to one of the phosphodiesterase peptides of the present invention as well as being encoded by the same genetic locus as the phosphodiesterase peptide provided herein. The gene encoding the novel phosphodiesterase protein of the present invention is located on a genome component that has been mapped to human chromosome 11 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
[0040]Allelic variants of a phosphodiesterase peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the phosphodiesterase peptide as well as being encoded by the same genetic locus as the phosphodiesterase peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in FIG. 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel phosphodiesterase protein of the present invention is located on a genome component that has been mapped to human chromosome 11 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of the proteins) have significant homology when the amino acid sequences are typically at least about 70-80%, 80-90%, and more typically at least about 90-95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a phosphodiesterase peptide encoding nucleic acid molecule under stringent conditions as more fully described below.
[0041]FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphodiesterase protein of the present invention. SNPs were identified at 231 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. These SNPs may also affect control/regulatory elements.
[0042]Paralogs of a phosphodiesterase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the phosphodiesterase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a phosphodiesterase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.
[0043]Orthologs of a phosphodiesterase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the phosphodiesterase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a phosphodiesterase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.
[0044]Non-naturally occurring variants of the phosphodiesterase peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the phosphodiesterase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a phosphodiesterase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., Science 247:1306-1310 (1990).
[0045]Variant phosphodiesterase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to phosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. FIG. 2 provides the result of protein analysis and can be used to identify critical domains/regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.
[0046]Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.
[0047]Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081-1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as phosphodiesterase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992); de Vos et al. Science 255:306-312 (1992)).
[0048]The present invention further provides fragments of the phosphodiesterase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.
[0049]As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a phosphodiesterase peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the phosphodiesterase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the phosphodiesterase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.
[0050]Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in phosphodiesterase peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in FIG. 2).
[0051]Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
[0052]Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as Proteins--Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N. Y. Acad. Sci. 663:48-62 (1992)).
[0053]Accordingly, the phosphodiesterase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature phosphodiesterase peptide is fused with another compound, such as a compound to increase the half-life of the phosphodiesterase peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature phosphodiesterase peptide, such as a leader or secretory sequence or a sequence for purification of the mature phosphodiesterase peptide or a pro-protein sequence.
[0054]Protein/Peptide Uses
[0055]The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a phosphodiesterase-effector protein interaction or phosphodiesterase-ligand interaction), the protein can be used to identify the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.
[0056]Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.
[0057]The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, phosphodiesterases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the phosphodiesterase. Experimental data as provided in FIG. 1 indicates that phosphodiesterase proteins of the present invention are expressed in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample, as indicated by virtual northern blot analysis. PCR-based tissue screening panels also indicate expression in the brain. A large percentage of pharmaceutical agents are being developed that modulate the activity of phosphodiesterase proteins, particularly members of the PDE2A subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in FIG. 1. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. Such uses can readily be determined using the information provided herein, that which is known in the art, and routine experimentation.
[0058]The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to phosphodiesterases that are related to members of the PDE2A subfamily. Such assays involve any of the known phosphodiesterase functions or activities or properties useful for diagnosis and treatment of phosphodiesterase-related conditions that are specific for the subfamily of phosphodiesterases that the one of the present invention belongs to, particularly in cells and tissues that express the phosphodiesterase. Experimental data as provided in FIG. 1 indicates that phosphodiesterase proteins of the present invention are expressed in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample, as indicated by virtual northern blot analysis. PCR-based tissue screening panels also indicate expression in the brain.
[0059]The proteins of the present invention are also useful in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally express the phosphodiesterase, as a biopsy or expanded in cell culture. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the phosphodiesterase protein.
[0060]The polypeptides can be used to identify compounds that modulate phosphodiesterase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the phosphodiesterase. Both the phosphodiesterases of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the phosphodiesterase. These compounds can be further screened against a functional phosphodiesterase to determine the effect of the compound on the phosphodiesterase activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the phosphodiesterase to a desired degree.
[0061]Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the phosphodiesterase protein and a molecule that normally interacts with the phosphodiesterase protein, e.g. a substrate or a component of the signal pathway that the phosphodiesterase protein normally interacts (for example, another phosphodiesterase). Such assays typically include the steps of combining the phosphodiesterase protein with a candidate compound under conditions that allow the phosphodiesterase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the phosphodiesterase protein and the target, such as any of the associated effects of signal transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.
[0062]Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82-84 (1991); Houghten et al., Nature 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')2, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).
[0063]One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant phosphodiesterases or appropriate fragments containing mutations that affect phosphodiesterase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.
[0064]The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) phosphodiesterase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate phosphodiesterase activity. Thus, the phosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the phosphodiesterase protein dependent signal cascade can be assayed.
[0065]Any of the biological or biochemical functions mediated by the phosphodiesterase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the phosphodiesterase can be assayed. Experimental data as provided in FIG. 1 indicates that phosphodiesterase proteins of the present invention are expressed in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample, as indicated by virtual northern blot analysis. PCR-based tissue screening panels also indicate expression in the brain.
[0066]Binding and/or activating compounds can also be screened by using chimeric phosphodiesterase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate then that which is recognized by the native phosphodiesterase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the phosphodiesterase is derived.
[0067]The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the phosphodiesterase (e.g. binding partners and/or ligands). Thus, a compound is exposed to a phosphodiesterase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble phosphodiesterase polypeptide is also added to the mixture. If the test compound interacts with the soluble phosphodiesterase polypeptide, it decreases the amount of complex formed or activity from the phosphodiesterase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the phosphodiesterase. Thus, the soluble polypeptide that competes with the target phosphodiesterase region is designed to contain peptide sequences corresponding to the region of interest.
[0068]To perform cell free drug screening assays, it is sometimes desirable to immobilize either the phosphodiesterase protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.
[0069]Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35S-labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of phosphodiesterase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a phosphodiesterase-binding protein and a candidate compound are incubated in the phosphodiesterase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the phosphodiesterase protein target molecule, or which are reactive with phosphodiesterase protein and compete with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.
[0070]Agents that modulate one of the phosphodiesterases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.
[0071]Modulators of phosphodiesterase protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the phosphodiesterase pathway, by treating cells or tissues that express the phosphodiesterase. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. These methods of treatment include the steps of administering a modulator of phosphodiesterase activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.
[0072]In yet another aspect of the invention, the phosphodiesterase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with the phosphodiesterase and are involved in phosphodiesterase activity. Such phosphodiesterase-binding proteins are also likely to be involved in the propagation of signals by the phosphodiesterase proteins or phosphodiesterase targets as, for example, downstream elements of a phosphodiesterase-mediated signaling pathway. Alternatively, such phosphodiesterase-binding proteins are likely to be phosphodiesterase inhibitors.
[0073]The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a phosphodiesterase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a phosphodiesterase-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the phosphodiesterase protein.
[0074]This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a phosphodiesterase-modulating agent, an antisense phosphodiesterase nucleic acid molecule, a phosphodiesterase-specific antibody, or a phosphodiesterase-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
[0075]The phosphodiesterase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. The method involves contacting a biological sample with a compound capable of interacting with the phosphodiesterase protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.
[0076]One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.
[0077]The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered phosphodiesterase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.
[0078]In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.
[0079]The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 23(10-11):983-985 (1996)), and Linder, M. W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may lead to allelic protein variants of the phosphodiesterase protein in which one or more of the phosphodiesterase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are more or less active in substrate binding, and phosphodiesterase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.
[0080]The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. Accordingly, methods for treatment include the use of the phosphodiesterase protein or fragments.
[0081]Antibodies
[0082]The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.
[0083]As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')2, and Fv fragments.
[0084]Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).
[0085]In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in FIG. 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.
[0086]Antibodies are preferably prepared from regions or discrete fragments of the phosphodiesterase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or phosphodiesterase/binding partner interaction. FIG. 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.
[0087]An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).
[0088]Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.
[0089]Antibody Uses
[0090]The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in FIG. 1 indicates that phosphodiesterase proteins of the present invention are expressed in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample, as indicated by virtual northern blot analysis. PCR-based tissue screening panels also indicate expression in the brain. Further, such antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.
[0091]Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.
[0092]The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.
[0093]Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.
[0094]The antibodies are also useful for tissue typing. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.
[0095]The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the phosphodiesterase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See FIG. 2 for structural information relating to the proteins of the present invention.
[0096]The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nucleic acid arrays and similar methods have been developed for antibody arrays.
[0097]Nucleic Acid Molecules
[0098]The present invention further provides isolated nucleic acid molecules that encode a phosphodiesterase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the phosphodiesterase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.
[0099]As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5 KB, 4 KB, 3 KB, 2 KB, or 1 KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.
[0100]Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.
[0101]For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.
[0102]Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO: 1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide sequence of the nucleic acid molecule.
[0103]The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.
[0104]The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a fashion, the nucleic acid molecule can be only the nucleotide sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.
[0105]In FIGS. 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (FIG. 3) and cDNA/transcript sequences (FIG. 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' non-coding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in FIGS. 1 and 3 or can readily be identified using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating compounds, and are particularly claimed as fragments of the genomic sequence provided herein.
[0106]The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.
[0107]As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the phosphodiesterase peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.
[0108]Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (anti-sense strand).
[0109]The invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the phosphodiesterase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.
[0110]The present invention further provides non-coding fragments of the nucleic acid molecules provided in FIGS. 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify gene-modulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in FIG. 3.
[0111]A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.
[0112]A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.
[0113]Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel phosphodiesterase protein of the present invention is located on a genome component that has been mapped to human chromosome 11 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
[0114]FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphodiesterase protein of the present invention. SNPs were identified at 231 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. These SNPs may also affect control/regulatory elements.
[0115]As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45 C, followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65 C. Examples of moderate to low stringency hybridization conditions are well known in the art.
[0116]Nucleic Acid Molecule Uses
[0117]The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in FIG. 3, SNPs were identified at 231 different nucleotide positions.
[0118]The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.
[0119]The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule and are useful to synthesize antisense molecules of desired length and sequence.
[0120]The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.
[0121]The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.
[0122]The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel phosphodiesterase protein of the present invention is located on a genome component that has been mapped to human chromosome 11 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
[0123]The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.
[0124]The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.
[0125]The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.
[0126]The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.
[0127]The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.
[0128]The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in FIG. 1 indicates that phosphodiesterase proteins of the present invention are expressed in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample, as indicated by virtual northern blot analysis. PCR-based tissue screening panels also indicate expression in the brain. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in phosphodiesterase protein expression relative to normal results.
[0129]In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.
[0130]Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a phosphodiesterase protein, such as by measuring a level of a phosphodiesterase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a phosphodiesterase gene has been mutated. Experimental data as provided in FIG. 1 indicates that phosphodiesterase proteins of the present invention are expressed in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample, as indicated by virtual northern blot analysis. PCR-based tissue screening panels also indicate expression in the brain.
[0131]Nucleic acid expression assays are useful for drug screening to identify compounds that modulate phosphodiesterase nucleic acid expression.
[0132]The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the phosphodiesterase gene, particularly biological and pathological processes that are mediated by the phosphodiesterase in cells and tissues that express it. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample. The method typically includes assaying the ability of the compound to modulate the expression of the phosphodiesterase nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired phosphodiesterase nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the phosphodiesterase nucleic acid or recombinant cells genetically engineered to express specific nucleic acid sequences.
[0133]The assay for phosphodiesterase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the phosphodiesterase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.
[0134]Thus, modulators of phosphodiesterase gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of phosphodiesterase mRNA in the presence of the candidate compound is compared to the level of expression of phosphodiesterase mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.
[0135]The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate phosphodiesterase nucleic acid expression in cells and tissues that express the phosphodiesterase. Experimental data as provided in FIG. 1 indicates that phosphodiesterase proteins of the present invention are expressed in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample, as indicated by virtual northern blot analysis. PCR-based tissue screening panels also indicate expression in the brain. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.
[0136]Alternatively, a modulator for phosphodiesterase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the phosphodiesterase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in FIG. 1 indicates expression in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample.
[0137]The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the phosphodiesterase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.
[0138]The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in phosphodiesterase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in phosphodiesterase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the phosphodiesterase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the phosphodiesterase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a phosphodiesterase protein.
[0139]Individuals carrying mutations in the phosphodiesterase gene can be detected at the nucleic acid level by a variety of techniques. FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphodiesterase protein of the present invention. SNPs were identified at 231 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. These SNPs may also affect control/regulatory elements. The gene encoding the novel phosphodiesterase protein of the present invention is located on a genome component that has been mapped to human chromosome 11 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., Science 241:1077-1080 (1988); and Nakazawa et al., PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., Nucleic Acids Res. 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.
[0140]Alternatively, mutations in a phosphodiesterase gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.
[0141]Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.
[0142]Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and SI protection or the chemical cleavage method. Furthermore, sequence differences between a mutant phosphodiesterase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., Adv. Chromatogr. 36:127-162 (1996); and Griffin et al., Appl. Biochem. Biotechnol. 38:147-159 (1993)).
[0143]Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers et al., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Saleeba et al., Meth. Enzymol. 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and selective primer extension.
[0144]The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the nucleic acid molecules can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the phosphodiesterase gene in an individual in order to select an appropriate compound or dosage regimen for treatment. FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphodiesterase protein of the present invention. SNPs were identified at 231 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. These SNPs may also affect control/regulatory elements.
[0145]Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.
[0146]The nucleic acid molecules are thus useful as antisense constructs to control phosphodiesterase gene expression in cells, tissues, and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene involved in transcription, preventing transcription and hence production of phosphodiesterase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into phosphodiesterase protein.
[0147]Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of phosphodiesterase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired phosphodiesterase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the phosphodiesterase protein, such as substrate binding.
[0148]The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in phosphodiesterase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired phosphodiesterase protein to treat the individual.
[0149]The invention also encompasses kits for detecting the presence of a phosphodiesterase nucleic acid in a biological sample. Experimental data as provided in FIG. 1 indicates that phosphodiesterase proteins of the present invention are expressed in humans in the amygdala, brain (including infant brain), uterus, testis, placenta choriocarcinomas, Hela cells, and a pooled melanocyte/fetal heart/pregnant uterus sample, as indicated by virtual northern blot analysis. PCR-based tissue screening panels also indicate expression in the brain. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting phosphodiesterase nucleic acid in a biological sample; means for determining the amount of phosphodiesterase nucleic acid in the sample; and means for comparing the amount of phosphodiesterase nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect phosphodiesterase protein mRNA or DNA.
[0150]Nucleic Acid Arrays
[0151]The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in FIGS. 1 and 3 (SEQ ID NOS:1 and 3).
[0152]As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application WO95/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.
[0153]The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.
[0154]In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support.
[0155]In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application WO95/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.
[0156]In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large-scale correlation studies on the sequences, expression patterns, mutations, variants, or polymorphisms among samples.
[0157]Using such arrays, the present invention provides methods to identify the expression of the phosphodiesterase proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the phosphodiesterase gene of the present invention. FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphodiesterase protein of the present invention. SNPs were identified at 231 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. These SNPs may also affect control/regulatory elements.
[0158]Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).
[0159]The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.
[0160]In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.
[0161]Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.
[0162]In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified phosphodiesterase gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.
[0163]Vectors/Host Cells
[0164]The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR MAC.
[0165]A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell genome and produce additional copies of the nucleic acid molecules when the host cell replicates.
[0166]The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).
[0167]Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself. It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.
[0168]The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ, the lac, TRP, and TAC promoters from E. coli, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.
[0169]In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.
[0170]In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).
[0171]A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).
[0172]The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.
[0173]The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.
[0174]The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, E. coli, Streptomyces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.
[0175]As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith et al., Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., Gene 69:301-315 (1988)) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).
[0176]Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids Res. 20:2111-2118 (1992)).
[0177]The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepSec1 (Baldari, et al., EMBO J. 6:229-234 (1987)), pMFa (Kujan et al., Cell 30:933-943 (1982)), pJRY88 (Schultz et al., Gene 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).
[0178]The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf9 cells) include the pAc series (Smith et al., Mol. Cell. Biol. 3:2156-2165 (1983)) and the pVL series (Lucklow et al., Virology 170:31-39 (1989)).
[0179]In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. Nature 329:840 (1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187-195 (1987)).
[0180]The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
[0181]The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).
[0182]The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.
[0183]The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).
[0184]Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.
[0185]In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.
[0186]Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.
[0187]While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.
[0188]Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as phosphodiesterases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.
[0189]Where the peptide is not secreted into the medium, which is typically the case with phosphodiesterases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.
[0190]It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.
[0191]Uses of Vectors and Host Cells
[0192]The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a phosphodiesterase protein or peptide that can be further purified to produce desired amounts of phosphodiesterase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.
[0193]Host cells are also useful for conducting cell-based assays involving the phosphodiesterase protein or phosphodiesterase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native phosphodiesterase protein is useful for assaying compounds that stimulate or inhibit phosphodiesterase protein function.
[0194]Host cells are also useful for identifying phosphodiesterase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant phosphodiesterase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native phosphodiesterase protein.
[0195]Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a phosphodiesterase protein and identifying and evaluating modulators of phosphodiesterase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.
[0196]A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the phosphodiesterase protein nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.
[0197]Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the phosphodiesterase protein to particular cells.
[0198]Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.
[0199]In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. PNAS 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al. Science 251:1351-1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
[0200]Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter Go phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.
[0201]Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo and that could effect substrate binding, phosphodiesterase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo phosphodiesterase protein function, including substrate interaction, the effect of specific mutant phosphodiesterase proteins on phosphodiesterase protein function and substrate interaction, and the effect of chimeric phosphodiesterase proteins. It is also possible to assess the effect of null mutations, that is mutations that substantially or completely eliminate one or more phosphodiesterase protein functions.
[0202]All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.
Sequence CWU
1
514171DNAHomo sapien 1gggccggcgg gcgggcgggc ggctgcgagc atggtcctgg
tgctgcacca catcctcatc 60gctgttgtcc aattcctcag gcggggccag caggtcttcc
tcaagccgga cgagccgccg 120ccgccgccgc agccatgcgc cgacagcctg cagccagcct
ggaccccctt gcaaaggagc 180caggaccccc agggagtaga gacgaccgac tggaggacgc
cttgctgagt ctgggctctg 240tcatcgacat ttcaggcctg caacgtgctg tcaaggaggc
cctgtcagct gtgctccccc 300gagtggaaac tgtctacacc tacctactgg atggtgagtc
ccagctggtg tgtgaggacc 360ccccacatga gctgccccag gaggggaaag tccgggaggc
tatcatctcc cagaagcggc 420tgggctgcaa tgggctgggc ttctcagacc tgccagggaa
gcccttggcc aggctggtgg 480ctccactggc tcctgatacc caagtgctgg tcatgccgct
agcggacaag gaggctgggg 540ccgtggcagc tgtcatcttg gtgcactgtg gccagctgag
tgataatgag gaatggagcc 600tgcaggcggt ggagaagcat accctggtcg ccctgcggag
ggtgcaggtc ctgcagcagc 660gcgggcccag ggaggctccc cgagccgtcc agaacccccc
ggaggggacg gcggaagacc 720agaagggcgg ggcggcgtac atcgaccgcg accgcaagat
cctccaactg tgcggggaac 780tctacgacct ggatgcctct tccctgcagc tcaaagtgct
ccaatacctg cagcaggaga 840cccgggcatc ccgctgctgc ctcctgctgg tgtcggagga
caatctccag ctttcttgca 900aggtcatcgg agacaaagtg ctcggggaag aggtcagctt
tcccttgaca ggatgcctgg 960gccaggtggt ggaagacaag aagtccatcc agctgaagga
cctcacctcc gaggatgtac 1020aacagctgca gagcatgttg ggctgtgagc tgcaggccat
gctctgtgtc cctgtcatca 1080gccgggccac tgaccaggtg gtggccttgg cctgcgcctt
caacaagcta gaaggagact 1140tgttcaccga cgaggacgag catgtgatcc agcactgctt
ccactacacc agcaccgtgc 1200tcaccagcac cctggccttc cagaaggaac agaaactcaa
gtgtgagtgc caggctcttc 1260tccaagtggc aaagaacctc ttcacccacc tggatgacgt
ctctgtcctg ctccaggaga 1320tcatcacgga ggccagaaac ctcagcaacg cagagatctg
ctctgtgttc ctgctggatc 1380agaatgagct ggtggccaag gtgttcgacg ggggcgtggt
ggatgatgag agctatgaga 1440tccgcatccc ggccgatcag ggcatcgcgg gacacgtggc
gaccacgggc cagatcctga 1500acatccctga cgcatatgcc catccgcttt tctaccgcgg
cgtggacgac agcaccggct 1560tccgcacgcg caacatcctc tgcttcccca tcaagaacga
gaaccaggag gtcatcggtg 1620tggccgagct ggtgaacaag atcaatgggc catggttcag
caagttcgac gaggacctgg 1680cgacggcctt ctccatctac tgcggcatca gcatcgccca
ttctctccta tacaaaaaag 1740tgaatgaggc tcagtatcgc agccacctgg ccaatgagat
gatgatgtac cacatgaagg 1800tctccgacga tgagtatacc aaacttctcc atgatgggat
ccagcctgtg gctgccattg 1860actccaattt tgcaagtttc acctataccc ctcgttccct
gcccgaggat gacacgtcca 1920tggccatcct gagcatgctg caggacatga atttcatcaa
caactacaaa attgactgcc 1980cgaccctggc ccggttctgt ttgatggtga agaagggcta
ccgggatccc ccctaccaca 2040actggatgca cgccttttct gtctcccact tctgctacct
gctctacaag aacctggagc 2100tcaccaacta cctcgaggac atcgagatct ttgccttgtt
tatttcctgc atgtgtcatg 2160acctggacca cagaggcaca aacaactctt tccaggtggc
ctcgaaatct gtgctggctg 2220cgctctacag ctctgagggc tccgtcatgg agaggcacca
ctttgctcag gccattgcca 2280tcctcaacac ccacggctgc aacatctttg atcatttctc
ccggaaggac tatcagcgca 2340tgctggatct gatgcgggac atcatcttgg ccacagacct
ggcccaccat ctccgcatct 2400tcaaggacct ccagaagatg gctgaggtgg gctacgaccg
aaacaacaag cagcaccaca 2460gacttctcct ctgcctcctc atgacctcct gtgacctctc
tgaccagacc aagggctgga 2520agactacgag aaagatcgcg gagctgatct acaaagaatt
cttctcccag ggagacctgg 2580agaaggccat gggcaacagg ccgatggaga tgatggaccg
ggagaaggcc tatatccctg 2640agctgcaaat cagcttcatg gagcacattg caatgcccat
ctacaagctg ttgcaggacc 2700tgttccccaa agcggcagag ctgtatgagc gcgtggcctc
caaccgtgag cactggacca 2760aggtgtccca caagttcacc atccgcggcc tcccaagtaa
caactcgctg gacttcctgg 2820atgaggagta cgaggtgcct gatctggatg gcactagggc
ccccatcaat ggctgctgca 2880gccttgatgc tgagtgatcc cctccaggga cacttccctg
cccaggccac ctcccacagc 2940cctccactgg tctggccaga tgcactggga acagagccac
gggtcctggg tcctagacca 3000ggacttcctg tgtgaccctg gacaagtact accttcctgg
gcctcagctt tctcgtctgt 3060ataatggaag caagacttcc aacctcacgg agactttgta
atttgttctc tgagagcaca 3120ggggtgacca atgagcagtg ggccctactc tgcacctctg
accacacctt ggcaagtctt 3180tcccaagcca ttctttgtct gagcagcttg atggtttctc
cttgccccat ttctgcccca 3240ccagatcttt gctcctttcc ctttgaggac tcccaccctt
tggggtctcc aggatcctca 3300tggaagggga aggtgagaca tctgagtgag cagagtgtgg
catcttggaa acagtcctta 3360gttctgtggg aggactagaa acagccgcgg ggcgaaggcc
ccctgaggac cactactata 3420ctgatggtgg gattgggacc tgggggatac aggggcccca
ggaagaagct gccagagggg 3480cagctcagtg ctctgcagag aggggccctg gggagaagca
ggatgggatt gatgggcagg 3540agggatcccc gcactgggag acaggcccag gtatgaatga
gccagccatg cttcctcctg 3600cctgtgtgac gctgggcgag tctcttcccc tgtctgggcc
aaacagggag cgggtaagac 3660aatccatgct ctaagatcca ttttagatca atgtctaaaa
tagctctatc gctctgcgga 3720gtcccagcag aggctatgga atgtttctgc aaccctaagg
cacagagagc ccaaccctga 3780gtgtctcaga ggccccctga gtgttcccct tggcctgagc
cccttaccca ttcctgcagc 3840cagtgagaga cctggcctca gccctggcag ggctctctct
tcaaggccat atccacctgt 3900gccctggggc ttgggagacc ccatagggcc gggactcttg
ggtcagcccg gccactggct 3960tctctctttt tctccgtttc attctgtgtg cgttgtgggg
tgggggaggg ggtccacctg 4020ccttaccttt ctgagttgcc tttagagaga tgcgtttttc
taggactctg tgcaactgtc 4080gtatatggtc ccgtgggctg accgctttgt acatgagaat
aaatctattt ctttctacca 4140gaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a
41712920PRTHomo sapien 2Met Arg Arg Gln Pro Ala Ala
Ser Leu Asp Pro Leu Ala Lys Glu Pro1 5 10
15Gly Pro Pro Gly Ser Arg Asp Asp Arg Leu Glu Asp Ala Leu
Leu Ser20 25 30Leu Gly Ser Val Ile Asp
Ile Ser Gly Leu Gln Arg Ala Val Lys Glu35 40
45Ala Leu Ser Ala Val Leu Pro Arg Val Glu Thr Val Tyr Thr Tyr Leu50
55 60Leu Asp Gly Glu Ser Gln Leu Val Cys
Glu Asp Pro Pro His Glu Leu65 70 75
80Pro Gln Glu Gly Lys Val Arg Glu Ala Ile Ile Ser Gln Lys
Arg Leu85 90 95Gly Cys Asn Gly Leu Gly
Phe Ser Asp Leu Pro Gly Lys Pro Leu Ala100 105
110Arg Leu Val Ala Pro Leu Ala Pro Asp Thr Gln Val Leu Val Met
Pro115 120 125Leu Ala Asp Lys Glu Ala Gly
Ala Val Ala Ala Val Ile Leu Val His130 135
140Cys Gly Gln Leu Ser Asp Asn Glu Glu Trp Ser Leu Gln Ala Val Glu145
150 155 160Lys His Thr Leu
Val Ala Leu Arg Arg Val Gln Val Leu Gln Gln Arg165 170
175Gly Pro Arg Glu Ala Pro Arg Ala Val Gln Asn Pro Pro Glu
Gly Thr180 185 190Ala Glu Asp Gln Lys Gly
Gly Ala Ala Tyr Ile Asp Arg Asp Arg Lys195 200
205Ile Leu Gln Leu Cys Gly Glu Leu Tyr Asp Leu Asp Ala Ser Ser
Leu210 215 220Gln Leu Lys Val Leu Gln Tyr
Leu Gln Gln Glu Thr Arg Ala Ser Arg225 230
235 240Cys Cys Leu Leu Leu Val Ser Glu Asp Asn Leu Gln
Leu Ser Cys Lys245 250 255Val Ile Gly Asp
Lys Val Leu Gly Glu Glu Val Ser Phe Pro Leu Thr260 265
270Gly Cys Leu Gly Gln Val Val Glu Asp Lys Lys Ser Ile Gln
Leu Lys275 280 285Asp Leu Thr Ser Glu Asp
Val Gln Gln Leu Gln Ser Met Leu Gly Cys290 295
300Glu Leu Gln Ala Met Leu Cys Val Pro Val Ile Ser Arg Ala Thr
Asp305 310 315 320Gln Val
Val Ala Leu Ala Cys Ala Phe Asn Lys Leu Glu Gly Asp Leu325
330 335Phe Thr Asp Glu Asp Glu His Val Ile Gln His Cys
Phe His Tyr Thr340 345 350Ser Thr Val Leu
Thr Ser Thr Leu Ala Phe Gln Lys Glu Gln Lys Leu355 360
365Lys Cys Glu Cys Gln Ala Leu Leu Gln Val Ala Lys Asn Leu
Phe Thr370 375 380His Leu Asp Asp Val Ser
Val Leu Leu Gln Glu Ile Ile Thr Glu Ala385 390
395 400Arg Asn Leu Ser Asn Ala Glu Ile Cys Ser Val
Phe Leu Leu Asp Gln405 410 415Asn Glu Leu
Val Ala Lys Val Phe Asp Gly Gly Val Val Asp Asp Glu420
425 430Ser Tyr Glu Ile Arg Ile Pro Ala Asp Gln Gly Ile
Ala Gly His Val435 440 445Ala Thr Thr Gly
Gln Ile Leu Asn Ile Pro Asp Ala Tyr Ala His Pro450 455
460Leu Phe Tyr Arg Gly Val Asp Asp Ser Thr Gly Phe Arg Thr
Arg Asn465 470 475 480Ile
Leu Cys Phe Pro Ile Lys Asn Glu Asn Gln Glu Val Ile Gly Val485
490 495Ala Glu Leu Val Asn Lys Ile Asn Gly Pro Trp
Phe Ser Lys Phe Asp500 505 510Glu Asp Leu
Ala Thr Ala Phe Ser Ile Tyr Cys Gly Ile Ser Ile Ala515
520 525His Ser Leu Leu Tyr Lys Lys Val Asn Glu Ala Gln
Tyr Arg Ser His530 535 540Leu Ala Asn Glu
Met Met Met Tyr His Met Lys Val Ser Asp Asp Glu545 550
555 560Tyr Thr Lys Leu Leu His Asp Gly Ile
Gln Pro Val Ala Ala Ile Asp565 570 575Ser
Asn Phe Ala Ser Phe Thr Tyr Thr Pro Arg Ser Leu Pro Glu Asp580
585 590Asp Thr Ser Met Ala Ile Leu Ser Met Leu Gln
Asp Met Asn Phe Ile595 600 605Asn Asn Tyr
Lys Ile Asp Cys Pro Thr Leu Ala Arg Phe Cys Leu Met610
615 620Val Lys Lys Gly Tyr Arg Asp Pro Pro Tyr His Asn
Trp Met His Ala625 630 635
640Phe Ser Val Ser His Phe Cys Tyr Leu Leu Tyr Lys Asn Leu Glu Leu645
650 655Thr Asn Tyr Leu Glu Asp Ile Glu Ile
Phe Ala Leu Phe Ile Ser Cys660 665 670Met
Cys His Asp Leu Asp His Arg Gly Thr Asn Asn Ser Phe Gln Val675
680 685Ala Ser Lys Ser Val Leu Ala Ala Leu Tyr Ser
Ser Glu Gly Ser Val690 695 700Met Glu Arg
His His Phe Ala Gln Ala Ile Ala Ile Leu Asn Thr His705
710 715 720Gly Cys Asn Ile Phe Asp His
Phe Ser Arg Lys Asp Tyr Gln Arg Met725 730
735Leu Asp Leu Met Arg Asp Ile Ile Leu Ala Thr Asp Leu Ala His His740
745 750Leu Arg Ile Phe Lys Asp Leu Gln Lys
Met Ala Glu Val Gly Tyr Asp755 760 765Arg
Asn Asn Lys Gln His His Arg Leu Leu Leu Cys Leu Leu Met Thr770
775 780Ser Cys Asp Leu Ser Asp Gln Thr Lys Gly Trp
Lys Thr Thr Arg Lys785 790 795
800Ile Ala Glu Leu Ile Tyr Lys Glu Phe Phe Ser Gln Gly Asp Leu
Glu805 810 815Lys Ala Met Gly Asn Arg Pro
Met Glu Met Met Asp Arg Glu Lys Ala820 825
830Tyr Ile Pro Glu Leu Gln Ile Ser Phe Met Glu His Ile Ala Met Pro835
840 845Ile Tyr Lys Leu Leu Gln Asp Leu Phe
Pro Lys Ala Ala Glu Leu Tyr850 855 860Glu
Arg Val Ala Ser Asn Arg Glu His Trp Thr Lys Val Ser His Lys865
870 875 880Phe Thr Ile Arg Gly Leu
Pro Ser Asn Asn Ser Leu Asp Phe Leu Asp885 890
895Glu Glu Tyr Glu Val Pro Asp Leu Asp Gly Thr Arg Ala Pro Ile
Asn900 905 910Gly Cys Cys Ser Leu Asp Ala
Glu915 9203111282DNAHomo
sapienmisc_feature(1)...(111282)n = A,T,C or G 3acgtggatga acacccaccc
acacacagct ctctaggaaa attgctcccc ttccctcctg 60ctcctcctcc accctgtcct
cccaccacca cccacttcca aatgctgaga ccaaagagat 120gggctggacg gtgcctctca
ccacttgtca gcctgggacg ccctcctccc tttgtgacta 180gcatgccctc ctccccctgc
ccgtctgcct ccccagctct ctctgcctcc ctgtcgccct 240gccacctccc tgcgttcctg
tgtatctgcc ctccacacaa gtcactctga ggcctctctt 300tgttactctt gactctgaag
tggaaactgc tcctcccagc tctcctgaga ggctcaggat 360ggggacctga cctcataggg
ctgatggagg catagggaca agtgaaaggg accccaggtc 420ccgaatctcc tcagctcctg
tcaccttcag tccctcctat tgggttaggg gagggctgtg 480tgcctggcac catggagacc
agtgtcatgg caacacagtt cgggtgggca cagcttcctc 540ctcctggggt gtggggtcca
taagaggagg tgccgaggag gtgggccttg tgctggtgcc 600caccatggct gcctccagct
caccattccc aggacagccc acccccatcc ccccagccaa 660ctttgcttgc cactgcagct
tccagtgcca caagtcactg atcccatttg ggaaatcctc 720tctcaaacac cagctccaga
gctgggcgcc agagagggca ggggcttgcc cagggtcaca 780cagcaagtct ggccaagctc
ctgactctca gacctgtttt ctcctccggt ctcccacctt 840ccacccagaa aggggactgg
gggcagaggg gtcagtccaa cctcagttcc caccacgatc 900ttcagccagc ccttagagtt
ggcagtggga gtgaagatgc aagtgatagt gccgagaaac 960catcatgggg cgcccaccac
ctgctgtgcc aaggctttgc atgtgtcatc ccattttatt 1020ccaagaccca ggaggaagat
gactggtaag tggagtagct gggacaggaa cacaggtccc 1080tctcagatgg ggcaggtgag
tcaaggctcg tgtgtattgc tgtctccatc aggcgctctt 1140ttaaaagaat ggcaaagctt
ttaatcccat ctttattacc ggtaagagtg tagggggagg 1200atctggggca tagcctgggt
ctggccttag ggtttctaga aaccagggga tatttttcta 1260agaagataga gaatagagct
ttcctagtgt ggttagacct agggaagacc tttcttgcag 1320tgcagcaatg cagaccgact
tccaatccct aggtcaagct ggagtctagg gacagagggg 1380aggagacccc tgcctcctgt
gcccagcctc aacttgtctc ctgaccttca tggagtcacg 1440ttgcagctgc ctccctcctg
gcttatgtaa taattcaaat atagcagctg cctttatccc 1500actgagtcac accccctgca
tcccccctca ggtgcgggga gttatggggg aagaggtggt 1560tcagggctga gtgggaggtt
cggggcctcc tggcaaggaa gatccctagt gtgctggatt 1620ggagggtggt ggtggtgagg
gggctggtgc tgaggcccca agaagagcag agccttcgcc 1680agaatatgaa gccacagggg
ccacttctgc cctgacccat ccctgctgga attccacatt 1740cctgggggcc ctccccagag
tcacaagcta tatgtacagc cttctcttgt gggctgctgt 1800ctcagttgga ggaggaagga
gaggtggaag agtatgaaga gggggaagta gtccggtggg 1860gcaatggcca ccgtctttgg
tcctaggctc agcctcgccc ttcactcact gggttacctg 1920ggcacccctc tgacctcagt
tttcccatct gcacagtgaa ggattagatt aactggctct 1980agcgtctcat tctctccgat
ttataaccct ggagatgatc tcaacctgag gctgaaggca 2040cttccgagtg tctggcccag
ccgcgttcca ggctgacttc cctccctctt ttctctgcca 2100tccctcctag accaatgcag
ccacccccac ccacaagaca aaagaggcag gagagggccc 2160tggactcagc tggggctggg
cggcttctcc cttccctgaa ctcgccatct gttccagccc 2220cccagccccc tgcctagcag
ccatgggtag gtcactgccc tcacctgggg tcaccccttc 2280ctccccggag agctctgaca
gatatcctgg aacctgaagt ggatccttca tgccccatcc 2340tgaatcccaa agccaccttc
ctgaggtgtt gaagaagctg ctccaccttg gaactactat 2400aggggctgtg gtggcctttc
attcctttat cagcaaaagc ttttgtcact tgtgtggtgg 2460gggacatgct tagtgtgaga
atgcagagac ccatgccagg ccctacccaa ggacatggtg 2520ctccttcagc cattgtcatc
agagccacag aggggagctt cctggcagag gaggagtggg 2580gagaagctgt ggaatggctc
cttgagctcc ccactccacc ccttccccat gcctgggctc 2640ccattgcaaa gacccagatg
tgggcttatc ctgtccccca gccagaggga gtcacccagg 2700ggtgttcagg ccaacccttt
gtgaaatcca tgttccacca gttaccagcc tttctccgga 2760gagctgaggg ctgtctcaca
ctgggtagtc tcagcctgcc ctggggttgg gggggtgctc 2820acagagcagt aagcgtcact
gcctgcatcc ccacacacct gcattatctt gtctgcaaga 2880cacgtgtgcc cctgagctga
gctctgttgt gcaccacccg atttccgtcg gcctcctttc 2940tgacttttct ccatcaacat
ttcctgcttg ggcctgttgc gggctgccca aaggctgtgg 3000actggggccg aggtacatag
gactttggct tgtcttttga gctaacagga tcctgtagaa 3060gaaatgagat gagcctgaga
gggggtcggg gggtgagaca ttagggaagg gagaggccac 3120caagggtctc tagcccagaa
tccaatgccc cttcctgcct acctgtcctt gtgggtggga 3180ggcagggtgt gtgctgactg
gcccagcaat ggtgggctag gatttgggat aggcagagaa 3240aaggaagagg agggggaagt
cggcctggga ggagaaacac tgtacaaagt cgaggaggag 3300agaaccagag tgtgcttagg
gaccagacct ggccccacct ggagcagagg atggtgaggt 3360cagtcagggc tggatcacaa
gggacctcaa atgccaggct gaggagcttg gcctttatcc 3420tgagggcact ggggagccct
gcaaaggttt tgagagggaa ttccattacc agatagatgt 3480ctttggaagc cgcctctagg
tgcaaggagg aggtggagta gagaggttga cctggggtaa 3540gggttggagc atgaccaggg
gagggggaag gaagcagggg gtggggatgg agggagtgga 3600tggatctaag agaatctact
gtcctttgga acaaacgata caggaagtgt aggagaggga 3660tggggcaagg cgactttgaa
gtgtccagct cagagattgg aggtttgctg atgcctttgg 3720gaggccaagg caggcagatc
acgaggtcag gagttgaaga ccagcctggc caatatggtg 3780aaaccccgtc tctactaaaa
atacaaaaat tagccgggcg tggtgcgggt gcctgtagtc 3840ccagctactt aggaggctga
ggcaggagaa ttgcttgaac ccgggaggca gaggttgcag 3900tgagcccaga tcgcaccact
gcactcccca ctccacccct tccccatgcc tgggtgacag 3960agcgagactc cgtctcaaaa
acaaaacaaa aacccaaaaa acaaaaaact aagaagtttg 4020ctgatgcctt taatagtaac
aaaaggtgta ttggatgttc aatatttgag ggacctacgg 4080gttgttccca gaggagatgt
ccaagagaca gcctggacac ctggagctcc agggagaggg 4140atgggcagca ggggacaccc
ggagttgttg gtatgctggg agaaggctgc atgctccgtg 4200ggagtagggt ggagaatgag
gagagacagg gccgccgtcc tgcaaggagc atccatattg 4260agggggcgaa gatagggtgc
accagtgagg gagacagagg aggggccgtc tggaaggtgg 4320gagggaaaca gccgcgcagg
acggggcggg ggcgggcgct gagaagaagc cgccttcttc 4380ggcaaagagg tagctgaagc
ctgtggagcc tgcagtcctc tcaaggctat gggggcagcg 4440cggaggccgg attccagaac
tgaatcttcc catcgctttg ggcagccacc ctacctccca 4500ggagcatcct tcctgccatc
ccacctccag ttccccagct aacaaaaaac ggtgtttctt 4560gactcccggc agggcggcgg
ggcgggcagg tcttgtgaac acggctcgca gggttcagca 4620ccctggagag aggcctgtgg
ccggggcggg gcctgcggcg ggggtagggg cgcgcagtca 4680gagcagtcgg gcctttggct
ccgtctggga gcggtcttgc aggcaggcaa ttggtggagg 4740agggaaaaac aatcttggat
tttctccagc tctctcccct ttatgcacct cccccatccc 4800ggcactggcc tacaggagcc
cctatcccag catttggggc tattactctc ctgacgactt 4860caggaaatga gatgggagga
gaggggcaac tatttactgg gaacttttca gacattccca 4920aaacctcaca accttttgag
cttggaattc gtgaccccat atttcagatg aggaaactaa 4980attgaagttc aggaaggtga
aataccttgc ctaggcactt ggcagagctg ggatttgaat 5040tccacctgcc gggctctaag
tcctgagtgc ccattagccc ttctgagtcc tgaatcttgc 5100agtttgttcc tgcagactct
ccacttctgg gtggctgtgg agtctggtgt ggcagtggga 5160tggggaggag accttccctt
ccacctgctt gcttgagtgt attcccagga gatttctgaa 5220gatgaggcca ccaccattgt
ttctgaagtg ggagggcaga aaggaggctg agggccaggt 5280gagacctcgt cacacctgca
cccatgcatg cccaggagga accctccttt gaactcttct 5340gactcagctt cttgctgcca
ggttcctccg accagtgagc aggttcccag gacatgaagg 5400ggagctgtga gggagcagga
cgccatggtc cagggctgca gcttcctgag cccagagaat 5460gccttcctag ctgtcaggaa
tggagcagcg aggccccagt gataggtgag gtggagaagc 5520aagacatgag ttctgggctg
gctcagctgc tttacaacca gcctgggcct cgttcccttt 5580gagaaaatgg tttgcccaga
gttcagagat ctaaaattct atgatgcctt ctggggccac 5640agtgggaaac aaagactcct
catattttct ttcctgacac ttcccaggcc acaagacaac 5700tgctttctgc agcacccagc
ctgggcaggc catctacaca agctcagtca tttctgacct 5760tgccccctcc accgtgcacc
cccatgttct tcaacatggg tcaggtttct attcagcctc 5820agggacttct ctgcttgaag
cctgttgtgt ggcggggagg tattctcccc acagctcaga 5880gagatggggt tgctgtggag
ggtttgctgt agctcctcta ccctggaata taccctcttc 5940tgccttaaaa gacccaactt
ggaccctctc ttccagaaat gcttgctaac cgccccccca 6000ccacccaaac taggtcaggg
gtccctctgg gcttcacaga ccctgtgctt ctttctgtca 6060cagcctgcaa gtctcccctc
cccactcccc agcccgagtg cttctctgag acaagggata 6120gtgtgagcca tgagctcagc
cactggtagg ccaatgaata agtaagttaa tggtgaagcc 6180aggatccaaa tccccatttc
ctgcctcaag gtgtggagct gtttctcctg catacaatag 6240tagctctgct gtgacaactc
tctatctgtc ctagggccta aaatgcctct atttcactag 6300gttatagctt tatcctaggg
agtcctcttt ggaagcaggg tgggggtgca acaggccttc 6360ccccatgcct gtagtctgtg
agcagcgaag gccatgtggg gcaggctgtg gcctaggtct 6420ccacagatcc tggtagaagt
ccatgctcac gcatcagctc caagtcccag ctaaaccaag 6480ccaccaagag gtgggccctg
tgacaaggct ctgagtccaa aggccatcag taaagccccc 6540taagtcttcc gtggacccag
ctccaggctg ggatgcacgc taggagatga tacacaccgg 6600gtgagggagc ccagaggaga
gggcagctag ctgtgcatgg aggcctgatc tctcagactt 6660gagggcacaa gcgtgtcccc
tcatcctgaa ggcttctgcg atggggcagc agagggtctg 6720ggtctgctgc ccctcaagtc
cccagcccca tcctagccca tgaggattgt aaatccctcg 6780tcctctcccc tctctcctct
gtcagccact cccctttccc cctaccccac tctctttcta 6840tttctgcctc tgattttttt
tccttttctg cctttgttcc tctgtgtgtg tgtttctcta 6900tgcctctctg atctctttgt
acttccatct tgatctcgct aaggctctga tccctctctc 6960ctctccctct tcatgtgtta
ctgtccccct tcctgtctct gtttatctct cagtctctct 7020gtctgtgagt cttttttcct
ctctcccagt cagactctct ctctacccct ccctctctcc 7080ctctctccct ctctgtctgg
gcctctctct gttcctcctc cctcctccct cccccttctg 7140cattatcaga cctgctccaa
cctcctccca gagccagccg agcagcagag gcagtggcag 7200cgggagaggc gggagcagcg
gggcagcaga gctggattgg ggtgttgagt ccaggctgag 7260tagggggcag cccactgctc
ttggtccctg tgcctgctgg gggtgccctg ccctgaactc 7320caggcagcgg ggacagggcg
aggtgccacc ttagtctggc tggggaggcg gacgatgagg 7380agtgatgggg caggcatgcg
gccactccat cctctgcagg agccagcagt acccggcagc 7440gcgaccggct gagccgtgag
tatagtgagg ggctggggtg gtgagcggct gtgagaggtg 7500ccacagacag ggtcctggga
gtccctccaa ggagctgggg ctggcatgga gctgagccac 7560gtggaaggat cgatcctgtt
cctgggcacc cctcctcccc gcgttgccag actgcagcct 7620ggggtggggg caggttacct
ctgagcagaa tgagggtgtc taacgtcaac ctagtaggtg 7680atgaggctgg ggtcccatgg
aaggggctgc tggttggagg aggggctgat aatgaacctg 7740aaccgcttct tcaagggctg
agggtgtatg tggggagggg gaggtctgcc aagtagttgg 7800gaggagctct cggggctgca
ataggctggt tcaggaccct ggagagggag agtgtcttgg 7860cccaccaagg ctatgtgtgt
gtgaaggagg tggggagggg gaaagatgga gaaaatatga 7920ataagagtgg ccctggagca
agagagggtt agaggtaacc accttccatg gaattgggaa 7980ttggggttca gggacaccac
tttatgaaac tttaccccaa agcgtctgtc ccaggatagg 8040gttctacgga gccagatgga
atatggtgcc agcctcgtgt gtgtccacgt gcaggggggt 8100gcatgtgcaa gtgagtgggg
ggcgccgtgg cgacacccct ctactaaggg ctgccgaggt 8160ggtaggcagg gtgtgtgtgt
gtgtgtgtgt gtgtgtgtgt atacatgtgg aatgtaaggg 8220acatgttggg tgtagagggg
cctgtagagc tctagggtcc ttggtggttg gatgtaaagc 8280agcctgtcag agtttgtgat
catccctgtg tgagtgagag tttattcgca tgtgtctgag 8340tgtgagtgca ggttggtctg
catatgtatg taggtgtgtc tattaggttg agtttgtata 8400ttatgtgtgt tgtgtctgca
aaatagagtg aatcagtgtg cattttttat ctgttccatg 8460tgcatttatg tgtgtgtatt
tgttagtgtg tgaataatag cattgctgtg tgtggaggtg 8520gatgtggctg tgtgcgtata
agtattctgg tgtgggtgtg tgatcatggt gctagtgtgt 8580atatcggtgc ttctgtggct
ggtgtgtgtg tgtatctata tgtgtgtatt catctgagtg 8640tgtgtgggtg gctgtttcct
tcccctggca attgaggata cagctgggac accatggccc 8700actgatgcag ggcagggagg
ggctgaatgt atgaccgcct ctttgaactc aggacaattc 8760attctacacc ctgtgggaaa
gatgcagaaa agaaataggc aataatgact ctgccctctg 8820gggcttccta agcttcttag
acataaaata gcttgagaat aattaagcag tagagatcaa 8880cgtcatgcta acaggtgggg
gtggggtggg aactgcataa gcaaaggccc tgggctgggc 8940atgtcctgga gcagtgaaga
cactgtatag agtggggggc aggcaggacc cacattcaat 9000agaactttaa gatccaggac
tcttaggctt tatccagaga gccctgggga gcccagaaag 9060gttttatata gcggagagac
atgatcagat ttgggttcta gaaacctgcc ctgggccagg 9120catggtggct catgcctgta
atcccatcac tttgggaggc agaagcaggt ggatcacttg 9180aggccaggag tttgagacga
gactggccaa catggtgaaa cccagtgtct attagaaata 9240caataaaatt agctgggtgt
ggtggcacac gcctgtagtc ccagctactt agaaggctga 9300ggcatgagaa tatgagaatc
gcttgaactt gggaggtgga ggttgcagtg agctgagatt 9360gccttactgc actttagcct
gggggtgaca aagtgagact ctgtctcaaa aaaagaaaaa 9420aaaaagaaga agaaaaataa
agaaacctgc ctcggtggca ttgtctgggt tgaactggaa 9480gagagaggtg gggccaggag
gctagagtgg aggccaagcc aatacagggg tcagtgagtt 9540ctggagcttt ttgagaactt
gggaaaggct ggatagatga gaacagggaa gggaatgtct 9600aggtggctca ggcttggact
ggggtcaggg gtgtagtgca gacatctcag taagtcagga 9660tctcatgagg gaaaaggctc
atggaaggct caggaaagct gggcgtgggt gggctgaggt 9720agtgggagag atctttgtag
tgtttctagc taggatgcag agggtcagag atcatggagc 9780catctcttgc cagacaggga
aactgagact atggcttcat cactatcctt tggctgcaag 9840gctggggctc aacctcttca
tcagacctga ccctcaatat cattctcctt caggccctgc 9900ccggaacctc ttggttgctg
agcttggtca gctcagtgag ggttaattgt ctttatgctc 9960cctgcacccc caccccccgc
agtcattccc cctgcccacc aagcagctcc tgccactctt 10020cctgcttccc actccagcct
cctgtcccca gggactgctg atggcttggc tgggatctag 10080ccaaatggtg gggggtgggg
gcgggggtgg ggggaagagc tcccagcagt cctttacccc 10140ttggtcttaa tggactggga
gtctcaccct cagccatgct gctgtcaggc caggcctgcg 10200ctccccgggc ttctgctgct
tgggcctatg aaatctcccg actcagcatg attccattgc 10260tgcattcatt cattcaacca
ctcaacagga acttctcagt agctgcttgg tgcccacttg 10320gcttgtcacc ggggacacag
agcagacact gactgagtcc ctgttctcag ggagtgccca 10380gtctgatgaa ggagaaagaa
atggaaagct gcaaccctac agggtgagca gtgctgtgta 10440ggaggtgggg ggcccacagc
aagcctgggc ttcagaggaa gagacatttg agccggacct 10500tgaaggatgg gtaggaatca
cccaggcagg gaagagcaga gggaacagtt tgtgaaggtg 10560ggtaggaaag gcacagggct
aggcacctga ctcagtgcag cctctgggtg ggagaagaca 10620gtaagggcgt ttgggtcatt
ttctagcagt tgttttagta ctctctacaa cttgccctgc 10680agatctatcc agcctgctgt
ttgcataccc ccggacatag gatgttcatc tcttccctcc 10740tgggcagccc ttcccttgtg
gtggttatat ctgtcctggg tcttctccgc agggcccagc 10800aactccaggc tacccagcct
ggccttatgt cctttctccg tcctgtgtca ctgtcccctg 10860aagtagggcc aggctggggc
acaatgatcc aggagtggca agaacacatc taggcagaga 10920gtgggagaaa tgcgcagcct
ttattaacaa aaatctgaga tgggtgcagg ccctgactcc 10980tctccaaaaa taatgataaa
gaagcaggca tggccaaata agggagtgag gacagacagc 11040aggaagaact tcctaccaat
gcagaagggc tgtgagtctc ttggttttat gagagtgggc 11100tgtacgtgtg aaagggaggg
tctcagagga caagaggggg aattggaggc agaggcactg 11160tcagcctctg actctcccat
aggtgagtga gtgaagtcat ccagggagag ggaacagagg 11220agggagatca ggactcatca
ttcattcatt cagcagccgt tcactggccc taccaaacat 11280gacacccctg ggggcagatg
gacagagcca gtgaccacgt ggatggaagc tccgagtctt 11340tcctacctgt gttaatgtcg
caggaaggta tttaggagga ggggccattg gggctggcct 11400tataaggaag agccacttca
ggctgagttg agggacagca ctaggaagat ggaagagcat 11460ttgcaaaggc ctcaaggtaa
gggcaagcag gattttgttc acttagcact ataggagttc 11520agagtggcct aggcatgaag
tgccaggctg gggggaagcc ctgggccgtg gtggagcagg 11580agaggagtgg ggaattgagc
ctagactgta ggaagcactt tcttccgtga aggtgtctcc 11640aacaggcttg atgtgtaggc
attattgtaa gtttgcaact tcttggtctc tcctggtgct 11700cgtgaccaga gcttgctgag
ggacccagcc ttgcttgaga aaggggtgtt cagtgaacaa 11760aagagaccct ggaaatgaga
gagaagcagt ggctgaagaa tgtgggcccc ttccagaaag 11820tggcgtgcaa acaaatacaa
agcaatatgc aaatcagctg gctagggctt ggcagctttg 11880gttggaagaa atgagccatc
accccttatt atgccggcct cctaccccct ctgccccagc 11940ctccaggaca gccggaacag
ccttgtctgc tccttggagc gccccagctt ttctgagaca 12000caggattgtg gcctccaggg
tggtggccgt gggctccctg tcagcaccct cgtcctcctg 12060ggaagtcgat atatttagta
acagaaatgt tttcacacat ttatctccta ttgttcagct 12120gcttgctccc tgggaaaggc
caggtcccca gtgatgtgac ccacttcttg aagtccctga 12180agtcaccctt ctcactgccc
ccccaccccg aaaaacagga ggcaactggg gcttggtgca 12240gcagaacaga tttgagtcaa
atatctggga ggacttccca acagtgtggt tgctgagatg 12300tgtggaccct ggatttctgg
gctttcattc tttggatggt tgccttgggc gcagaggagg 12360ctttgaagat agagcagaga
aggtggcagg caggcttatg ctcaaatttc agcatactga 12420aagatgtact gttactctgt
agctgtgtgg tcctgggcaa gttacttaac ttctctgaac 12480cttgtgtgaa tagtggggtg
gagataatta tcctttcttg gcaggatgat tctgaagaat 12540ctggaagtgc agagcttagc
ccctggcatg cggcaggtgc tcacaaaggt tagctactgt 12600cattatgaac cacccacgat
cagccacact ttcagaaaga tttagcgggg cctggagagg 12660gagagaccag agctaggagc
tcagggctgt catcgtgtgg gagggaccag gaggcctgaa 12720acagagctgt ggttgtggct
acggtgagaa gcacaaagct ctgtgggagg gaccgaggtt 12780tctcagagaa gtgtggccac
ctcattaagt tgttctgact ggtctgagac caatccccag 12840ataatacaat ggaagaaagg
gcttggtgaa gaaggggtta agtctgtggc cacacccatg 12900cagtctgtga gccattctgg
gagctgtagt ctgttgtgaa tttgcagtaa gcatagtttg 12960tactgcctct tttgatccaa
atccacaccc tgctgccaag gctggccgag ggccggccct 13020ggtgggtgct gggctgtgtg
gagcccaaag gtgaagcagc atcgacctct tccctcaggg 13080accccctggc ttgctatgtg
ttggggggtg caggtaggag cagggataga agtattaagc 13140cataattacg acttctcaca
tgttcacaca gaagtttaca gcttcctgag cactgtttcc 13200acacctgtga tctcatttaa
tcctcaccac aaacccaaga gactgctgtt ttctggatga 13260agaaacagag gatccaggag
gggaaatcgc ttgcccacag gtattcagcc agtggagcca 13320gacctggggc acaaatctgt
ctgcttccag agctcctgct ctttccatac attactgttc 13380cagatggcag acaggcaaga
tgtggacaac taaagttgga tgtgagacat ctcggcagag 13440gaacagctga gcagagagct
gctgattcca ggctgagagt ttggactttg tgttgtggcc 13500caccaggatc cacccaaggg
ttttctgatt agagctgagc tttgagagaa ttggtcttgc 13560agcttaggct gaatggattg
aactggagaa accaaagtca gactgaggct tctaaatccc 13620atccttggtg cacccagcac
tttgctgctg tccctcctcc atgcttcttc tcagtttctt 13680ccttctcctc tccttcatct
tcttccctca cccttttttt tttttttttt aatagagaca 13740gtgtcttgct ggctggagta
cagtggtgcc ataatagctc actgcagcct caaattcctg 13800ggctgaagct atcctcctgc
ctgggcctcc caaagtgctg ggattacagg tgtgagccac 13860tgcacccagc tcatcttcct
ctttctctcc tactcctctc tgcctcaggc tgaggagtga 13920tgacttttat accatagagc
tgtgctgtaa tatcacatgt ctccagaagg gggtgctgtc 13980acatacagtc cattccagcc
tgaatcttcg ttgtgtttga agggccagta gaagtgttgg 14040acaagtggca gagatgaagg
atggagagaa ggatagccca ttgttctcca cctccattga 14100gcccaggaca tgagggccct
gctgaaatgg cactgggagg aatgaaggct gaggagaggt 14160tggaccccaa ccagaaggga
cagacatact gagttaagcc agaggaaatt ttctcctcat 14220ggttctggga caggctaaga
tttggaaatg catctagaat gacattgcag ttggggtctg 14280ggtttctttt gggtcatgac
ttgcttgata ctgaggtgct ggggatattg cttgtgtctc 14340agtgtgtgta tgtgtacctg
aatgtgagct tccagttgtg catatgtgta tgctgatctg 14400agagggtgag aatgtgtggg
tcagtgttcg tataaaagtg tgaacatact cacatgtgtg 14460agcatgtgag tgtccttttt
tttagtttag ttttgagaca gggtctcaca ctctcaccca 14520gactggagtg cagtggcgtg
atctcggctc accgcaacct ccgcatccca ggctcaagct 14580attctcctgc ctcagcctcc
tgagtagctg ggactacagg catgcaccac cacacctgca 14640taatttttgt atttttagta
gagatggggt ttcaccatgt tggccaggct ggtcttgaac 14700tcctgacctc aaatgatcca
cccaccttgg cctcccaaag tactgggatt acaggcatga 14760gccactgcac ccggctgtga
ctgtccatct ttatgtctga ttttggtaaa cagttatatg 14820catgtgactg tggcttgtgt
gtgtgtacat gtatgtagag tgccatatac atatgttcta 14880gtgaaaccgt atgtgtgttc
cctgtgtata cagatgcctg tgtctcaatg tgagcacagg 14940gatgagggga tatgtgtgtg
tgaaggccca gacacctgct gtgctaacct ttaaggccgc 15000gcctaatgtc tggctattca
atactttttc tcctgggtcg cgctttcctg taggtagaga 15060cccttgaagg gctgggcttc
cttcagggga ctctgggcca gagtcaggct ttgtgttcag 15120tctcaggttg ggccagccag
ggtcctagtc tatcggattg ggcagctaga catggctggg 15180aagtgtctag gttccattct
ccccaggaac tcttaatggt cacacttaaa gagtttcagg 15240gactcccagc acggtcctct
tgtactgatg caactactga agttcagaga ggtgcagtga 15300ttaacccaag gtcacccagc
aggacccagg atgagatgat agggcttgca gcagagaggg 15360gagtgtctga cctggaaggc
tgccctccct ccagccccta gagcaggtgg ggagctcaga 15420ggagagccaa gtctgtggtg
tgaagccacc tcctgcacct ggctatttcc atgcctcctg 15480ggcctcagag gctgcctttg
aagtttttac cagagcttct gcatgctgtg agattcctcc 15540tggggacgtg tgaagtcgac
tgttccatgg agcatggaga ctcgatggag aggagcccag 15600tggtgaagtg aggccagagg
aggggcttcc tctggaagcc tcaatttctt ctttgcagta 15660gttgcttttt ttttcgtgtt
tttttttgtt gttgtttttt aggttttcac cgttctaaca 15720ttcaaggctt tctctgttat
ctctctttga gctcttagta ctgagacagt gctggggttt 15780ggggcagtcc tggaggccta
tctgggctca aagtgagggt ggcagggcag tcccttaggg 15840aaagggctgc gtgggagaca
gggatgagct tcctgcccat agtggggagg catgagcagg 15900ggctggacag cctggttagc
aaggctgtat acaaggtacc taccctagtg aggaagttgg 15960ttgcagatta tcttgagtcc
cttcaagctg tagctgccat ggggggccag agaagaacgt 16020gcctcagctc tcttgggcct
ggggaggatt gagtccacag agtgctcctg gtgtcctggg 16080cagtggaagg tgcaaggtta
gactgtgcac ctggaagcag agagatccca ttccctggag 16140aactgaaggg aaatttgtct
tcctggaggt ttggggctgg aggcaggggc tggatgggag 16200gacactctgg ggtggagtgg
gggtgggatg gggaggactg ggcaagtccg aggcggctct 16260gctgttcagc acccgcagga
aggagcaggg aggcatatcc tgaatcatgc agggctctag 16320ggtgggaggc ccatggttgt
ggggctcaaa catgggctct ggttggggca gaggagaggc 16380ttcctggggt tggggtctgg
gcaggaattg gggtagaaaa ggagagaagc agcaattggg 16440taccacctcc ttcccaggtc
aggtaattcg gagttgtctt aaaactctca gtgggccagg 16500catagtggct cgcgcctgta
acccaagcac tttgggaggc tgaggtgggt ggatcacctg 16560aggttgggag ttcaagacca
gcctggccaa cctggagaaa ctctgtcttt actaaaaata 16620cagaattagc tgggcgtggt
ggtggatgcc tgtaatccca gctactcggg gggctgaggc 16680aggagaattg cttgaaccca
ggaggcggag gttgcagtga gcctagattg tgccattgca 16740ttccagccta ggcaacaaga
gcaaaactct gcctcaaaca aagaaacaaa caaaacctct 16800cagtgagggg ggatctgggg
tccagatgga gagaactaat gtttacagag tgacctttaa 16860gttttaaaaa tgattattta
aggaggcgat taaacaaatc gcctccttaa ataatccttc 16920cagggaggcc gggcacggtg
gctcacacct gtaatcccag tactttggga ggctgaggtg 16980ggcggatcac gaggtcnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 17040nnnnnnggaa aagagatatt
agntggagta ttagtaagag ataaaagaga aaaacaacga 17100aaaaaaagca gagtgataga
agggaaatag aataaggaag aatagattga tagtagcggc 17160ggacgaagaa aaagacgaaa
aacagcgagt acggaggcgg gggcggtata atgagaaaat 17220agaagatgaa cgcgatacga
aggatgaggg cggagggaaa gtacaatggt ggtggggtat 17280ggaggcgaga gtgaaaggga
ggtaaatgac gcacaaaaac aaaagacgga aggggaacag 17340gaggaggggg tggtaggggg
gnatcgcctc cttaaataat ccttccaggg aggccgggca 17400cggtggctca cacctgtaat
cccagtactt tgggaggctg aggtgggcgg atcacgaggt 17460caggagatcg agaccatcct
ggctaacacg gtgaaacccc gtctctacta aaaatacaaa 17520aaattaaccg ggcgtggtgg
ggggcgcctg tagtcccagc tactcgggag gctgaggcag 17580gataatggca tgaactcagg
aggcggagct tgcagtgagc cgagattgtg ccactgcact 17640ccaagcctga gggacagagc
aagactccgt ctcaaaaaaa aaaaaaaaaa aaaaaaaaat 17700ccttcaaggg gctagcccta
ttttgtagag gggaaacaga tgacaaactt aaatggttta 17760actgaagaca gttagtgaag
caagtattat ggagatgggg aaggcttaag ggaaccagca 17820ggacatgtca agttactcag
gactggcatc caaggggcca ggggcgttgg cagagggggg 17880ccgaggagag tgccccagct
ccatgagcca gagccctgga gatggggctg ccctgcagga 17940gctgtggctg cagccactgc
ttgtcgaagg aggcaggtgg gtgagggggt gaatacccac 18000catgagcctg catgcttctc
accctttgct ctcctgccag taccctgacc ctcactggca 18060gaatttctct ggatgccagg
gggcaaggga gccctggatg aagctgccac ttagaagtcg 18120gcctctgggg cacacaaccc
agcagcaaaa gttagagatt ggatgtggag ggacaaagag 18180atgatgggaa accgaagaac
agagagggca tggacttgcc caaggtcaca cagcctgttg 18240atatcagaat tggagtcaga
agccaggctc tgcctctgaa cactcacttt tttgtttgtt 18300tggttttctt ttttttcttt
cttttttttt ttttttgaga cagtcttgct ctgtcgccca 18360ggctggagtg cagtggtgcg
atcttgtctc actgcaacct ccacctcctg ggttcaagtg 18420attgtcctgc ctcagcctcc
caagtagctg ggatcacagg cacctgccag catgcccggc 18480taatttttgt acttttggta
gagacggggt ttcaccatat tggccaggct ggtctcgaac 18540tcctgccctc aggtgatctg
cccgccttga cctcccaaag tgctgggatt acaggcgtga 18600gccactgcac ctggcctgaa
cactcacttt gtcacattca ctgaggtctc ctgagtggac 18660tcatatgcgc attatctact
ctctggctga gagctgcttc ctgccgtgat caccgcgctc 18720tgtatctggg cagcacaggg
gctgctgaag aatgtcattc tcagaacgca gtgtgccctg 18780gagcccccca agccacctgt
tcattcatcc caactggcct tgagggtgcc ctggtgtgcc 18840ctgcctgtgc ttgtcaccct
ggccatggag atggacccaa aagcccttgc tctccgcttc 18900attagagaca ggcacaccca
gacgcaggca atcaattttg tcgggtgagt gctgggaccg 18960ctgatgagga cccttcctga
ggaggcgatg ctgggtctta gccttaaaga acaactgaga 19020gttttccagg tggaggagaa
aaggaagggt attccaggca aaaatcccca taagagcaaa 19080ggtgtgagca gcaagaaatc
aagggtggca ggttcagggc tcctgggctg gaggaagggc 19140ctggcggtgg agaggaaggg
agtgaaggcc cagctcacaa agggaagcag aggaaagttt 19200aagcagggtc aggccatggt
tagctttggg gttaggaagc tccaaatgat gggtgaagta 19260ggggggctag acccaggtga
gaggcagtat tgcggttggc caaggacacg tgagttgcat 19320aaatgggcca gaggaggggt
gacagccgct acttcccggc tcacctgcct gagctaaggc 19380cctagttcct cagtgtctgc
ccaccaatgc aggtgtgtgg cagctctaga ccctcctcta 19440gggacatccc tccctgcctc
atgctgccta tggctttcac tctctggagc actcatccat 19500ggcacccata agccaccccc
tcagacaatg gcccctaaag caaaactgtg tcaccgttgc 19560atatctcttg ataacactct
gacccctcca ctgccaaatc tgataaaaga cctccctttg 19620aagaccttcc tcctggagtc
ggatctcagt ccttcttgct gtccagagcc tgggccttgg 19680gcctccctgg gaggcgagtc
agtgagggca gcccccttat ggtgctggga gttgagggac 19740cttggcccag ccaactcatc
cctgttgtgt cagcctctct gggcctgggc agccaactca 19800ttttcagtgc taattagcat
ctcccctgca gctttctgcc ccactctaag tgcttgacaa 19860tcattaggtg ttactgtgtg
caactggatc ccagctccgg cacctccctg ccccagcttc 19920tcctccagac cccagctgcc
tgagataagg gacctggcca caaacataca acacaccgaa 19980acccggacac aatctaggca
tagggacttg aacaccaaca taaatataca aagaggaaaa 20040acccaataac acagaagaac
tccccatacc aggaagcaga ccatagcaca gacagagacc 20100cacagtacac acacaacaca
gacaccaaca gatgctgaaa agcagacaca ggatcattcc 20160aaaaagtgac ccagaaacga
aaacagaaca aatgggaaca tcaatgcaca tgacacaggt 20220atacacatct agatatgcaa
cacaggtacg attcagcaca tgtgtggcgc atcgcaggga 20280agcacttgca cttgaagtat
acacagatgc caagatagtc agagggagcc gcctgtggtt 20340ccccacctgt gcagcgtctc
tcgcctctgg gctgccgcac atgctgttgc ccggaattcc 20400cttccccaag gccctcctct
ttttacctgg ctaattcctg tcattcttca gatcttctag 20460gaagacttct gcctccttga
taggggcctt tccatactcc ccagccttgg agtgcttcct 20520gccacatggc atcactgact
gttttccaat gagtttctgt caagttttgg gatgaaggat 20580tttgcctgtg ctcgttgagg
tggtgactgt gggtgtgagt gggtgattag ggccaaaaaa 20640accccccaaa aaactggaca
gaggcaaatt tggggggaaa tgagttagga atagctgtga 20700ggagccccag ctactcaggg
cctcagaaga tatttatttc tgtatttatt tatttattga 20760gacagagtct tgctctgtca
cccaggctgg agggcagtgg cgctatcctg gcccactgca 20820acctccacct cccaggttca
ggcgattctc cttcctcagc ctcccgagta gctgggatta 20880caggtgcgca ccaccatgcc
tggctaattt ttctattttt agcagagacg gggtttcacc 20940atgttggcca ggctggtctt
caacttctga gctcaggtga tcctcctgcc tcggcctccc 21000aaagtgctga gattacaggt
gtgagccact gcacccgacc tcagaagaca ttgaaaccca 21060cagagaggac acagccagat
gccctctgcc tcattttctc agaccctgcc tgatttctct 21120tatgtttctt ctaggcttgc
tccctgaccc agttccctcc ttcccagagc tggccttgcc 21180ccttgccacc tctcggagct
cacacatact cactcacctt ctctgcttgg ctgtgcccta 21240cccctacttc tacgtgcagt
gaaatccttg ttattcaagg cctgaggtca gtgggcacat 21300catccatgcc tggcgtccta
acccgtgcca ctgagtatcg tgaagggagg tagtggaggg 21360acgtgcttgg gagcacaagc
cttgaggact gtctcttggt tcagatctct gctcctctac 21420ttcttagctg caggattgtg
caagttctgc cacctttgtt ccctcatctg tagaaaggag 21480aggataatag agcccacctc
attagggcag ccatgaggat taaatgagac acagtgtgta 21540atgtacctgg ctccctctcc
aggttgcgtg agagcaggga gaaagctaat gagatcaagg 21600atgtgcaaat gcactcagaa
ggtgcctagt gagtccttgc taactggcac ttagtgaaac 21660aaacacctcc tgtgtgagca
cctaatatgt gcctctgtag tgggctctgt gacccgcccc 21720tccttagttt ctgcatggct
gccagttctg cacagctgtt actgctgtgg gggcttagaa 21780ggtgggggta tgactacttt
ttctgaattt atttttaatt ttttacatct gttttatgga 21840ggcataattt acatacagta
aaatcaccaa tttaaagtgt ataatgagtt ttgataaata 21900tatatggtca taaccaccat
gacaattaag aaaagaatat ttttatcctg gcaaacttcc 21960cttgtgccct ttgtagtcag
tccctttgag ggggacttct tataggagtg tgagaagtac 22020tgggttttcc ttgggctgca
aacctgggca catggagtgg gggtgcctcc aacatgctgg 22080aagttgccag ggaactgctg
accctctctg ggccttggtt cctggcagag gcagtgcagc 22140caggcagggg aagggatgct
taggccttgg tctcctgagg gcaagccttg gatgtgaggg 22200ttggatcagc tggaagtggt
ggcttcagaa acccatagag tgggtgacag ggtagggact 22260tggtgtttcc acaaacccgc
ccctcctttg accaggtgtg ccctgtggtc ctggtggaaa 22320tggctatata ttgtccagac
tgtagcaggg gctggccaag atggtccact cctctcccca 22380tcctcctcca accagaggcc
ataaacccca ctctatagat taacaattcc ctgaaaagaa 22440gggggtcact tttgttcccc
agttctagaa ctaaatatta aagcaattat gtaactagca 22500ataaattact taaagtagtg
actcactcag cttaattaga gcgcaagcaa ggagggatta 22560aggtattttt agagcacaca
cctcactctc tcctgtgggg gaggcctctg tgcaaggtgg 22620gggtggaaaa aaggctggga
actcatggga gcaccccagg tgtctgcaag gagatgaaag 22680ctgatcctcc gccccactga
ggtcctaagg aagaaaggcc gagtcagagc tgcagcagga 22740gggattcgga tcagactcaa
gaacacttcc cagtggtgct tatttgagaa ctgggacggc 22800aacactagat tgtaaactct
gtgagggcag ggattaggtc tgtgaccgcc tcctcaccca 22860gcgggagacc aagaatgaga
cttgggagtc agacacaact gggtgtgact cctgcctttg 22920cgggttgcca gcacgtgggc
ttgggcaggt tcctttatca ccagaagctt tgccgtctcc 22980tccactataa agtgggcaca
ataacatcca cctgcatgca tattataagg attgagtggg 23040ttaaaatgtg caaagcaaga
ctttgtgctc agctgggcac agcggctcac acctgtaatc 23100ccagtacttt gggaggctga
gacagagtgc ttcagcccag tagttttgag accagcctgg 23160gaaacatagg gagaccctgt
ctcttaaaag aaaaaaaaaa ttagaagact cggtgctgac 23220tctgctagac caaaagccca
caaaggcagg gattaggttt ggtttgtgtt gttcattgtt 23280gtatctcaag cttcattcat
aggactgcac aaagtaggtg ttcagtaaat gctttgttgt 23340gtgactgcgt gttaattttg
ttcccattct cctgctccaa aaaaaagttc attttcctga 23400ggttgtgagt gaagaaaata
ggcagtgtgg gctgggtgtg gtgtctcatg cctgtaatcc 23460ccagcacttt gggaagctga
ggcgggagga tcacttgagg ccaggagttc aagaccagcc 23520tgggtaactt agcgagatcc
catctctact tcaaaaaaat ttaaaacaga aaaaatctag 23580ggtgtgtggg ggggcaggtg
gggaggttgc aggggtgcct cacaggtggg agtctggcat 23640ttctcctcca ggctgaggag
gtggtgactt ccagggaaag tcctgggagg gatcagaacc 23700acagctccag cctgcttgga
taagggtggt cttctggctg ccaggagggt agctaggtgg 23760gaagatctgc ccttgtttcc
tccataacct ggggtgggag gaggaggagc tcccagccca 23820atctgatggg ggagaccaga
accctcaccc accattgctg gcagttcaga gaaggcagcg 23880ataagtcggg gtggggcatc
ctgaaaggct tcccagagga ttggatggga ggattagctg 23940agaagacatc cggcatccgt
aaaatggagt aatgattctg accctgcagg ttttctggga 24000ggattaaatg agttacattt
taaagatgcc tggtacatgc ctgccaggag aaggcacaac 24060atatgaactc cctccctctt
ccctccaccc ctcctcagct cctgtgacat caggagggac 24120atgccctgcc ctgctcacag
aggctgggtg ggaggctccc atcatggcct tcactgaggc 24180tgcctctgca gttggaccaa
gctggacaca cagtaggtgc acataacaga tgggggcagg 24240tctgtgcttg ttttaccagg
gtgttgggag gctgagggaa gggcacagct ggattggggt 24300gatggagttc aatccctgct
cctcccccag atccaagatc ctaagacgcc tatgtccagt 24360ggctgctctg atcagctctg
accagctctc ctcacacctc ataggccttc cagggttcag 24420gtgatgaatt agtgatgaca
gcatccagca tcgctatgac aaccacatgg cactcttagc 24480ctccagtcag ggctcagccg
cagaggccag agaccccttt ggctctgggc ctttgtactg 24540gcgtgtgtga gcggggctgg
ggcctgaggg agatggagga gtgggagggg caggggccgg 24600ggcatggggc tgcatctggc
atggactgga gttcattcag attgttccat ccagagggac 24660cttggggaca gttgtttctc
tccttccttc cccctttctt ttcattcctc catccctcct 24720ctttcccctc ctcccacttc
ttctgagcct tgttcctgtt tgaggccctg ggctgccaac 24780ccttttcccc tcctctggga
ataaagccag gctcagccct caccccgggg agctgagtga 24840ggtgggggac agccaccttc
tggtctaggc ctcagggaag gtgtgtgggg accactgatg 24900gcttggtgag agggcctgac
ccagctgggc caggggctgt gcaagtggct gctgaccctg 24960atgagtgggg aggaggtttt
cagtagagag gcagggtcag agatgaagca gcgtgggatg 25020ggggagcgac agatgttcag
agtggcctaa gtgtgagatg cggagcagag aacgtgggag 25080gaatcgaggc tcgagaagga
ctgggagaga gtggatgcag tgaggagttt gaagtttgtc 25140cctgggggaa gaggagccct
gaagattttt gttgttgctt ctttgatttt taaatgggag 25200ggttcatttt agagatgggg
aaacaggccc agggtgggaa agtgacttgc tcaagcttaa 25260gtcactagag acagactgag
agtacaggct ctgcttgggt cctgctggac tctagctggg 25320acctcttgcc ccagacttgc
tggccaggat tttcccaggt aatcactacc tccgagaaag 25380gcgaggagag cccatgggtg
actttgccct cagtttgaat gaaatttgca tcagcaaggg 25440ctatgccgat agtcctttct
gctcgtgtct ggcctgtttg ggggtgggag tggggtggag 25500gtgagcatcc agggaaggat
ctgggaagtc aggggcttgc cagggccagc aaggcattag 25560ggtcagagat ggattcaaac
ttgggtcttt ggagacccag cccagactct gtgctccatc 25620tccttcctcc gtctctcagg
agcctttggc tgagttaggc acctacagga ggcaagggcc 25680cccccgagcc cctcacattc
tcctcagggc tccttctggc cctggggcct gatattgggc 25740ctgctgtgct ggaacttatc
caggcagaat aaacctttag ccccattgtc ctgatgaaga 25800aactgaggtc ccgaggtaac
agtgactcat tcagggttac aacaggtcag tggctgggct 25860gggcctagcg tctggccctc
agcttgtcta catggccccc ctcgtggctc tccccttgcc 25920tctcgcaccc cactgtgcag
catggttggg cctgccagcc ttgatggatg gctctgcagc 25980tcaacctccc tcccattcct
ctccagatgc cgggccgtga gcctcctaat caccagtcct 26040gcctggtggc cgccaagcca
tccatctccc cacacagcct tgcccagcac aggtgatttt 26100gtttggggag aaggggggca
cagcaggtct tcctctgagg ctgagccaag agtttggctg 26160cagcccccac tctggggtgc
ccgagggtta gggaatagcc tgcactccct tgctggagtg 26220tcagaaatcc ctcctgaatc
tccctagggc acgtgcacat gcacacacag gcacacacac 26280tcacagtaac actaataaaa
gctctcgtgt agcaaaagaa tattgtatgg caagtattgt 26340tgcagagcca tatgtatcat
ctcattcatc actccactgt agagatacag aaactcaggc 26400tcagagaggt taagtgactt
gcataggctc catatccagg aaatggagga gctgggattt 26460gaacccacat ccttatggct
cacatcttgc attcacaact cctgctctac tgactcacct 26520gtgcacacac acacacatgc
acacacacac acgtgcgtgc acacacacac acaggcactc 26580acttgcatgc atgagcacga
gccaccattt tggctcttgt accatccatc tacctgggcc 26640aggttcttga ggagtgagga
gaatgctggg ctgcagaggg catgaggggt cactgctcat 26700tgtccccagg ctgccccaag
ctggctgtgg cactggctgg ctggggagct gcagggaggc 26760agcagcctcc aggcagtgga
aaggggaggc tgggagacag tcgatcgatc atccctgcag 26820tgcctccttc caggaactgg
ggcccagggg agtgtggcgc cacgggtcga tgttctgggc 26880agcagcacag tctctgagtg
cgtacagggt gtgtgtgggg cgaggctggt gtgcagctgc 26940ccgccttccc ctggctccct
tcccctgctc ctgccttcct cctgccattc acctgccagc 27000cccacacctt cccctgattc
ccccactgtc cccaacctgg gcactacaga ggctgagaat 27060caaactccca gttcccaggc
acctgtgtgc ctgctgctac catcccgccc tgccctagag 27120gcaggtctcg ggtgggtgct
gcaagagtca ccctatggtg gttggggatg ggtgggtagg 27180gggaccgggg gctggagctg
tggggatgtg aggcaagccc acctcagagc ctttggagac 27240ctcgacagac aatacgatga
gttaagaaat gtaaaggggc acatagtggg tgctgaattc 27300atcttgtctc gttcctccag
taagagtctg gagaaaccaa gagcagctgg gtgcctctga 27360gggcacagga gctcccaggg
ctggctggca ggtgcagcta acagtgttag caatcccaag 27420gacaggtagc ttggggcgga
ggacagcatg ctgtcaccca tcctgatgag gggagagatg 27480tctggtgcta ggagcagtgg
tggccggagg agggctgggg accctcccca ggccacccca 27540cactctccct ctgggagggg
ctcctgagca ggcctggtca ccttgcttct tggctgcttc 27600ttccccggcg gaggagcctc
ccccaggctc tcccacctgc actggcctca agagagctgg 27660gattgagccc cagttcaggc
acctgctggc tggcggaggt tagggcaaat cactttcctc 27720agccctctca tccgtgacag
gctctggtga gggttaaatg agatgttgcc cgtcaagtgc 27780ctgccacttc cctgacgccg
agcagctagg ctgctctggg ttctctagca cctgcctccc 27840ctggtcccag cactgggtgg
gcggctgtgt tctaccggtc actggtgggt cctcagggcc 27900ccgacacagg gcctgctatt
gggaaagagg gaagtaaaca tcccagggct ggagctctgc 27960ccactatgga ggtgttccat
cttaggctct gtaatctcct cattcactct ggtatgggga 28020caaatgtgcc tctctgcact
aactgagccc ccatgggcaa ctaggagtgg tgtcacttgg 28080ggtggaggtg ggcaaggatc
tctggactgg gatttccaag ccctgacttc ctgttatttc 28140aggcactacc tcattgttcc
atcttgggca agacctgtcc ccttgagggt aagagacaca 28200tgtgacctct gacctccaga
gtctctcttc tgagcttctg tgcccagatg attctgtgtt 28260ctaggggaca ggcgaggctg
gggggtgacc cccatgccac tgatgggcag actaaggagc 28320aggggcccag gactggggcc
agctcaggac tctggtggcc tcggtgccct tgacctggta 28380ttgctgccgt tttgccccac
tgctgtctgt ctccgcgtcc gagtcaccac ctgtccctct 28440ccagtcctct cctctcttcc
tttattacta tctctatatt gcctcctgcc tcaggcttat 28500ctcctcctgt catgcctcta
tccacctctg tcactcccct gcgactctgc ctcactccct 28560ggcacaccct ctccctccct
gggagtcggg agtggagcct cgctgggaat caggaccccc 28620ctgcctctgg tctctgtcta
agcagtctct gcgattctgg ccagctctta tctttttcca 28680ccttcccgaa tctctcttgc
tgtctgatgg tgtctctgcc tttcactgtc tctgaactcc 28740ctttgttttt ctctatatgc
ttctctctgc tcttatctct gggcctctgt ctctcagggc 28800ctgactggtc ttgacctctt
tgcctccttc ttcccctcga gagcccagcc aggcagcagg 28860tccagccctc cagcccagag
aacagatgga gtccaccctc cctctctctt gctggctgcc 28920tcggaagccc caaacaatgg
cctccgccct gcaccgtgcc ttgttgctag gccttgggct 28980ggcagcacct ggcttccata
gcgacgggtg cttagaaaca gaatgccaca tctcccagtc 29040ccaccacagg agcctttgcc
gattgagcga gtgccttttg atcaatcagg aagtgtggcc 29100aggctctagg ttgcctccaa
cttgaggagg caagagagga ggggactgtg gtctctgcct 29160tctggagctg gggggactgc
tgggctggga ggagttgctc aagtacagcc ctgaagccaa 29220ggaaggactg ggggaggccc
tgggctcttt tccccaagtc agcctgctgc aagaggcaca 29280agcttgggag ctggaagggg
ctgtgttgaa attgctgttc catcatttct agctgcatga 29340ctttggatga atgacctcag
gtcccagggc ctcagtttca tcaactgtaa aattgggcta 29400ataatatcat gaagattaaa
tgagagaata gatctggcac ttagtaggtg gtcatcaatg 29460gccattcccc tcccttcccc
tttaaagttg tttaaaattt aattgacaga gaggagaagg 29520agggttcttc aggcctgtgg
aatggtgtaa gcaaaggggt ggaggctggc atgcacctca 29580catatgctgg agtatttagg
gaggaccagg ggccatatct ggaaatggtt ctgccagaag 29640cagccaggcc aagctgggtg
ccatgtcatg cacctgtaat tccagctact agggaggctg 29700aggcaggagg atcacttgag
ccctggagtt ccagatcagc ctgggcaaca tagtgagacc 29760ccatctcaaa aaaacaaaac
acaacaggca ggctgatggg cccatggaga agggactctg 29820tctcctggga ggtatattct
tgccaggtgc aaagggatgg gcttgactaa tttctcctct 29880agcatttggg gctgctgggt
agggagctac attggggtcc ccttgcttat tctcatgctg 29940ctccctactt ctgccctgtc
acttggtccc aggagagggg ctcccactgg ttccttttcc 30000ctgccaggcc tgcccaccaa
ggccaccatg gccacacagc ctgaatcctg gggccagcaa 30060gtgtccatgg aaggccccac
tctgtcatcg tagagatcag gaaacaggct cagaagtagg 30120agggcttcct ggtcctaggg
cccagctctt ccctcttttc aggcctgtct tctgcactaa 30180ggacttcagg ccaccaggga
aggtggggag ggaggaaagg agatgagata gacttgggcg 30240ggggcctgag gacagagttt
catgtcactt gggcagccag gaaagggtta aagatccctt 30300atcccaagcc atgggcactg
gcactgccag aggatgctga ggcctgctgg ggcataagga 30360caacaagcaa catccttttc
tgagctgttg ggagtgccaa gctctctgtt aaatactttt 30420gagcctcttc tcatgtattc
acagccacct ttcaaggaag gccagttgat ccccagttta 30480gaagtgagaa aacggggtct
ccaggaggca cttgtctaag gtgacacagc tggagagttg 30540gagatggtgg ttagaccgag
tcaccccccc agaccctggc ctctccctgc gtgccccttc 30600caggacaccc atcactccct
tgacacccct tgggagtggg tgttcatttc cttgggctct 30660cccaatccca gtccttggta
tccccaactg caggcagaca caggtgcttg ctgctgtgcc 30720ctccccttta cctggcatca
cagagactca agcccactga ccattaggct ctcaggggca 30780tagaaaccag gtgctggagt
cttagagtcc tgcaatcagg catctcaggc agtcaggaca 30840ttagaatgtt agaatcttgg
gcttctacat tctcaagacc ccaggttctc gcattcacag 30900aatgtaagaa aaacagactt
tttgaatgat ggggtgttat aacagaagct ttgattttct 30960aagaacatga agctctggga
gttcttggag ccttgaagcc atagactggg gcctccctgt 31020gtgatggttt ctgagttagc
agggagtgtt cagagtatgg ggccttggtc cctgttgctt 31080agaccttctt gccttggtat
ctctgatggg ctcagctctt agtagccttt gtgtatgtgt 31140gtgtgtatgt gtgtgtgtgt
gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt agtggggact 31200ggggtcaggg gtcagggact
gactctaacc tgaggcaccc ctggagtggg gccagcccag 31260gaatagcagg tggaggaaag
ccgggcagcc tcagggctgc agctgtctgg tggtacaggg 31320cagggctctg ggtggctgcc
tttggcagag gaccagcctg cctccttcgt cccctaccca 31380gcctgctacc aggatcagga
ggaggcatct ccatgggact cctagggctg gagtcagagc 31440agcccctcca ggttctgcag
cctggacggt aggaggtgcc actaagggga ggagattggg 31500gaaggattgg gacctttatc
tgcggtgagg tggggcacgg ggggatgaga gatatagtgg 31560gagtctttga agggtgtggg
atcagtgaag gggctgggga tttagtgatg ggctggggct 31620taggatggag ccaagggctc
tgtgggtggg agaccttttg agagggtgga gactcagaga 31680gaaggatggg ggctcagcaa
ggggatgtgg ctcagtggag gttgctgaag agtttcttgg 31740ggttggctac acgcggtggc
tcacgcctgt aatcccagca ctttgggagg ccaaggcgga 31800tggatcactt gaggtcagga
cttcaagacc agcctggcca acatggtgaa accctgcctc 31860taccaaaaaa tacaaatatt
agccgggcgt aatggcaggc gcctgtaatc tcagctactc 31920gggaggctga ggcaggagaa
ttgcttgaac ctgagaggcg gaggttgcag tgagtcgaga 31980ttgtaccact gcattccagc
cctgggcgac agagcaagac tccatctaaa aaaaaaaaaa 32040aaaaaaagtc tcagggctgt
ctctgcactg ctccaggttc ctgaggacgg cggttggggc 32100tgggggagtc ttctgtccct
ggggtaggct gagaagcaag agctcctttt cccaactctg 32160cccaaagctg gaaaggttgt
tagagctgct aagaaagctg gcatctgcct ctccttttgc 32220tcatcttcct ttctggtttc
catgggaatc tgtggctcag gatgatcagg ggttgacagg 32280atggcgctgt ggaaggagtc
tgtgtcaggc acagccatcc cacatgggaa ggagccggct 32340ggtaagaaag tgagttccct
gtccctggga gtgtgcaagc agggtagggg ctgaatggct 32400agagtgactc cagaaagggg
ttcagatggg gcagaggaag cagtctggag gccacttccc 32460tgagacaatc atgttttgtg
tgattggctc tgggggcccc accagcccca ccttccagac 32520gtccctgggc ctcacaaagg
gggttgctgc accctaggca ctgcctctga tccagcccca 32580actcctgtgc tctgtgcctg
gcctatgctg aacacggaca tgtgcagctg aatcagattc 32640agtctctgcc tagaggagcc
ccagtctgat gggggaggca cacagggaca caaatatagc 32700tgggtaagtc ctacaaaagg
gggcatacct ggctgggagg cagttccatc actgattcct 32760gtagtctgta gatgtctttt
tgagcaattc ttctgggtca agacttgttc ttatttgctg 32820ggataaaaca gcagtgagca
aaacagagct gacagcatgg tgggaaggtt gagctcttcc 32880agaccgtgat gagaagtatt
ggtgagtggt ggggagagtg gccagaaggc agagtgtggg 32940cgcagcatga gaggaggctt
tgtccagact taaggacctg gaaggccttg aaggccagga 33000ccagggctcc aattgtcctg
ctggcaatag gaagccatat gggtgggggt gaggcagaat 33060cagatttagg tgtggaaaag
atgactccag ccagtgtggg catcgaagag gaggcacaga 33120agcaggcgtg gccacctgtg
cctctgtgta ggagctgtgt gagcatgtgc ttgaggatgt 33180gtgtctgtgt agaggactgg
ggtgtaggcg tgataggaac atggacgtgt atctatggaa 33240agactccaat tgtgcatagg
ggtgtatgtg tgtaagattc tgtggcccag ggcagcctgt 33300gaaaaggaag gatcttgggg
tctctggatg atggggagca gagactaagg cctaaggtat 33360gctggggctc gagccccctg
gactttatcc cctgtgagct ggcaggtctt agactagtcc 33420tggactagaa tcctatgggt
tcccttcccc cagagggtca tggggccagc catctgctgc 33480agacaagaca aacatgcatg
caaatcacat gaaaatggat gaggcctgtg gctgacccac 33540cctacagccc ccatcccctg
ggcctgagtt cactcagcct gtacccttcc tgacccagag 33600ctgctgccag ggctctggga
acaggccttg cccactagga gctgaaattc acattgtccc 33660cagcacctgc ccgtggccac
atcctctctc tgtgagggct acccccacat ctggagccat 33720agccagcgga cacagagctg
gatctggact ggtggccatg ggcagcacct ctggcaggtg 33780ctgaggtgga ggaggcagta
tccaggcagg catccctggg cagaaggtac ctctcctgag 33840cagacaggcc tacccaggca
ccaggcccaa agataggggc aagggctaga tcctggtatt 33900ggaggaccct caggagaggc
tgtgtgtgac ttgctctctc tctgacctgg gctagagcat 33960aaacacgtgt cacatacttg
cacacacatt cacacgtgaa agcacgcaca tgctattcct 34020ggacacttgt gtacacacac
cactgcacac atatacctgc atgtgtgaat atacactcac 34080ttctgcacac agacacatgc
ctatctgcat agacacaccc gtgccaaccc ctatagatac 34140acagacatat ctgtgtatac
acatataagt tcagctatac cactgcagta tcacacaccc 34200tcacaaggat acaaacctgt
gctcacactc tcttccaccc tcacacacat catgcttaca 34260agcctgtgtg cagccttaca
cacatgcaca cacgtacaga gcagcctaag ggtggctcac 34320ccctgcccag gtgaacacct
gtgcccactc cagggctgga gtgttgagga aagggtctgg 34380atggaggcag aacctgcaga
gatgtcagtt tcttccagga agcatcttgg attgtccctt 34440cacagagccc ttggaagtgg
ggccctcttt tagtccatgg gctctagccc aggtcacaga 34500gagagcaagt cacacacagc
ctctcctgag ggtcctccaa taccaggatc cagcccttgt 34560ccatatcttt gggcctggtg
cctgcgtagg accatctgct caggagaggt accttctgcc 34620cagggaggcc tgcctggata
ctgcctcctc cacctcagct tcctgagcac tcaaagagaa 34680gcaggccaag cttcacggct
gctgagaagt ctgagaccag ggagggccaa agccttgcct 34740gaggtcaccc agcatgtcag
ggaagggcta gggtttgaac ctgggcttcc aggtgggggt 34800gtaaccatgg tccatggcaa
caggatagat gcatgtcagg cagcagacag gcccttggaa 34860gcaagacatg tggtcatggg
ggataggaaa agacttacag tctatggaga tctgccagga 34920ccaagtgtgt gagatggaga
gatggtgctt cttcaccaga gctcactggg caccacaggg 34980ctcccagctt ggctggacca
tggggactca gggaagaatc agacaggccc tgctcttgag 35040ggagggctgg ggataggtga
agaaggaaga gggcattata gactggggag atggtggggg 35100ctacttctcg ttggatggca
gttttcttcc tgcatcttga aagatctaac tttcaaattt 35160ctttaccctc aaaactcggc
atggagtaca ttctcagtaa atatttatgg catgaatgaa 35220ttaatgaaag tatgatattg
gcaggcagat atgcctttgg aagggtattc aaaatgggag 35280ggcaacaggt tgggcaaagg
caaagaggtg gaagaaaagc cagaggttca gggtacagct 35340gagtcaggca tggctggacg
ggaagtggta ggagaagcag caggaaaaag tcacgtgggg 35400atgagccttg catcttatac
tgagtttgga tgttgccttg gaggccatgg ggagcccagt 35460gaagattatg agcagagggt
gaacatggtc agagtgaacc tgccctggct ttggggggtc 35520ctgggctaca tagtagctgc
ttatccttgg tgcaaagagc actgggtttg gagtctatag 35580gccagggttc acattcctat
agtaaccagc tgtgccatct caggtaagca tctacatttc 35640tctgagcctc actttcctta
tttgtaaaat ggggctaatg ccgtgcctcc tgaggctgtt 35700ggatctggcc tgggtgagga
aatgctttgc cagcacaagg ccctaccaat gagaggtgtc 35760atttttatta ggaacaaggc
agggctggtt cctagacagg gcctgaggtt gagtgggccc 35820aggacccagg ctgacagctg
agtcaccttt tccaggccaa gtggcctcta aggtgggaag 35880acaaaaagag ttggctagag
gggctgggct atgcattcct aagctggagc tgggaggaaa 35940gctggggctg ggactgggct
tcctggtgtc cgagatgggc agagggtgca gacaccggga 36000tagtaggacc ctcagccact
gcattcttgg ggacaaaaga ggagctggga aatctgattt 36060ccttacctgg ctttgctcaa
gaagcaagga atgtatttaa ggcacagact ggagtgagat 36120ggcctgggtt tgaattttga
ctacttacaa gctatgtgac tgtgggcagt ttactttgtg 36180cctgagtttt ccttatctgt
gaagtgtgac taataataga tcccacccta taacattgtt 36240gagaagatga aatgtgaggc
acacagtatg tgctcaataa atgcgaaagc ctcccagccc 36300cagatgtata cactcggcca
gtaggggcca gccctggccc tcacctccat gggacagagg 36360tcagccaggg aggagatgca
tctactccag ggttctctga cctggcagca aattagaatc 36420accgggggac attcacaaac
atctgggatg ggggttccag atatcagtat ttaaaatgct 36480cccaggcaat tctaacatga
gtcagggtga gaacccagaa caggatcaca gattgtgcag 36540ttggagtgag gtagggatct
gcgtgtgagt ggaggagtcc ttggagtggg gtcactccta 36600gctataagag ctcggcaagg
cctttaaatg tgccaactca aggagccttg gttgccccct 36660caggaagggt gctggttggg
gaatttcaag gattgtgtga gagggttttt ctgaaagggc 36720tctgcactct accaagcact
ggaagaaagc agtgcacttg tttattgagt ctagtgtaat 36780aacatttcac agatggggaa
atagaggcct agagaggtgc tgtggcctgc tcagaatccc 36840acagcaagtc tatggcacag
ttaggactca aaccctctga ggaatgcttg gatctgaaag 36900gttgacacag aaagactctt
tgagctgagg gacacataga gcacacacca gggaccccag 36960tcattgagct gtagtttgag
agattcaagt aagactgaag aaataacttc ttggctgggt 37020gcagtggctc acacctgtaa
tcccaacact ttgggaggct gaggtgggtg gatcatgagg 37080tcaagagatc gagaccatcc
tggccaacat ggcgaaatcc catctgtact aaaaatataa 37140aaattagctg ggcatggtgg
tgcatgcctg tagtcccatc tactcgggag gctgaggcag 37200gagaattgct tgaacccggg
aggcggaggt tgcagtgagc tgagatcgcg ccactgcgct 37260ccagcctggt gacagagcga
gactccgtct caaaaaaata aaataaaata aaataaaata 37320aaataaaata aaataaaata
aaataaataa aataacttct caagaggtga gtgccatgga 37380ggtggtgcct ggagttggga
gcccaagaga tggtggcggt gccaggccag ggtcggctgt 37440tgaccatggt ctgaggtggc
ctcccctgaa gaacaagtaa ctctggccag tggctgtaac 37500agatacctcc cgggcacctg
tatctcaccc agccttgtcc agagcccagg actgagccag 37560tgacacatgc tcagaattta
ccaagagact tgtgcactga gctcagactc agacctagtc 37620cttccaacag cccttacatg
ggtcatcccc ttttacggaa gagaaaactg aggccaaaaa 37680taggaaggga ggccctgtgg
gggccagaac ctttacacat cttagcccag gtaatttttt 37740ctacagtgtt aataagtagg
atgaattgcc cctgtttgga agattcagta aaatacattg 37800acttggccca gatcacttac
tctacacctc tcctaagtcc ccagatgtga ctcccaggaa 37860agacacaaaa aagggctacc
cagagggata agatagtaac cagggaagcc ctcccagagg 37920aggtgggcct tcaaatggcc
cctaaatgac aggcaggagg gaaggatctg ggagggtatt 37980gggggtgggg tggcatgggc
aaaggcctgg aggtgagagt cagtcagtca ttgatgtgag 38040aagagcaaga agtagaaatg
taaggaatgg tggggagggg agtcagagct ggatgaccaa 38100gcaagggttc agctgtagag
ggtctggccc gccaggctca gggctcgggc tttattgtgc 38160tggtggtagg gagccactga
gggtgagtgg gggagagcat gccagagcat gcctcagaaa 38220gaaaggtggg agaaacgctg
gcatggaggg ccgccccctg agttggtggg gtggccgggc 38280tctgccaagg ctatgtgcca
gctgcctgga ctgtgtccag gaatgggcac aatgactcaa 38340cattgagaaa atcactcccc
agggagaaag ggccctgatg aatcacccag ctgaggtggg 38400gaggctggga ggctgggagg
ctgggaggct gggagctcac tgagtcaccg tccaagagtt 38460ggtgaggagg ggagctgcag
agagaggggc cggcagtgca gttgacgggg ggattcaggt 38520cagaccacat tgagggctgt
cgggggactc taccttcccg ccattcccgg gtttggtcct 38580cctggccgtc ctgtgaggga
gatgagaaaa ctgaggccca ggaagtgggg ggaggggatc 38640cgagcaaggt catgcggcaa
gtcgctggca aaggcctagc gagacccaag cgcaccctcc 38700agtccagaca cgtcctgccg
ccccagccgc tttcatgcca agcagaggcc taagaaccgg 38760gtcggtccgg gcagggagct
gaccccggtg acccgctgaa tccccggacg cggcccctcc 38820gggcagccgg caactgaggc
cggattgcgc cgccgcgatg ggacggcagg gggcgcagga 38880gcgtcgcggc tgccgcaggc
tcctgaaccc agaagccgct ctgcggagaa acgcgctccc 38940ggagcgcggg tcccaccgcg
gaactgcgga ccgtgtggcc ctggggcctg caccctctcc 39000ggctccgggg acggcgacag
agacctgccc acccaggcct gggggcccca gtcagtggcg 39060gccgccgtgt gtgcgctcgg
tgtctgttcg cacgtgtctc cctcgcagat gggcgactgc 39120tccagggcct gtccgtctca
cagcgacctc caacattctc ccgacttccc cctgcctcct 39180aggctgaggg agaggagcaa
gcccgaggct cctgcggtgt ccgcggcccc tgcccccctt 39240ccccttccct ccccacccca
ccccactgcg ccggtctctg cctggggctc tggccgggcc 39300ccggacccca gagtggtggc
ggggaaacag ggtgcgatca gacagggtgg aggctctgag 39360agcggcccct gcgagatgcg
agagaagtgg cgacggggcg aggggcagcg agcgcaggct 39420gacagcaggc cagctggaag
ggccgaggga acccagggcg agacagaagc ggggtgacag 39480cggccgggtg tccggtgggg
tcggaggatc cgacgggccg agaggtgcgg tccgcggtgg 39540cggggacata ggcggggccg
gggcgggccg ggggcgggcg gggggcgggc cggggcgggg 39600ccggggcgga cactcgggcg
gaccaggcga agctgtcgcg gacgcgctga ccgagcgcag 39660cggccgggcc ggcgggcggg
cgggcggctg cgagcatggt cctggtgctg caccacatcc 39720tcatcgctgt tgtccaattc
ctcaggcggg gccagcaggt cttcctcaag ccggacgagc 39780cgccgccgcc gccgcagcca
tgcgccgaca gcctgcaggt aggggggccc ccgcgctggg 39840caccaggaga acggggtgtc
cggcgagcgc cgggccgggt ctgcccgccc ccgtaaccct 39900tctcagggta ggagacccct
cctctagttc tgaattctac tcctgtgctg ggacggcagc 39960gcagaccaag agcccttgaa
gccccagctc tcagtccaca cgtcacccca gactctgaac 40020tcctttcgga tccggggctc
caccccaagc actgagcttc cagtccacgg tgggaccgca 40080gtgcacactg agagctgtgc
ccaagcctcg aattcccttt ccttagatta gtggggaccc 40140tgcccacgcc tcggaacctt
caccatatat gtggggctcc cggcacacct ggagcacctg 40200aacccccagc tgtcatccag
gactccacct cagagccggc ctcacccaaa gccccaaacc 40260tccattccaa gcctcaactg
gacacccgct cagattccca cccaaacatc tggacttcag 40320tcctcagcct ggaacctacc
ccagagtcca aatctctcct tccatcaggg cttcactggc 40380tttctctgtg ggacccactc
cccgatccct tccctccctc ctgtgttgga gatctccgag 40440tctttcctcg tggggggccc
ctcctcttgt tcctctccag gtacagtggt cccactttat 40500tctctgggct tctcctctgg
tttctcttca agtatttctg ggctctctaa tttggtctgt 40560tgccccatgt gcccacctct
cttggtctat cttggtctct ctcctgtttc tctaggtctc 40620catcttcgtt ttggggtctc
tttctgcagc caccccttcc tcttgtatct acctctgctt 40680tgtggtgagg agggggcagg
ctcagagagc agggctagtg tccctgggac acccccgccc 40740cccatgttct caggcatggc
atggtgtggg ctcaggtgga agggcctaaa tgtggagtgt 40800gctgccctca ggcgatgccc
agggatctga ggtggtgggg ggatgatgtg gtgggcactg 40860gcttttgtaa cttataaagc
ccctcatccc agctgccctg gtcttgacgg gggcggctag 40920ggcttgagat agggaagagt
aaactgcaat ctggtgtcaa cctgcggtgg gatgtgtcca 40980ggctgggtgg gtctatagtg
tatgtgtttg tgtgagtgtt cctgtctgtg tgtagcacgg 41040gctgggttgc atgtgttggg
tgtgtcttgt gtgtaatcat gtgtgttgtg ccgtgtatga 41100atgtgtcatc gagagtggga
ttatttgtgg ggagattatg ggaattatgg gtctatggca 41160ttgtgtgcta tgtgtggctg
gggaggcagt gttgtggctg tggagtggta gctgggtgtg 41220tggctgttgt gtgtgtagag
aacttgtgtg tatgtggctg tatgtctgtt attgtacagt 41280ggagttgttg tagggacagc
ttgcatacag gattctatat gtagttgtgt gtgttactgg 41340ctgttgtgtg tggccaggaa
gggccactgc aggggcctga tggtttccac tgggtgtctt 41400gtcagagagg agttggggca
gggggtgccg tgtgtgccaa tgtgtttgca gcctaggtgg 41460ctggcttaga gtcactatgg
cacatcctgg gattgcttgg gtaatatatc tattaggacc 41520tgagtgctgg tgtttgaatg
tcatgtgtct gtgtggtggc tgctcccgcg attctggaca 41580ggaaagggtt gcagccaggg
ctgaggggtc tgaggtgagg agccagttga caagtgtgtg 41640agtgtgtgag tgtgtgtgtg
tgcgtgcatg tacacgtgca tatgggaatg gggtggggtg 41700ggaggaggca gtgggccagc
agcgctgtct atgctgaggg gctgtgtgtg cccacaaacg 41760tgtgacatta ggtgtgcaca
ttatctatgc aggttgtgtc tgcatgtgtc tctgtgtcta 41820ggtggcgtgc gtattgaatt
taattggatg catacacctg tggctgggga ggtgagaggt 41880gtgtgaggtg cgtggtggga
gacggtgtga gtgtggtgtg aagtgagggt gtgtgagctg 41940ggtgactttt tggtgtgacg
tgtgaattat gtgatctttt ctccccatga gctgtgtgtg 42000cctgtggtga ggagtgagtg
gaggatggcc agtgagctgg cggtgtgtgt gttgggggtg 42060ttgaggactg tagaatgtgc
tgcggtggca gtgtgtgcat gaggtgtgtg tgaggaatga 42120ggtctgtaac atttggggcg
tgtggaatat agtgggtgtc cccataaatg tctgtggagt 42180gacgcatgtg tgcaaaaggg
cttggctgcc atcctgttct tgctcccctc ctgatcaggt 42240ccctagagat gccctggaat
gttctccatg cccccccaac cccagctgcc cctacccttt 42300gcccttcatc ctccttgcct
tgaccaagcc ctttgttttg ggtttccggc ggagcaggcg 42360ctggacaggc gggcggcagg
caatgtcgtg gtctgagaac ctttgttctc ttagtttgac 42420tggtgtttgg ggccttggtt
tggaggaggg tgtggagagg atgcacgtgg cagcaaggtc 42480actgtgttta ctacaccact
tcgtgctccg cagaggggag gcgtacggcg caggcagtga 42540ggcctgggtg gtgtctttgg
tggcgcctgt tggtgtaaga acagcttagg ctgggcttgg 42600agtttgccag ccatgcagtc
ttagtccata gtggcccagc gcccttcctg gctcatgtca 42660gcggggctga gcagccgagc
agccaagcac tcacttctcc aagttcacct gccctcgccc 42720cttctctgtg tggctgcagc
ccctggagac aaccaggaag acctcgattt agttctattt 42780gtgttcactc caggtcagat
ggaggagaaa gagtccccat cctcacagag acacttatct 42840gaaaggagag agctggtcac
acctttgggg accctctaga ctgacgcagt ctgtaggggg 42900atcgaggtca taccttccag
agagagctgt gggaaaaccc tactgggctg cctcccagca 42960ggtgcttgag agaagaaaca
tccaaggttc cttgagattg gaaggcttag agaagtctga 43020gtcagtcagg gaaggggctg
gggtcgatgc cgcagtgtca cataccagaa ggttctctga 43080aatgaatagg cttgaactgg
accttgaagg gggtgttggg gtgggcagag aaatgcagcc 43140tggggctgag gaaggttctg
gcctgactgg caaaagggat cttgctggcc attccccagg 43200caacactgtc tggctttggg
tagccatccc tgggcctcca gccttctcaa gctttcacgg 43260tacctttttt atcccattgt
ctctggctgg aattatcttc attgtcgttg acattgtcat 43320cttcatcatc ttttaggcag
ttatttccaa attccagggt cctttcacaa atgtctcatt 43380tagcaggtta actcatgcaa
ttgtccaaaa gtctttatgg aacactgctg tgtaccaggc 43440aggcacagtt ttaagtgccg
gggtcatggt ggtggccaaa ctggcctcat ggagctccta 43500ccttctgtgt ccagccatgc
tgtcagttgc ccacccttct gtgtttcccc cagtctgggg 43560cgcctggttc tgtggggctc
cgcatgtgca ccctctggtg ctggggtctg gctcctacca 43620gaatgtgagc tctgcagagg
ctgggcccgg gtctctcctc tacccaccgt gtgtgtcctg 43680agctgggtct ggcagagtcc
agatgctcac acctatcatc aagtgactgg aactgccatg 43740tagggttggc agtccagctc
tgtctaggga aactggggtc catcggatga ggggactctc 43800atctcatcag gcagcatctc
atcaggccct tcttttacca gtagctccag agaccaagaa 43860gggtcaggtg actggtgcag
gtctcacagc agggtggcgc ggctggtgtc agaagacagc 43920acttcttgct gccaggttgg
gctctggtcc tagcaccatg ctgctctctg gctggcctct 43980gtgctgcctg cggcgggtaa
acgattatta atgacccccc tggcaaggag acaggaaatg 44040tttcccagcc acagctgggg
acctgctccc tgccagcccc agctatccat acccgtcctg 44100accatggcat cggtgctgat
gttatcttca ttctgcctca gtcttcttta ctccttctgc 44160ccatcccccg acctccctga
tcttgacatc ctaagggtaa atgacgagaa gctacagagc 44220tttcttttcc atatccctgt
ccctcaccac tttctccaac ctgactcatc tctaccttct 44280tccttgtccc atgccagcca
gaagtagctc ttcctccaag aaggcttctc tgaatgcaca 44340gccagctcct ccagtgtcca
ctaccctgag cccgaggcac tgagtccccc tcattgcaga 44400ctctagtcct ccactgatgg
tttgctctga cagccctagg gctggcctgg gcacttcccg 44460cagactgtcc ctaattgctg
ccttaggact gacatatgaa gggtcctccc agatgctacc 44520tccaggaagt ctccagttcc
actcagccca gggattctta cctcctttga gcacagtgcc 44580cttcctgtct gagtcacaca
tgtgtacttc caggacttcc taggtggaca ttagtgaaca 44640cctgctatgt gcccagcaca
gagggtggga agagatgagc aggatgcagg ccttaaaatc 44700cccacacctt cctccaagcc
tgagcaatgt tgcatcagcc ccttggcagg tggcacagac 44760ctaggtacta gggctggggg
aggggaggcg gagaaacagg gagtgatgtt ggtagagtgt 44820gtggggaggg caacgaggga
gataaactca ggggccatgg tgatataaag cagggacccc 44880tatttcagcc cagagtggga
gggaggggca tgttggggag cttccaggag gaaacaaatc 44940tgaactgaga gctaaggtca
agccaggaga aagttctgga cagaggggag agaatggtta 45000ctgtgaaggt tcgctggtgg
cagacagagg gaggagagcc tgtggcagca ccactccatg 45060gagcaggccc ctgggtgcca
gccggctggg tccgggggga tggggactgg taaagctggc 45120ccagccagat ggtgcaggac
ttgtaagcca tgttaaggac tgcggactta ttctggaggg 45180aaattgaccc tggggaagag
ttgagagaac ggatatgaca gatcagatct gcatgttcaa 45240tagctccctg gaccatggtg
tggagactga aggggaggct ggtgtggtcc aggtaagcgg 45300gggtgatgag gcctggacag
ggaaatggct gaagaatgga ggggagggga cggagtggcc 45360agggctggtg gagggagctg
gacagctgta gacgtgaagg gcaagggagg agaatgctgc 45420cccacccagg tgtctggatg
ggttttgtgc agtctctgag atgtatagga gggaagacag 45480gggttagtgg cagatgcctg
ggcctgtgtc agggcccttt aaggaccaaa aggtcttgga 45540aaagcctcag aggagatcat
gagctttgag attaaaggga gacctgaagc cggcccaggg 45600ctgctacagc ctcacctgta
acatgggaac ttgagatctg ccctgggcaa agggtgttca 45660gaattcaata atcaaaacaa
tctgtgaaat gtaatactta ataaaattca aatccaaaaa 45720tgtctgagta cattccaaaa
tgagtaaaaa tgtaaattta tgaaaatgct aaacatgcgt 45780gattgttcta atgtaaattg
taagcctcag ctgcttccca gaactttgga tctggctccc 45840ttgaagctgc tgcctctgat
gtggctgccc cctgcagctc caggaccttc ctgttcagct 45900cccttgagag tagccggcag
ggcccctcct ctgcagagcc tgtactctgg ctggtggctt 45960cagggggcag gcattctgcc
tttcctgtct cccaccctaa gggagttggc cttgcatgcc 46020tcccatccac ggttgcctct
actgggggct gccactggga gacaggaagg gcatgggagt 46080ttcgggagct cagggtaaga
ggggctgaga tctcgtggtg tggaggggga gcgggaaggt 46140cgggtggccg aaagaatgga
gagggccggg agtgagagca aagggagaca ggcagagctg 46200aagagcagta tcgccccaac
atcaatactg gtatttcaga atgggaaagc tgttccattt 46260cccgaaatat cagaatgctg
aggtccgatc ttgcagtctc tgagctgggc attccttggc 46320ccccactctc gggtattctt
gcacaagacc atttttctgg gctgcatttt ctcacttgta 46380aaaggaggaa gttgggggtc
aatatctcca agcgatatat gagctctagc tctaggagta 46440taggattttg agaatctgga
attgttagtc tgtggggttc taactgggac aattctagca 46500ttccttgact ctcagctccc
agccagggct gtgtggatgc gtggttgtgt gattccgaca 46560ttctgagact ttaagatgct
gaggctctag gagctagaga tacggacatt ctgtgaatct 46620aggattctag gatttgatgg
tttgatgatt caatgattct aaatggggct gctgggaaga 46680gctgcaacca cctgccttgt
taatgtcaat gttcagttat taaaaacata acaagaagca 46740atggagacag atagctcaga
atggtgggcg ctccctccac tcccagtgag ggaggacaga 46800agaggctggg ctggccttag
agaatagaga ccttttcaac ctgggtcaca caggttgttt 46860ctcctgtcac aacagaactg
gtgtgtgtac attcgagaga gcttccactc ccaaagcttg 46920cagggtaagg ggctcatttc
cttcagcact ggcctctatt ccttaaccat ttcagactgg 46980gcagagagag gggtaactac
cctttcctcc cagccctcga agtctctggg cagaaatggc 47040agcagtggag gaaggagagg
tctgctcacc cccgcccctt ccctgacagc ctgaggggga 47100aaacaggaca tgaatacttc
ctggacacag acatggaaat gcatgaaccc ctgccttcga 47160gggccccgcg tccaaaggct
cagacaaggg cagaggccag gacagccagt ggggtcccat 47220cagcaccctc tcagtatagg
ctgaggaggg aagaccctgt tcttgcccca agggtgacag 47280tgagaagggg tcaaggaaag
gagtcccagg tcagggactg gaagtgctga caggtcctcc 47340cctgtgtgca aggccacagt
ccagcctggc agaaggccag cccaattgtc cagtgtttca 47400ctgcctcctg agtccttctt
atgccttggc acccaggcca gagttgggga ggggtccagg 47460ctgcagggga gggtttcctt
ccagagtgcc catccctgat ggatccttag aagcccagta 47520cagctgcaca gttccaaggg
cttccgctgc ctggtaggtt cacagaccaa agctggccct 47580ggtcacacag cacaacgggg
cctgaaatca ggcttcctga ttcccagtcc tgggtgttcc 47640tttttgccca cagcctcccc
cacttcccct gggacacctg aggggcagga gtggaggtgg 47700ggctcaggtt agggagcaga
gcctctgtcc atcatccctc cgtcttcctc ttcccacagg 47760ccagaagcag gtgtggtggt
gacagctgcc cccagtcctc cacaaggctc cattgtcccc 47820ggcagggagc ccctccccag
ctgcaggcca gaagtgtgcc tccccgggcc ctcctgtcgt 47880gactctgcca cccgcttcct
cctgctgccc cttccctctt ctcatctccg cttgccctca 47940ggccctcccc atccccgtga
ggtctcgtct ctggcgctct ctgggtttaa gcctctctcc 48000agtgaaagtt agatttggaa
gggccctggg agatcaccaa gtccaaccct tttattcttc 48060ggataaggag gccaggtcag
agaggggaag gtcctgtcca aagctgcaca gtaggctgag 48120gcagagccca gtgctgtgct
cccttcagcg ctgggtcatg ggtgcacact gcccttggca 48180tcaggcgtcc agggtttgag
aactgactgt gatgatcagc gctaagcaca caggcaccta 48240cagaaatgcg gtagggggct
tctctcctca gcccttcttc acagccctga gctgccctcc 48300cttcctcttc tttgcccagc
tcctctctcc ttcactatcc ctgctgtctg ctgactcctg 48360cctctggcag acactgtcct
tgggacacag actagagctc aggcctccag gactgggatg 48420cacacccatg cacccagaca
cagacacata aacatgtgca agcgtgtcac ggggtccata 48480aatcccagct gaaaactggt
cagaccatca ggaggccacc ctggaaccca gtgtcctcct 48540cttcctgtca ggcctcacac
acctcctcca ggaagcccct taggacccct gaagaccatc 48600ttcatccaac tagccccttt
gtgacaactg aactctgtga gcctaggttc ctcctgtgac 48660tcgaagggca aggctgagtc
cccccttcag tcctggggcc actccttcag tgtcttcagg 48720aggggctcag cttcctgttg
ctgggtgggg agagccctga ggtccccaca ggacgtggga 48780caatggggag gcggtgacag
atgagaggct gagtcttccc taaagcagac tccaccctcc 48840cctgacctcc ctggctggtg
gcttggacac agccctggcc tggactaggg tcctggtctg 48900accccacaat gcagaggtct
gggaatcaga agccctggtt ctccagcagc agttctctaa 48960ctggcggcta tggagtccag
gcctccaggg cactggtagg ttattggcgg gttggtgcag 49020attccagtgt ccaggagggg
tgagctggcc tggggggcct atgtacagga gataggaggg 49080tgataaacac aggctaggtg
ggattacagg gagctgggaa tacctagcta agaatcccct 49140catcctaggc actttcccca
cacttgaaat tggctggagg gggaaccaga agttaggtgg 49200ggttggggag ggacaggagc
cagcaccctg cctccacctc cgggcagtgc ctctgctggg 49260gggagggaac ctgtcctggg
ggtggtggga ggtgtgaggg gggagctgga ttctccagtg 49320aaactggccc tccctcctct
caggggaggg gagggggctg tccctggctg ctcagcaggt 49380agcccatctg gctgtgggtg
gaaaagaaga ctcaggcttt gtggataaaa gggacagccc 49440tgggtcaggc acttatctca
accctcgtca tttcctctgc cggacatgac tgggtgagtg 49500gggtcattgc acagagggaa
ggaacaggcc agggccagtg cataccaggc cctacaggag 49560agtcaggcac atgggtgacc
ctgccacacc ctgggctgca gtcagcccct catagaggcc 49620cagacacaca ccacagtcac
tgccggagat ggccacacct agaccatcac accacacaca 49680gacccagtct ctccaggtga
cactcaggcc cagctgcagg cgcagctaag agggaagacc 49740ctgcagggca cagggacacg
tgggacaacc agacgccctg cttcggccac accacaagcc 49800tccacacacc aggtgcagct
cctgtcaccc ctacggtcaa cccaaggaga gccagagatt 49860ccagtagtcg tgggcaggta
tccagtgccc aggcgagaag agggggacac cagcagggaa 49920cccagaacct cctccatgcc
agactgtgcc ctccccccag ctcacagaag gagtgcctca 49980ggctgtttat ttcctagcag
ggactagcag ggatgggtgt ctcatccccc tccccctccc 50040agtccccacc acacgattct
gaagctgcca aatcaaatca gcccctgcac ccgcgccagg 50100ctggcatggc ggccagcagc
tgacgggaac gaagccaggc tcagaatatc ccaccgcctg 50160tccgatgcct gagtaggctt
gttgggtggg ggtggggagg ggcaggagcc tggcagccag 50220gccctgggca gtgcccctca
gagaggctgg gggtttggaa tgctgcaggg tggtgggctt 50280ctggagaatg agtgagcagg
tctctgttgt gtctccaggc tgctgtggca gtgtctccac 50340cgctagcatt ccgggaactg
tggaagtggt gctggtagga tacaggtcgg gggtctgatc 50400ccagtccaga tgactgggcg
ccaggctggg gtaggggggc tcccacatgg tctcacattc 50460atttgagact cacagcaccc
aggttggaag ccccttggtt gtctgtcagt aaaggcccaa 50520ctcactgtgg aggcccagtg
actgtgtgag gtggacatta cggatcccat tttacagaca 50580gagaaactga ggcttagaga
gggctagtag agctccctgg agagaagcag aagtggagga 50640ggcctcagaa agagtaaaga
ggtggtcatt tccactcctt aggagcccta ggtggaaaga 50700aggaatatgg ctctgttctc
agagtcaagg aacagagaat atggcagagc cagaggtgcc 50760catgggaagc agagaacaag
gagggagtct tgggagagag cagggtgcaa gcaggcaagg 50820ctccctggag gagggggcca
tccgtgggct tgctgggggc taatgggagg acagtctggg 50880gagaagggga gaaggcctgg
ccggcctcag cccctgacct tcttgtctct gcagccagcc 50940tggaccccct tgcaaaggag
ccaggacccc cagggagtag agacgaccga ctggaggtga 51000gagctcagtg gagggagaag
tgggtgggct tgagggggtg gggcgcagac tgaagatcag 51060tctgagtggt gccctccccc
ttgggaggac ggggaggctg gagtcacatc ccagccccag 51120ccctccagac taggaccacc
cctatatcaa gaccatctcc cctcacccta tatatcccca 51180gcctggaagt cctcccatga
ggattcctcc tcccaactca cctggggagt cactacagac 51240tcctcccttg tcctccccac
cctcacccaa caattcccgt tgattctctg ccctgagtat 51300ttcccgagtt cctctcctct
ccattctgcc gcctgcttgg gtccaggctc cctcaactct 51360cccctgggcc actcactggc
tgcttgcttt cagtttcccc catcatccac gtggccacca 51420ggaggatctt tctaatgcac
agacctgaac ttgtcactct cttgccccag aatcctccat 51480gctccccacc cccatgcccc
ctccacaacc ccagcctggc aatcgttccc cttcatccat 51540tcctgcctcc cccaaactgc
tcctgctggc ctcttcccca ctcagcttcc taaatccttc 51600ggggatcagc tctagcctcc
tttcctctgg gaagtcctct ctaccccttg accatgggac 51660caagctcact cctgctccct
cctctgagct ctcctgccct ggcagtcaga tgccagggcg 51720ctctgctgtc tgtcgcccac
tgtgctgtgc cacgagcacc ctgttttctc catcatgtga 51780ctctgtatgt gtgtctgcct
tgtcttctct gcactgtgag ctctttgagc ctcgggactg 51840tgctttcttc attcctgaac
cttctaccac ccttggatgg gtaccggtgc agggctcagc 51900cagcgcattt cctgccctgc
gaggggtgcc atccccaccc cccgaccatg ccttccttcc 51960ctgtgagggg tgcctcatag
gactcttcag tgctcaaagg ggccttgacg agcaaacaag 52020gtgggctgct gatgttgaag
atcggcacag aggagggtgt gtgtgtgtgt gagagagaga 52080gagagaactg gacccacagc
cagaacagag tctgcccagg cctggctgag agggagagga 52140agatgatgct tgtatcagcc
ctcctgtgtg ccaggagcct ttgacaccca ccttgtttaa 52200ttattacagc acccccatga
ggtaggggct gctattattc ctatttcaca tttggggaag 52260ctgaggccca gagggatcat
tcagcaagtg agttgggaca gagctaagat tggagcctag 52320atgtgtctca ggctcgaggc
tcactctttc ccggcccctg agtaagatgg gaaagaaggt 52380gcccacacag ggcctggtgc
acaggagggg ctcagcacag gttccctgct gggacacagg 52440gccaagacct gagaatgtgc
ctccaagtgg ggctgggccc tgctgctggg agctggcaaa 52500gggagctggg aggggagggc
ctggaaagcc acattattaa tttatttact gccatggcat 52560tccccatggg gcggggctcc
ccccagagct gggacagatg gtgttcctgg gagcctgcag 52620tgtctcagca gcctcggcca
cccgccagga aagactggat ttgtcatcca cccagggagc 52680cacaagaaga gggggctttg
gcaaagctga gaccctcctg ggcaacgggg actgtgccct 52740gagggaagga gtatggctcc
aggcaccctg ctatgcctct ggggcagccc ccgctgccta 52800ggccatctgc ctgccctctg
caggttcaag ttctgctctt tgtccagctc caccggcctc 52860gtccttccca tgaggcttcc
ctgggtcggc cccacctgct cctatccctg tattttctct 52920gcctttcctt gagctgggtc
ctgctgcctc ttccctctga ccgaggatct ggagccatga 52980gctcctcagc cctcagctct
gtcctgaccc catccccaca ctcatcccca aaacagttag 53040tgtctgcctg gactcttggc
agggcctgct ggatttctgg gtcctgccag caccccaccc 53100gagtgcccag gcctatactc
agcactgctg ggaagagatg ggctgcctga ggggacgctg 53160ccaacatgga gagggcaaga
ctggagagag tggggacccg agggcattgc tcagaccaca 53220ggggcagctg gagggaaaag
ggactgggag cctgaggggc cctcctgtca gggtggatct 53280gggaagccaa gatggcctca
tatagtggac aagccacagg gtcagatgag cacgggttca 53340agtcccaact cccttgcttc
ctaggtgtgt ggccttgtgc ctgtcactta accagcctga 53400gcatcagtct cctcacctgc
caggcgggat aagaacgtct atcactgccg ggagcggtgg 53460ctcacgcttg taatctcagc
actttgggag gccaaggcag gtggatcaca aggtcaggag 53520atcgagacca ttctggttaa
cagggtgaaa cctgtctcta ctaaaaatac aaaaaattag 53580ccggttgtgg tggtgggcgc
ctgtagtccc agctacttgg gaggctgagg caggagaatg 53640gtgtgaaccc gggaggcaga
gcttgcagtg agccgagatc gcgccactgc acttcagcct 53700gggtgacaga gtgagactcc
atctcaaaaa aaaaaaaaaa gaacctctat cattcttgga 53760tgtaatcact gttattcaac
attaccacaa tagagctgtt gggagaagtt acaaagactg 53820tatgtgtggg gtgcccggcg
caggcctggc acatggcaga tccttgggga gagttagcct 53880cctctctgtt tccctcaagg
atgacatcct tagagccagg actaggctgt acccctgtga 53940gacaggatgc tctgcagagc
tgggctgagg cttatggaag ttctatgggc atggcacact 54000ctcctggcac tggctgggca
gcagccaaga aagcagagct gccagcaccc atccccaccc 54060agcaggcgtg tgttcagcac
accctcctgg gatggttacc tagcccctgt gccagcagct 54120gacttggagg aggggctctt
ccagctcagc ctggcatcct ccttcagggc caggcctctg 54180catcattact gtctctctga
aagtcaggtc tggggcagtt caagttggtg aattgagcat 54240gctgagtcaa tgccctcttt
gtgatggctc tcagggccca gatggcggct tgggagcctt 54300agctgggatg ggggcatggg
gagaggcgga cgtggatgag ggcactgaca tccacaataa 54360gtactgaaat gcactgccca
acaccggctc ctctattgct gcccttggga caaagaccac 54420accccttggc agggcattgc
tggccttgcc tgctgggtcc cctcatgtcc ccttgtgtcc 54480ccttatgccc tgagacagcc
agcgctacag ccacattgtt gtgttcactc ccagcacaca 54540gcagctcccc ctgcctccct
gcctttgctc acactgacca cctgtctgga atacctttcc 54600tttctttctc cacctactct
cttttcaagg cccagatgaa atgtcacctc ctttgtgacg 54660ttcctcagac tggtccctct
acctcaggcc gagccagtct cctcccttcc ctgggcactc 54720acagtcccca tttccctgag
cccacagttg ggaaacctgt taccccacgg ggtgctgtgg 54780gtagtgtatc cttccccatg
gggttgtaaa cacccaggag gcagaggctg agactgagtc 54840tcctttgtct ctcttgggcc
catgtggtgc ttggtatagg cctggtatat ggtaggtgct 54900caataaatac ttcttgaatg
aacaagagtg gctgtgagta gggctggagt agttccaaga 54960aggggcacag ttgggttggg
cggtcttgga gacttggagg aggcaacctt agaactttga 55020aggatggaga gggtcaaggg
caccaaccga agaagccagg gaccagctag gcagtcagag 55080aggtccatga ggtcagcttc
tgacagcagc agctaaggac aaccaggacc agaacaggac 55140tgggaaaaag cagatagagg
aggctggagc aaggactcag ccccagagga ggctgcagga 55200ggttggctca tgctcagaac
ccggctccaa aacactctgc ccatgagtgc tgggctgagg 55260aaggcttggt gccagagtca
gggtgaggct gaggccacca gtgaatatgt gggcccagct 55320gcgggggtag cactaggcag
gggcgggagc caggttggag ggggtattgc cattgccgct 55380gcaggtggag tagggcttcg
ctggggaagg agcagcttgt gcgagagtgt gggcaggagt 55440gggaggggag aaggctccga
gtatacgagc atagcttacc agcaagtcct ggggtgaggc 55500tggaggggcc gcgctgtagg
cagcactttt caggccctta tctaacattc tcaagtgagt 55560gctcctagct gccagatgtg
ctacttcctc ctggattctg cacatcagga gccagtggcc 55620tctacaatgc cccatggccc
caagggagtg gctgccaaca agttggcctt agcatctggc 55680atccatgggg gtcctgaggc
cctgccatct gtctgtgccc ctgttgggct gcacaggccc 55740ggggcgtgca gggacctggg
accagggagg cggtctcagc tgccactcta gcctgtctct 55800ctgcctgccc atccactgtc
cacacccctg gctgactgag taaagagaga gatgggcatc 55860gcaggtcctg ccatcaaaga
agcctagtct aaaggaggag gcataaagca ccggggactt 55920atacccagag aagacacatg
ctgagaccac gccaggctcg cgggcaaggc ctaggcccag 55980ggagggccag cctcgtcaag
ggcctggagt tgagactcag ggaaaggcag gagctggctt 56040agaggcgcag gcaggtccaa
ggcagtgccc aggccagatg cggcggcccc gggctgaggt 56100tgctccagcc ggccccaccc
cccaccgtcc tgcctggcct ttggctgtaa acactgagag 56160aacaagttcc gtttcccggg
aaatatttat ctcaggctgt gtgaagagcg tgtgcactgg 56220cctccgtgtg tccttcctgc
agaccggctg gggcaggagg agagggagct tggcagcgcc 56280cttgctgggg ggagtctgtg
gggctaggag ggaagggtgt gccagaggcc cctgcctaga 56340gcctgaattt gagtgctggc
tgagggagag gtgggagcag atgggagaga agcctgtttt 56400ctccaaaccc cacaaatgcc
ctccgcctct ctcatgttcc tttcttcttc ctggtccatc 56460ctgtctcctc caggttccgg
cctccagcct ggtgtcccct cctcaggctg ccttttcctc 56520ctcctcctcc ctgtttcctg
gctcttagcc gctccatctg ggaagtcttc ctcaacttta 56580aaccctcgaa cccttgtcct
ctgccctcca tctcccactc ctcaggcttt cagcagcttc 56640acgtggagca ttgggctggt
cctgtccaca gttgttcagt tgctgtaaca gcttgtgcag 56700gctgccctgg agccctgttc
tgggaagcac aggtctgggc accctggggc tggggcgagg 56760cccggagctg atctcctctg
tccatcccag tagagccagc accagtgcag acacatgggg 56820gatccaggtt ggtggaccag
gggaggatgg aaagtcccat ggatccagcc ggaatgttgg 56880agtggggagg cagagggccc
agggttcctg ctggccagcc tctgggctta ggggtgtgta 56940tcccagacag gccaggcctg
ccaggggccc tgacaacagg aaatccttga aggaacaagc 57000agaggctgag gactctgagc
acaacaacag gaaacagccg tgacatgggg caacagccct 57060ggcgactgtg cccagttggg
gtggggacga ggggccaagc ttgtgggacc cagggtgatg 57120ccaagaggga cactgagaca
ctgtgggaca gggggcgttc tgcacatgtg acacggagct 57180tatgacgtgt aatatcaagt
acgtgaccat gatcataggg tactgtgtgg agtgtgggtg 57240agtcactgag tatgtgacac
tggctgtgag gcactccatg atagcagatg tgtacagtgg 57300ctgtgccacc aagtgtgtaa
cactgtgtga tattgattgt gtgatgctga caccgagtgt 57360gtgacattgc acattgcatg
ctaccacgtg tgtgacactg aaagtgacag tgagcacatg 57420gagggtgtgt ctccatgaga
atcaaataca gaaacgtgag caaatgacgc tgcagtagca 57480ggtatggtcc tgagtctgtg
gctcgagtgt ctgacactga attgtgacat tgagtgtgtc 57540ccaagcatat gatctagtga
ggctgagtgt gtaaacaaag gcatgacatg gagtgatagc 57600aagtgtgtgg aagtgggtgt
gtgatgctgt gtgatcttgg gcctgacatt acatgtgtga 57660tgctctgtaa tggttgtaac
agtatgcaat gtgcacatac agtgctgtgt aggacactgt 57720catgggaagg caccgatggg
ttcaggcggg aaagtaacac cgtccaaagg atggttttaa 57780aagattgctc tggccggatg
cagtggctca cacctataat cccagcactt tgggaggctg 57840agctgggtgg atcacctgag
gtcaggagtt caagaccagt ctggtgaaac cccatctcta 57900ctaaaaatac aaaaattagc
caggcatggt gacaggcgcc tgtaatctca gctgctcggg 57960aggttgagac aggagaatca
cttgaaccca gggggcagag gttgcagtga gccaagattg 58020agccattgca ctccagcctg
ggtgacgagt gaaataccat ctcaaaaaaa aaaaaaagaa 58080aaagattgct caggttgcag
aatatgtatg tgtgcgagtg tgcatggtgc gtggcagggg 58140aggggagata agttaggggg
aggcagagag aaggtgggta gagcaactgg aggctcctgc 58200agctgcccag gcaggagatg
gtggtgcctg tgttaatgga atggcagaag agttagagat 58260atggagcaac tttggagata
tttgaaaaca gaaatgacag aacttgctga taaatgagaa 58320gatgagcaag agggaaaacc
agagaacaat ttccagggtt ctggcttgaa gaaccaagcg 58380atggatggtg aagatgtttc
tgagatgggc aaaggcaagg gggagggtca gcactagtgg 58440ggtgggagga caaggaggca
gaaaccgagt gagctgtttt ggatgtgtta agggaagcat 58500ccaggtgaag gtgtgcagtg
ggcagcgggg ccaggctagg gatacatctg ggagtcgaca 58560ggcatggggg gtttgttaag
gtcgtggacc tggctgggat aatggagaga gggagcttgg 58620caacagaaga ggtggggact
gaggaccgag ccttaaactc tgaatattcc attgtctaga 58680ggccggggag gtgagaagga
gcagcaacga gacagaggag gagggccagg gaggcagagg 58740agaccaggag tgtgaagcca
gaagccaagg gaggaaagag gctcaagtgg gagggagggt 58800cggtgtgtgg atggtgctgg
cccacaggta agatgggaac cggaagattg tgctgtgctg 58860ggcactgtgg gtgagtcagg
ctaatgggag ccatttcagt gatgggctgg agccagaagt 58920cagactggcc tgtgtaggat
ggtgagggag gtgaagacgt tagcctggag agccctttgg 58980agacgttggg ctgtgagggc
tgcagagaag gacatgatcg ctggaaaggg agattacatt 59040tttttattat gggtgattct
aagcagacac aataccagag agaagcatat aagaaactgc 59100catatactca tcaccccagt
tcaacagttg ctgggatttg gcctcatttc ttcctctctt 59160gccccctatc tgttctttca
ttttcctttg cttaagctta aaatttttta aattgtggta 59220aaatatacat aacttaaact
ttaccatcat aaccatttct aagtgtacag ttcagttgtg 59280gtaggtacat tcacactgtt
ttgcaaccaa tctctggaac tctttcatct tctcaaactg 59340aaactctgca cctattaaac
gacagccccc atcctcctct gtctccagct cctggcaccc 59400accattctac tttctgtctc
tatgacttgg actactctag atacctcaag taattggaat 59460aatgtagtat ctgtcttttt
gtgactggtt tttaagttta cttagcataa cgtcttcaag 59520ttttacccat gttgtagcat
gtgacaggat ttccttcctt tttatggcca cataatattc 59580cagtgtatgg acagaccaca
tccatccaac accagacact tgggttgctt tcacatttta 59640gctattgtga gtaatgctgc
tatgaacata agtgtacaaa tatctcttca agatcctgct 59700tccaattctt tcagatgtat
acctagaagt acgcttgctg gatcacacag tcattctatt 59760ttttggtttt tgaggaactg
ccatactgtt ttctgtatct ttttacattc ccacggacag 59820tgtacagggg tttcagtttc
tccacatcct tgccaacatg tgttattttc tgttcttttt 59880tttcttttat ttttttaatg
gtagccatcc taatgggtgt ggggtgacat ttcattgtgg 59940ttttgatttg catttcccta
atgattagtg aagttgagca tcttttcatg tgctggttgg 60000ccacttgtat atcttctttg
ggaaaatgtt gattcaagtc ctttgcccat ttaaaacatt 60060gggttgtttg cttttttgtt
gttattgaat tgcaggggtt ctttatatat tccagatatt 60120acctctttat cagataaaag
ctttgcaaat atttttctcc catttcatag gttgcttcgc 60180tgaaatattt taaagcaaat
cccagacatg atgtcatttc accaaaggta gacttttttt 60240ttggtggggg gagctttccg
gtgaagactg aaaaacctgc tagacaaatt ctaaaataga 60300tgtgactttg gatttttgtt
ttttaaggct aggaggtcct ggatgatgct gaaatgtaac 60360agtgacacag agccagtgtg
gaactgtgtc tgatgctgtg tgagggtgac atggtggctt 60420tgggaacatg ggtgcaacac
tgaagatatg ggagactcca agtgagggtg acagtgagag 60480atcactgtgt gtgtggccct
gtgacaccca gtgacatggg acagtgggac gctgtggacc 60540ctgaaatgac tgtgtgtcac
cgagcaggtg ggacctgctg tgtgaaggcc acaggtgtca 60600tgtcttcttg tgtcatcctg
gttgatgagt gtgacacagt gcaggactct gcatgggagt 60660aagagggact gaagctgtgc
tataggtgac cgggctgcat gtgattcaag tgggctcagc 60720cccagcttca gctgctgagt
atgggaggga gcatggacat tgtagggtag atgaggagaa 60780acactgaatg ggaacagaaa
tggtgtctgt gcccagatgc gagctcctcc cttctctgaa 60840tacccaggaa ggcttcctgg
aggcaggatg tgggcacttc agcaggatgt tgtaggtgct 60900gattaagagc agggcctgtg
gtgtcagaca gccctgtcta ggctctgaca ttcagcaggt 60960cattttatct cttgagcctc
aatttcctca agtataaaat gggagctctt aggaggattg 61020catgaagcag tgctccaatg
catgcagtct ctggcacttg gtaaatactc tatggtctct 61080tggggagcag caacctcaac
acctgcaccc caggtcccca aataacagga gcaccagtag 61140gagcacagtg aaggtgcgct
gagtgaggtg tcctcttaca cccacagccc tcctctctcc 61200ctctccccca acttctgtcc
cctgcttggt gttgtcagcg ataccccctc ctgcccactc 61260actcctgccc cctcctctcc
cctgccgtcc ttaccactgt cagcctccag cccaggctcc 61320tgcagcctca tccaattagg
ccaatgcaat ttgctcaaga aaaagcccca taatttggtt 61380aatcacacca gtaggggatc
tggtcccggt cgggagggtg ggggtggata ggagtccata 61440cccgcagctg aggcacaggt
gtcaaagtgc ctgtcttttg ggacctttac ccacttcctt 61500gggctccttt caggagccaa
cagagtccca aagcttgggt cttctcaaac cccaactaca 61560gaggccttga aacaggagtc
tggacttcct gggttcgctt gtgttcctgg gagggtccct 61620gctactctct gggcctcagt
ctccctttcc aaaaatggga gtggaactgg ggagtctcag 61680aggccccagt tggcctagct
ctgcatccca gctctggtca gtcccccttg tggcttctga 61740ggggccttct cctgggcctt
ggggagggag cactgagggg taggtggaga gcacagggcc 61800ccagggaagt gaggaggggt
aagtgtcctc tgagtctcat ctggaatgtg tctaccccag 61860tcctataatc agagaccctc
tagttccagg ctgcacacct gaaggtgggg caggaagaaa 61920ggaagctgcc ctttcttggt
cacctgcaag gccaaagtct cttaaccgtg caggctatac 61980cttgcacagg agctccagca
gaggtggggt ggtgctgaaa ctgagcccac tctccctcac 62040caagcctttc ccctcaggcc
cgcatctgcc cagagaattg gggtccctcc tttctaatgt 62100gcacacaggt ggccccagcc
ccctgctggg agtcagctta ggcaaggttt gatggctcag 62160cttaatcttc tcagcagctc
tgggggaaga gaccatttta cggatgagga actgagccca 62220ggaaggtcca aagacttgtc
cagtacatgt ggtgtgtggc agggcaggca gatgagcccg 62280catctgaggg aggcgatggg
agaagtgaca ggggtgcgca gaggaggaga attagaccct 62340ctcagattcc accactctca
gccacacgtt cactcactca tttggagaca agactaacca 62400ccagcgcatt cacagccccc
cagacagcca catactgact ataccactgt cacatggaca 62460tcaatgacct gaatcacata
tgcatagatg caggcccaca tggtcactcc cacgtgcaga 62520tggccagtgc acacacatag
acacagggta ctcacacatg tttacactct cacgacccat 62580gtgggttaca gattcctaca
gagacacaga cctacatact ttcacaagga aattctccca 62640gtgacccagg gaacatagtc
tgccatgatg atgtgatggt ccgtaggggc tcgccactat 62700ggaccattaa tgggcaggct
gcacacatgc ttaggtcccc agcaaagcgg gagttctgca 62760cagagtgaga ggagaggtca
gttctgatga gtgtatccag aattttgcaa tcagaaaaac 62820cacacaaaaa ctattttaat
tttcatttcc aagataaaat ttagtttgaa ttgtatagag 62880ggtccgaggg tctggtggga
gggcatcatc atcttttcaa ggctttgggg ttctaaggca 62940cccacagatt cacaacagtc
ccacaagata tcccaggctg acatatttac ccagcccagt 63000gtgtgcgtgt gtgtgtgtgt
gtgtgcgcac gctgtgtgca tgctcatgct ggctcccaga 63060tcctcgggat gtgaggaagg
aaagtaggag agattccaga gactccggat gtttgttctc 63120tggcttcctg ggcccttcaa
aggaaaataa ctctggatgt cagcctgcct gcctggcggg 63180ctgggtggag aggtgggctg
ttttgggagg tgggctgtat gacagcctgc ctcagcccct 63240gtggccccac tgaccgggac
cctgtgtaat gaggcagagt gaccaaggcc catggccagc 63300gtcccatggg ctcgtaggcc
catcgcctcc cctctctggg gcttggctct ctcatctgaa 63360aaatggaggt gggaaggaga
tgagactgga tgggctttct cctggagact gattagagag 63420acagagactc aggcccgggg
tccagaaaag acaaccaaag ctggggaggg cacatgaagg 63480ggggcaaaga aggtctgggt
tcaggggagt gcgtggggcc ccagagcctg ccatgtctcc 63540gccaactctc tccctcactg
gaggagggct ctgtgccttg gtgccccacc tgcccagggc 63600cctgtggctc agccccttgc
ttgctctgtg agggggacgg gagaaggatg agagtcccag 63660tgataggggg aggacaagac
caggggagag ggctgggggt ttctggaggg ccagagcagg 63720aagagcagga gagaagagag
gacaccacag tgcaggaaac ggaggagcaa aggctgggag 63780tggggaggct ggaggggtgc
agggaatcag actggggcgc tgcgaagagg cctgaggcca 63840gagcaggcag tgcctggatg
gagggagcga gcagctcctc accctcagct ccttgatgag 63900gtaaggtgac cacgagccct
gctccaggct gtgtgctgag cactttgctc ggagcctgtc 63960actctggagg aggggagggg
gtgttcccag gagctatgac agtcttgtgc aagggaggga 64020cagggtcaca tttatgttta
acaaagcact gcgctgggag agaggagctg agagaccccg 64080gccctgggga gcatggtggc
tgggaccccg gagggcaggc gtgccccaga cggaccccac 64140tcagaagatt gcttatccca
accccccaaa gagaaaggct atttttagga acaataaaag 64200tgctcacaca ttcctgcagg
ggcagagaga gggaaagggg gcaggagtca gtgcagagga 64260agagggtgga ccccgctctt
ctcccaactc tgccttggtc ttcagggact tctcctcagg 64320ggcttcccca gccagccctg
cctctccagc ctccgcctgt ccctggggtt ccctaccggc 64380tcttatgtct atccctctgc
ttctgaattg gtacttgttc tgtccctgtc tctctttctc 64440atacttccac tttccccctc
cccctggggt ttggggaaca gctgggatgg gccaagctct 64500gttgagagag ccaaatacag
tcataggaca aagcagcggg aggctgtggg atacacacat 64560gccgcagagc acagacagag
agaggtggcc aggcacagag agagcgccca gggaggctga 64620gaggcaggga gaaaacacgc
tgggacagtc agggagagcc ccagggcagg catcaccggg 64680cagccagcct ctgtgccctg
ctctctatct tgtccctaag aagaccagca tggctgggct 64740tgcctcccgc catccacccc
accagcccta ccccaggctg gcccttcctc cccgccctct 64800gcaggcccac actaacccta
ggccaggccg cctccttcag catttacctc ccacacacaa 64860tgggcacagt gaggacataa
gagacccagt ctctggcctg gaggcagata ctcagcctta 64920cccgacatct gagagggctc
agcccatccc ctggccaagg caggtattag aggggcccca 64980aagacaagca ggactctggg
acaaggtgtc ctagtgtggc ccaaagggct gggctgaagc 65040atgggtctcc tggctccaga
tgagagcctg ggtgaatcct tccctgcctc ctctggcctt 65100agtctacccc atcaagcttg
ggattggact acatgaggcc tgaggccctg tagcccctgg 65160tccctgggaa ttctcagaag
gcctgggagg gggacaggtg accacgcagg aaggcttcct 65220ggaggaggtg tcctcactca
tgaaagaagg tgatagtgac agtgctcctc ttggggaaga 65280gccctccatc ctgacctgct
gcccccaccc ggtctgcacg tggagatgat cctgaagcac 65340aaagggcctc ccggcctgca
gaggtgcctg ggagaggttg ccaaaggctc tcagtaggag 65400acaccccatt cctcaggctc
cttctctgag actgtaactg tgccagactg gggaggcttt 65460gagaggtctc agctatctcc
cctgcctaga tccttcctcc acacccctct tctccctgat 65520ggcatgtagc cctcacagta
cagtagtcct gggcacacag gagtttaccc agtcatttac 65580agctcagcaa acacctacca
acacctatga ggggctgggt aatgctggag acccggagag 65640gggcaggaca caatctctgc
cctccaaaag ctcccagtct gttgtgggag ccagacggga 65700aagggtggca ctgcattgat
gcacacagtg catgccatgg tgggggaaag gggggcagtg 65760ggagccccag gtgggagggt
cagacttgcc tggagagaga acaacaacag actctccctg 65820gaggggatcc agagaaggga
gatcacttca ttcattcatt cgtcattcat ccatccaccc 65880attcaattat tcctttggcc
atcatttcct gagggatgta aactctcttc tgacactgac 65940ccagcgggac actcagcgtc
ctcctcctct cctgcttgag ccaccatgcc tgcctcttgg 66000aggctcctgg acttgctttg
ctcagctccc aacccaccct gagggggtga ggctgaggag 66060ggtgtacaga cattcagggt
caccaaactc agagctggag gcctgccacc tcaccagggg 66120cctttctcag ggcacaggct
ccctggtggc agggccttgg cccttgcttg cacacccttg 66180gggactagga gccccctcat
ccatcctgct caggctctct tttgtggcgc gactctgatt 66240cacagtgtgc ccaaatctgc
ctccttgtga ctgccgcgag ctgcctcgtg ggccccaggc 66300cagaggacaa ggatagctag
aatgccaggt gaccaggatg actgtgatgg catggagagg 66360gggatgctgt gatgtgtttg
ggaggaagtt tgtggtgtcc aggagaatgt gggcagcaga 66420aatgggacca ctctcggttc
ttccctgtag atgaagcagc tgaaggtggg agggggtggg 66480aggagacctg agctggctct
gccccgcttg atctgatgtc tgccttgcag ggccatcctc 66540cccctcccca cactcagctc
ctgcctccct ccctctaccc actctgactg ttccctcctt 66600tcctgactcc agactctggg
tgagggactg aggtgattcc agtgagtcag gccctcaggg 66660aactgatcgt gcaggcaact
cttgcctgcc ttctcctgct ctttccctct tcccattcct 66720tcatccaccc ccaaacctag
ctcctgatgg atccaagggt gcgggggaca accgggaggt 66780cattttggag gaggcaggag
ctggaataga agctgggact ggcttgggaa gggcgagagg 66840ccggggcgga gctggttgtg
ggcgctggaa gggaggagcc aacagtgtgg ggtcaggctc 66900ctgtggacgg ggacaccctt
gggaggcact gggactggct caggtgtatt ctacagtgca 66960cgtgtctcca gtgtggctcg
gaggctggag acgcggccct gttggagtaa caactgaagc 67020cggagtctgc gaagggtggg
caggagggtg gagggatggg ggcatggagc gggagggggt 67080aagtagagga gggaggggag
gaagagaaag agggaggagg aaaggtctct ggcaggtccc 67140tcctttaaga ctgggctcct
gcgctgcgag tggccccgtc catactgcct tgttatccat 67200atctccccac cactagtctc
cctctgtcct tccaccccca gcctctcccc tccattggga 67260ccttccctgg ggcgtcccct
cattggctgt tctcacctga gcaaggcccc tcccctccag 67320tccttagcct cttcacctgt
acaatgggat gacccaaaca ggcacctctt gggcttgtag 67380gaggatccaa gatagtgtca
gtgggtctcg aggtgtggtc ccccgaccag cagcatcagt 67440gtcatctagg aatgtttgga
aacgcaagtt cttggacctc gtcccagacc tactgtatca 67500gaaaccctgg gggtggggcc
agcaatctgc actttaacaa gcactctggg tgggttctgg 67560tgcacatgaa aattggggaa
cggctggtgg aaacctctag ccacaggagg tgcttgggaa 67620aggtaccttc ccctccccaa
agcctgatgc ctcactcaag catgacactg acagttgggc 67680tagttcagct gcgttctggg
tctctgtctt gcctcctcct tcagactaag cctcccaagg 67740gttgccaagc ctctttcctc
tattctcctc accctgatcc agctcagcct cattgagaga 67800agtctggggc tgcaagatct
tcgcactcac aggcagttcc tctttgcaca tccaaggcac 67860cagtgtcttt gagaggcgtc
tccttggcca ggtggcaggc gtgggtgtgt ggggaggaag 67920gaggaggaac cgccttgttc
tgctttcttg tctctgactc tgcaggctgg gggtgctgta 67980aggctgcgag gaggcataga
gtcagcttgg gtgctgggct gaggccaggg gccgaggctc 68040agctgaagcg ggcttctctg
gtctgagcct acaggatgcc tcctttgggg cagttctgcc 68100agtcaccctg actgggcggc
tgtgcttgct agtgccagac ccatgctagg cacagaggtc 68160gatacgttct cctgtgctct
tgaagggccc tgtcctctgg gaagataaga ggctgtgtat 68220attgcccacc ggaacaggag
gcaggaagca aaagaggcgt agatgacact tgcctggcac 68280cccctgtttc ccctctagct
gccttcctgg gtttcccatt ctgtgggcgc ttctcttgag 68340ttaggtgctt tctcccagtg
ttctcaaggt gactatttgg aggtttgtgg gaggagtggg 68400ctggagacac aggagtaggt
gggggcagga agtatgcagg agagagatgg agagtgggag 68460gagaagctat gagaggaaga
gaggacgcgg aggtgggaaa agacgtcaag actcctggag 68520aggaacagga gtgcagcctg
ggacagaggt ggacgtcggc cgggggaggc agggaggaag 68580gcagggaggt ccacccgaaa
ggaagggaag ggatgatgga cagagaatga gagggctccg 68640aggtcctggg ggatctagaa
ggacccttcc ctttacagaa ggggacacca aggcccagag 68700agagaggagg gcctcacaga
ggacctaaca caagcagagt tgcatgaatc agtgtgaacg 68760gacagtccca agagcacagc
cggaccttgg gaggtacttg actcttgagt ttgatgttat 68820tgccttcctg taggccagtg
tgaggggcac tgtgaggctt ccttccagag aaggaggcat 68880ggagccagtg ccaggcagtg
gggtgagcca taggaggacc tgtggagatg gggaaaggca 68940tagagactca tgaagatgaa
acaggaaaga tcttatggca gcgaccccaa ccctcaggaa 69000gggcgttggt cttgtgcttg
tggctccaaa ggggataaga ccaaggtctc tggtttcata 69060gaatcttagg ctttaagaac
gagttagaag taatttagtc cagaccctct cctctcccca 69120gataagtgca gaaatgcaga
tctagcccac ggctgagccc caaccctggc ttcagaggag 69180gcctgactca gaacaggctc
ccctttcttg gtacctgggg tgaatgaaag ataagtctgt 69240ggtaatggtg ctgtctgtgg
tgctgactgg ccttaccttg gactacagag ctgcaggtgg 69300agctggagag agcagaaagg
ctccatctat ccatctaccc acccacccag ccacccatct 69360acctatccac ccaccatcca
cccacccatc catccaccat ccctccccca acccatcctg 69420cacccattca tctatccacc
tacccactca tccatccagc ctcattgaat taaaccatag 69480aactatatgc tgcagagcta
gaaagatcca ttttttagta atgacaaaac tgaggctcag 69540aagaggaaag gtgttgcgta
aggccacaca gaacttctgt agtcagtctg gtacaggatt 69600ggaaattgcg gctcttttct
acacaccaca agttctcctc tgtggtctgg gaaattgcct 69660ggtttttatg ctgatatcta
tactgatatt tgttccaaaa agctgtgaag gcaggaaatg 69720tgacctcctt caccccatcc
cgagcctgag ttctgtgtgt gtgtgtgtgt gtgtgtgtgt 69780gtgtgtgtgt gtatgtgatg
tgcatgtcta agtgcaacct tgtatatgca ttgaatatat 69840gattgccttt tgatctgtct
gtgtgcgtgt ttgtgtgaga gcctgtgcat atacgtatga 69900gtagaggagt gcgtagcaat
atgtatttgt gtggcatgtg tagatgggca tgtgagcagg 69960taaagctgtg tctgtatttt
tcctttcctc ttccttttaa gatcgaagcc ccctgacttg 70020agccttgctc cccatctgtg
cctccaattc aggaatctcc ctgcttccca ttagcagctg 70080ctccccactg attctctcct
tccttcactg aagcagcaac tcttccctct gagcccacac 70140ctcatgggct ttgcaatttg
agctatttcc tcccctgagt tggtgcaatg ggggtgaagt 70200tgctttgaga tctgaggaag
attcatggag gagatggcat ttgagcaagc cttgaaggcc 70260cctttgagtg ccagatctga
agtggccctt cccagctgca gttcctgcac ccaacaccct 70320ccattcctgg ggcatgctgg
gcaggaccag gaggtggatt gacagaagga tgcccacaaa 70380gagccctggg cttcatcagt
cacattacca tccagtccgc tctagcacag atgggaagcc 70440cttccctgct gctgccccaa
ctctccccaa ctttcctttc ctgctctcct tattgctact 70500atcctgcact tggcctgaaa
agtcacagaa aactgaacaa tcagagcaaa ggtcaggcag 70560gcacccacca attccagtaa
aggacagttg agggcattcc ccaattgaag caaagggcag 70620gttgaggagt ccaccaatca
gaataaagga cagactgttc tttctgagca ccctagggtg 70680ggagctgggg atcgggtgct
gagcaggaac cagacagggc tagagatcca gaggtttggg 70740ttctggacct ggctctgctc
tgactggctg tctgaccaca ggttgatcat tgcttctcat 70800tgaacctcag cttcctcatc
ggtcaaatgg ggagacttag ctctctgaag gctgtggctt 70860tgaagaattt ctccccctgt
atcaggctca ctccgtcacc tgggtctctc ttccccaagt 70920ccacatcaca tacatcagac
tccaccaagg gcagggcctc tcaggagtca gcttgtgggc 70980tcctctgcct ccaagaagga
atagacacaa accaacacca ccttctgtgc tgtctttaga 71040gcccccgtct ggggagcgtg
catctggaag actttatctt gggagtactg ggggcatcag 71100ctcttcctcc cctttttagt
cttcagaatt gaccttggaa ggccataata gcctgcgtgt 71160attgtgcaca ggtatcactc
gagctcttgc cctgtgaatc tttaaggaac tgtaccagtg 71220agaacgtgtg tgtgtgtgcg
cacatggatg gtgtctgaag gcctgctggg atgtctgcga 71280ggacgtggga tctgtggctg
tgtggtgctg aagttgtctg tgctgtgatg aggagtgcct 71340aagggtcaaa agacaagtga
tccaatttgg gtattgtgtt gtctggaatc agtagcttct 71400gatgtctgag ggtagacatc
ttcccatgac caagatatgt gtcttcatcc ttgagcagtg 71460ggagggacca aggaagcctg
ggggttgggg aaagcgatgc tgagtaagca tctggggaga 71520aggcccacta ctgccctcct
cctgggaaca ctggattggg tgggggaagg ggaggaaact 71580gcagccaaga agacccagga
gtgaaatttg gagctgaagc ctggatgcaa gtcttcattg 71640agagcccagc gtggaacttt
ctggcaaata ggcattcagc ccactcttgt gcacccttga 71700ggatgggaag ctcacttcct
ccctctctcc tggtgacctg tggcatgcct ttgtagcatg 71760gccctacctg gaagaaggtc
cttcagccca ctagaccaag gccagcctcc tgtgaaatcc 71820tatgggtccc caggctgtcc
atggggccac agagttcaga tcccccatct aggagggtct 71880gagagattgg agttggagac
tgataaccct gggtctcctc tgctttagat gaggcatccc 71940tgggttatcc agtcttagtc
acatgcaaaa cttggtttcc aattccctcg tttcataggt 72000cgcctcctct ggatgagtgt
catcttgtca gcccctggga cacaatgaac aggggatggt 72060ctaactagac tataaaagtg
ggggaactgt catcttccca attgggttaa cagacctcta 72120ttaatatggc ctgcagtttg
agcattttta tttcttgcca gtcatgctta cactgtgggc 72180tcatgctgaa ctgtggtctt
ttaagaccct caacctcata tcatgttcac atgaatgggg 72240acccagccat gtctccttca
tcttgcagtt aatcactttg ctttctgaac acagacccaa 72300ccttccactg ggaagacatc
tgaaaggact tccaagggct tgcgggaggg catggctggt 72360ggctggtatg agtcacgatc
ttgccttggc cctcgtttcc tttgttctgt tacctttctc 72420tttgatcccc atggctctgg
ccaagttaat agagcgagaa gcagggactt ttgtctccgt 72480tccggctctg caaggacgag
ttctgttcct gggatgggaa ggctgtgaga cagtcaaggc 72540tgacgtctcc ttctcctcct
atagttgcca ggggtggccc agctgttctc ccaccttatg 72600ggttatgcac cccataggct
cttgctactc tcaacccagc ccctcactag gctggaaaat 72660gagactaggt gagaccacct
tccttctggg gaaagtgagc gggacccagc ttcagcgaat 72720attcagctga gcatctactc
tgtgttgggc attctgtgag gcacttttag gactctgatt 72780tttattttca tttttaaggg
ctcaatttca ttttatcttc atgtcagcct gtagggggca 72840atagccccag ctgcttccaa
cttacagata ggagactgag gctcagtgac tgaaccaaga 72900cactcactgc tcatacacag
cggagctagg attcaaattt gggtgttttt ttgtttgctt 72960gttttgtttt aatttggagc
cttgtggttt ccctactgtg ccagaattgt cctcgactag 73020agaacaagag acctggggtc
taggccaggc ttgacctgtt gactcactat gaggcctttg 73080ctaagtccct ggcccttctc
tgcgcctcag tttccccacc tgtaagatga gggtacttgg 73140acattctgtg gccttaagac
tgtttgattt tgagatccta agatcctggg attcctgtgc 73200ctgaaagact cgggctctgg
actaagctgg ggggttttgc tcacagtcct ttgggcagat 73260ggggctgccc tggcctgcct
ggcaaagcct ctcactgccc tctcctctct tccaggacgc 73320cttgctgagt ctgggctctg
tcatcgacat ttcaggcctg caacgtgctg tcaaggaggc 73380cctgtcagct gtgctccccc
gagtggtagg tgcccgccct tgccccacgc ttcccacccc 73440acccccaaat cctttgacca
gctctatgct gtacctcact cagggccaag gaggaaggaa 73500gaggcagggt ccctgcccag
aggactttca tggggaagtg aagggtctgg atgggtgttc 73560tgagacagct ttctggagga
ggaagcctta ggctaagcat caaggaatga acttgcatag 73620gaatcctgca atggctgagc
cagaaggggc cttagaggtt aagtggaaaa gctgtgtctc 73680agataatgaa agggattcac
ctaggataac aggacgtggt ggagccagct gagttttgga 73740atacatgcag caggagaagt
tgagggtaga catgtagaag aacttcctgg aagccaggtc 73800tgggaggtac tagaataggg
ctcagctttg atgaatagac atgcattggg ttaaagtgcc 73860ctgcctggag atgggaggct
ggaaaaatgg cctctagcag ccttttagca gctttctttc 73920tgtcccatcc caataccatg
gatgagttgc aggtttgggg caggtttggg gtgatcatgg 73980ttgcctgagc ccagagtgcc
ttactgggga gattgtgccc ctcatcatct gttccaggcc 74040actcccctac ctggcttcaa
tggccactgt tcatccctta ggcaggagga tgggtaaacc 74100agcccttgag gcccaaagta
gcagggtgtt agttgcacca gaaagaggga agcaggggac 74160gtttgaagcc tggagaaggg
agtctgatcc agcctaaggg gcatggaaga cttcctggag 74220gaggagattc cctaactgag
tcctgatagc cttgaatgtc ctcttcccta ctctaaaccc 74280ggccaagggc agcctctgct
ccaggaaata tggccaactc agaatgtgac cttcccatcc 74340ctccagagcc cattgtccct
gaatctgctt gatggatgaa ccaccggagg cccagagaga 74400gagggcactt gtcccaaggt
cacacagcat gacagggata aatgggactt ggtatctaag 74460cagccccatt ccctctcttc
agctctgcct tccccaaacc tcctagaagt tcagagccca 74520ggaggagggc taatgagtga
gctttattga gtgtgaaatt ggtaggaagt gggtggtgtg 74580ttggcgccca aaaataaatc
ctcctggaga aggacgggac taaggcaaca tctggcctgg 74640ggtgaaggca catctggaaa
gggagggtgg tggaaactgg caggtcggtt tctgtagggc 74700tgccccgaga gcctctgtgg
ccactgaggc tgccgtaggg tgggaggagg aagtgactgg 74760ctctgtttca caggcagggt
gccctggcgg ctgtgccagc ctagatgctc tgcaacagat 74820taattgtctc cccaaagctg
ggggctggga tgacagctgt ggtccaggtt cctgggacag 74880tgggaaatgt cagccctggc
ccacccaaga gccctatagg agctagggaa gccctgactt 74940tcgggagtcc tggcttgatt
gcacggaggg gctcagcccc cagtgaggta agggagctga 75000ggtctgctct gctgccccca
gggagggaag cagagatggg gaggggaccc ccgcccaggg 75060aggagagctg ctggcacctg
gcttcctcat cagcacccat tgtggcaggc agccccgaat 75120gcagatggtg ctgatgtgtc
tgaaatggtt ccctccttct ctccaataga ctcagctaat 75180tttaacccag agggctgaga
gtaagggggt gggagacata cggacatgcg gaagtgaagc 75240gagaatctgt ccccctctgc
ccccatggac tacccacccc tccctctgcc tgggcaggac 75300tttctgtata accccggctg
gtctcttaac ctctttgggc caaataactc aggcccctcc 75360caggctgctg gaagagatgg
atgacaagga ggctagatat agccgaagag tgggcggcct 75420ccttcccact gaattcttta
tccctgaaca tcccacttag gtttccttcc agccaaacaa 75480gagggtgtct gcccctctca
ctcccttcag gccttatcat tcccacccca tgccacaccc 75540accacggaac ctggctcagt
gtctctggaa gtagtggcca ggcatctcct gtggtggggg 75600ctggctggcg acagctgatg
acaagaagag tggctggcag gattgtggac gctctcagag 75660tcatggaagg caactgcttc
ttctgggaag gattccacac ttactgaggg tgggccttca 75720acacgtagct ccactgtcag
ctcctcccaa agccctccag gataccctca gctgggaggc 75780aagcccttct ccatcctcct
gcggagaaaa cagcagagtt gtggacaagg ctgcgttgca 75840tgggggttgg tcagggatcc
cgaagggttg ccagttctgc ttggaaggaa tgtggatttt 75900tgcctgtagg tcagtgaggg
caactacttc tgccaagaca tggcctggaa ctgaggccag 75960agctgctctg ggcccttggg
gagggaggat taaagagcaa gagctttgat ctccctctga 76020ggagtaatcg gtccaaaata
caaatctgct cacgtctccc tgtgcacgtc ctgccctgcc 76080ccagttctgt tcgtaagccc
atcccactca gccctactga ccttgggccc agcccctgtg 76140ccccttccct cactgtctgt
tcctaaatgc tccatgcttt atacgcctct ggacctacct 76200gtgtacctgc tataaggcct
gggagcccat tctgcaccct gcccactccc tgaatgtgtc 76260taattcccac tcagtgacag
ctgaaaggtc acttcctcca ggaagccctc tccagcccca 76320ccggaggatg gcgcagtgcc
ctgctctgtg ttcctcccct ggctggggtt atgggtgtgt 76380ggtttcttgt agaggtgaag
gagggatgct tcctagaaca ttctgagccc catccctggt 76440acagctcaga gtggatgctc
agttattgtt tgctgaatgc ctgaggctgg agtcaggcag 76500ggaaatatcc caggtgggag
gtgatttgtc tgcaccctca gtccttgaaa ctctttacct 76560ggcacattgg gttttgggtg
gtaaaaaagg tcataggttc atgaatcatt gcctgcttag 76620aattccttcc aagaggagag
gacgaggtgc ttagttcacc gggtgttttg ctgccctggc 76680tgcatcttag aatcacctgg
agagaaaaac aaacagatca ttgccagagc tccactccca 76740caggttccat gaccttgccc
cacagacccc tgtgtacagg ctgggactgg gcagctggga 76800gggcctctcc acagggtctc
ataagtgcct tctgtcctag gaaactgtct acacctacct 76860actggatggt gagtcccagc
tggtgtgtga ggacccccca catgagctgc cccaggaggg 76920gaaagtccgg tgagccattc
tctgcacccc cattgccctc ttgcatggcc aaggattctc 76980agggctgagg caccatccaa
ggtcatctgg tctgaccctc cccttccaac attgatcccc 77040gcctccctgc caggtgggat
tccttggcca ggttgctgac tccagcacag aagggcagaa 77100gcaatgtctt ctcttccttg
gggaaatgga taggcacaga gaaaatacca attgatggta 77160aattttctcc ttctaattgc
ttctaaatgg ctgcagcctc ctcagagcag agtctcagaa 77220cattggggct atggggtgta
tcagttagaa caccggcatg ctgtgagaac tactgcgagg 77280ctggacctgg aatcccagca
tgctgggcct gcaggagctc acagtgccaa ctccttgcat 77340ctgagaacag ggagatcaca
ggcagcgtcc tgctgagggt tctggagccc cactgcctgg 77400gttcaaatct cagctccctg
tttactagct gtgtaacctt gggcaaatga cacaacctct 77460ctgtgcctca gttttgttta
tgaaatggtg ataataatgg tgcttatagg attgtgggga 77520ggattaaatg tgtcacacat
gtaaagcatt taaatcaggc ctgatccatg gtgagggctg 77580tctgttgggg attaccattg
tgagagaatg ctggaatcac tgacttcagg atcatgggat 77640cagggcactt ggccccctga
taccttgatg cccatttaat tcagcctcct catcttccag 77700atgggtggat atcatgagac
atgaccaagg ccacatgcca ggtatgaggc agagccaggc 77760ctaggactcg ggtcttctga
ctcctggctg tttaggggaa agtgagagga agtggaactc 77820atcagatgag aaaaccttgg
gggcaggcat gctgctggga ggaggcaggc tctgaaggat 77880gtggccattg cctgctaagc
actgaatgca gggccattgt ggggcccagg gagcactggg 77940caggagctga gggcagagtg
ggcaccagtg gggatgtccc aagaaggcag ctctctaccc 78000ctgtgaggag ggcttttcca
gcaggccagg tggtccaggg atgtggcttt ttcaggtagc 78060agctgagcct ggcaagccac
tcacctttca cagggaccat ggaaagaatt cctgtttgag 78120gatgctggac tcatggtcct
gaggcccctc cttgtgctgg aaaccctggt ttctaggatg 78180ctggtctctc ctcagccctt
tcccgtggaa ggagttggtt ctgctctgat agccaccttc 78240ccatttccta ttctcccact
gagctccttt caccttcccc taacaacttc tccgtcaagg 78300agcatgggaa caaagccatt
accacctctc tctagccttt gtgtcccgtc tgtaagagga 78360tggtctgaaa ggtctttaga
accttaaggg gaaaaatgtg gtcatgtccc cctttctcct 78420ctaattccaa agaacttcgc
tctcctccag catcccccac ctctaattct aaagaacttt 78480gcttcatata agctccactc
ctccaggaag gctcctcgga gcagcctggg aggccttcct 78540gggagggatg caggaaaaca
ggctcaggag gcagcgggga gcagcctgca ggtttgcttc 78600actccctagg acccacacat
gctcccctca gctgtctggg catgtagagt gggtgcgtat 78660ctgcggtcca ggcatttttg
agagggctca gatccttggc atcagctgcc ctttcaacat 78720cctccttcca accacttcag
actcagtaag gcctttggaa aaaataccaa aaaaaaagca 78780attaaaagtg aatattcaaa
tccaattatc ccagagctca gtggagatgg ggaggtgagt 78840gcctgctggt agacaggggc
tgaagattcc aggaggaggg ccaggggatg agaaggcaag 78900agagtgagga cagcaaggac
ctcccagggg acatacccat catcaggaca cacccgtcat 78960catccccaaa caggaattct
ttccatggcc cctgtgaaag gtgagtggct tgccaggctc 79020agctgctacc tgaaaaagga
ttgggggaag gcccaggccc agtgctctct ctggtatctg 79080agctctgctt gcccaccttt
gtgcctggtg tctggtggtg agcccatctc cacaattagg 79140gcggagaggc cccagggttg
gctgggccct gctctcagga gctcccagca ggatggggac 79200ttgagaccca ggtgtatgga
cgagggaaga gcactggaat gggattcaga caggtctgga 79260ttctagctca gccccctccc
tgtctctctg ctttcctacc tgaggcccgg tctattggct 79320taatggggta acaggggcca
agtgcttggc acagtgccca gcacacagta ggagctcagt 79380gattgctact tgcactccca
agtcccaacc aatgattagc cttgagtgac cttgagaaaa 79440cgacttctct tctggccttt
tttctgtgaa atgggtgggg ttgggtacag ggtccttccg 79500atggtgacct ttgtggctct
ggtcccccca ggagggagag ggactgacct acaggctgcc 79560gtggagcctg aggctctagc
agtgcccgag gaggtggggg tgtggggagg gtgctactcc 79620aggaaaccct ggactgtggg
caaacagcag caggtgtggc gtggaggctg gatcatagag 79680acagataagg aggcccgagg
caatgggcag ggaatgggat cagggcagtg tggggagaga 79740cagggtggaa aagggtcaag
gcgggagtga ggaggccccc gccagctccc agccccacct 79800gtccctgttc ctgccgctgt
ttgggctctc agatgcccag ctgcatcccc ccagtgtgtt 79860tggctttcct gtcttcttgt
gcttgtaagg gctgcttgct cccttgcaaa gaccgtccct 79920gctccacttt catctcagcc
aatcccattg taattatctt tcatggcctg accagaagct 79980gtcttgggga agcctgctcc
acagttccct gacactgaga aggaaccaag tttcagaaaa 80040ggggtctggg ccatattggc
ctcccttagg gttcttccac aggaagaacc ttgggctggg 80100agtcagagac ctgggatcca
ggacaacatg gctgcaatca caatccgatg ccctcttcct 80160gggcctccat atgcccttct
gtaaaatgat acgctgaaca ttctgatatt gagggctggt 80220gaggctctga attgtaaggg
ctgcaaacga ccttggggct ggagaggaga gaatcctgga 80280aggctgcctg ggccagggtc
ttcctgaaag gaggcttcac ttccctcttg ttggtgcccc 80340acctccatct cccagactgt
ttcaggcccc agctctgccg ccttcctctt cttgtgtctc 80400ctgctatctt aaagcctctg
attacctgat gctgagtgca gcaaaaatct caggcctttc 80460agctgcaact gaagcaccca
ccgcccacct cggcccaggc tggctgtctc cctctgctac 80520cattttgggg tccccagggc
ccatccctaa gaaatttctt cccctaagct gaccaggtct 80580tctttcattg cagaatctga
ccatccctag gggttgtctc agaggacacc gggaacggtc 80640tgctcccatc tcgggatcct
cacatgctgg gggaaggagg gcaagaagag ggtccaggtc 80700ctgggggctc agtgagagtg
gggggcttag tgaggggatg ggggcccagt gacagtgggc 80760agcctcagtg aggtgatggg
ggcccagtga ggatatgagg gctcagtgag agtggggtgg 80820cccagtgagg ggattggggc
acagtgagag tgaggggctc tgtgaggggg tagggactta 80880agtgagggga tggaggctga
gtgagtgtgt gggggctcat tgagagggtg ggggctaagt 80940ggggaatggg ggctcagtga
ggggatggag gctcagtgag aggatgaggg ctcagtgagg 81000ggatgggggc tcggtgaggg
gatgggggtt caatgagggg atgggggctg agtgagggga 81060tgggggctga gtgaggggat
gggggctgag tgagaggatg ggggctgagt gaggggatgg 81120ggctcaatga gaggatgagg
gctaggtgag aggatgaggg ttcagtgagg ggatggggct 81180cagtgagggg ataggggctc
agtgagaggt tgggggctca gagaggggat ggggactcag 81240tgggggatga gggctcaata
aggggatggg ggctgagtga gaggatgggg gctgagtgag 81300gggatggggg ctgagtgaga
agatgggggc tgagtgagag gatgggggct gagtgagggg 81360atgggggctc agtgggggat
gagggttcag tgagaggatg ggggctcact cgaggggatg 81420ggggctcagt gaggggatgg
gggctcagtg agaagttggg ggctcagtga ggggatgggg 81480gctcagtgag aggaagaggg
ctaagtaaga ggatgagggc tcaatgaggg gatgggggct 81540gagtgagggg atggggctca
gtgagaggat gagggctagg tgagaggatg agggtttggt 81600gatgggatgg gggttagtga
ggggataggg gttcagtgag aggatggggg ctcagtgagg 81660tgatgggggc tcagtggggg
attagggctc agtgagagga tgggggctca gtgagaggat 81720gagggttagt gaggggatgg
ggctcagtga gaggatgggg gcttagtgaa atgatgggag 81780ctcagtgaga ggatgggggc
tcagtgaggg gatgaggccg agtgagaggt tgcggctcag 81840tgaggggatg gggacttagt
gagaggatag gggctcagtg agggaatggg ggctcagtga 81900gaaggtgggg gctcagtgcg
ggattgggtc tcagtgagaa ggtgggggct cagtgagagg 81960gtgagggctt agtgagggta
ttcgggctca gtgaggggat gggggctcag tgagaggatg 82020ggggcttggt gaggagatgg
gggctcagtg ggggatgggg gctgagtgag gggatggggg 82080ctcagtgaga ggatgagacc
tcggtgaggg gatgggggct cagtggggga tgagggctaa 82140gtggtagatg ggggctgagt
ggggggatgg gggctcagtg acagggtggg gctcagtgag 82200aggatggggg ctcagtgagg
tgatggggct cagtgagagg gtgagggctt agtgagggga 82260ttgggtctca gtgaggggat
gggggctcag tgggggatgg gggctcagtg gtagataggg 82320gctgagtggg gggatggggg
ctcagtgaga gggtgagggc ctggcgaagg gattggggct 82380cagtgagggg gtggggagtc
agcgggggat aggagctcag tgggggatgg agggtcagtg 82440ggggatgggg gctgagtggt
agatgggggc tgagtggggg gatggaggct cagtgagagg 82500atgggggctc agtgagggga
tggggctcag tgaaagggtg agggcttagt gaggggattg 82560gggctcagtg gtagatgggg
gctcaattgg gggatggggg ctcagtgagg gggtggagac 82620ttagtgagag tcggggggct
cagtgagggt gggggttccc ctggggggat ggggttccgt 82680gggaggatgg gctcagcaac
aggcttggct gcttaatgat gcctgggacc tagtgggtgt 82740tggagggggg cttctccaaa
gtagagaacg cgagaaggac acacacaggg gctcagagaa 82800gtgcagggga cccagctctt
tccaggctgt tggccctacc agcagagaac ctttccctcg 82860attctttttc cattaaacaa
atagttgtta aagggacgga actgccataa agtccacgcc 82920tgttcctctc tccactctgt
gcccatctgt ccttatcttc agtggggcag gccatgacca 82980cccaggcacc cagtgctgtc
attagccttc gcctgggcag ctggccctgg gttgtggagt 83040tccccacaac ccccagcatg
agcctggaag gcagggtggg ggtggggtag tagtaaggga 83100ggaactggag aggagcaggg
agcggctctg agttgagcaa ggagctatcg ggggtctgag 83160cagtggacga agctcccgct
cccatgtggg tgggggagac tcagccttgg cacattcccc 83220ctcgcagtct gtgggcatct
ttggagactt caggaggaca gcagttctgg gagggctatg 83280gcagaggaaa ggggctccca
tgggggtagg ttgaggtgag tgtgggctat ggggtcccgc 83340aaagccgggg gagggcaggc
tgcagagcaa ggtgccgagg ctgcctaaga attgagggtc 83400cttggaagcc ccagtgcttg
ggggcatctc ggcttatcaa gattggtcta tcccagctca 83460gcctctgtct tgtccagggc
cactaagatg ataggaccct cactgagacc aggtttccag 83520tgtcacagtc tccttatgtg
gagagtttta cccaggcagc atgatcgttc tgaaatcata 83580cctgaccatt accgtccctg
ctcaaatccc tcccagggca ccccctgccc tcaggctcaa 83640gcccagctcc atagggccct
ggcccctgtc tagccttgct ctcggctgtc cagtcacacc 83700aacctccttg tggccatacc
tttcagcagg cacacaatct tctcgcctcc aagccttcac 83760aattgcaatt ccctggacat
cctttcctgt ctgcctcgat aacctctgcc tgtcctttag 83820gactcaactc aggtgtctcc
ctctacagga agccttctct gactccatca caccctgcac 83880ctgagtgggc tggggcctgc
tcttcctgcc tttggcagag ctctcatctc ccgactgaag 83940cgtgggtctg tacgttgatc
tctgcgtgtt cttggcctcc tcaagtgagg catatgtctg 84000acccctctgc tcatctcagc
cctcagcact gaacctgacc cagaaggacc cagtgaaatg 84060agagacttta agtagaatgc
tccccgaggt ttttcatcta gaacacttat tcttgctctg 84120ccatggagaa tggattgaag
agacccagct aggaggctag aggcttgggg agaggctgct 84180tcagggttca gggaaaaggt
gtctccatgt gagctgggca gtggcttggg catagagagc 84240agaggacagt tgtgagagac
aactgggagg tgactcactg atcggatggg ggaggtgagg 84300aaagaaggca ggtttttgga
caagccgtga aggacctggt ggatggttgt gctgctttgt 84360tgtgaggtgg agggagtgga
gataataatt cagatggtat gggggtccct gggccacctc 84420agggacgtgg tggggaggct
ccaggtggcc tttgggtatc tggggtctgg agctcatgag 84480tgagggctgg agagtcatga
ggccgtgagc acagaggagg ggttttgtgc aaaagagaag 84540aaaggctgag gacagattcc
ttcatcaggg tcctgggaaa gagaggccaa gcagctccag 84600tccaggggtg ggaggggaaa
tagttgggag tcggcaggat gaggctgcag tgcgcactga 84660ccagcaacgc aaggaccagt
gccaccttgt ggcctccggt taaccagatt gtctgaggcc 84720aaggagctgg gcagggtttg
gccaggggtc accccctgcc tccgtgaagc ctcagccttc 84780atcagtttaa tcatcaggaa
acgtggctcc cgttgccctc ctgccaccct acgtccctct 84840ccttcccggg gtgactggca
atgtggacag ccgggaactg gagcccagca cttcaggaac 84900cttaaaggtc ctgggtgtag
gggctggaag gtgggagaca ccaccggttc ctgtagatcc 84960tggattactt aaagtggcca
ggaaggaatg ggtttggttc agaatgctgc gtgagcttga 85020acgagatgct caacctcttt
ggtcctcgat ttgtctagag tctctgacct agtgatctcg 85080tgacttgcag gccaccccct
ccttttcctc atgtgacctt tgctgggctt cccttagtga 85140ccctgtatgc acacagttcc
ccaagtttct cttctgtcca ggccaggcag ttcctacaag 85200cacaattaag tggaggcagc
atgagggatg aagaacccag gacaattaat catcaaggag 85260tgacatttgg tgcaaacntc
aggtgcttaa ttaagcggga tgagccagag gctggggggt 85320agaggaggtg ggttgtgtgg
tgggacagag agaaactcat tcttcccata ccaacctccc 85380ctgccttggt tcccaccacc
cctctgccac tgtcataccc tgccactcac acctgccccc 85440tgttcaaagc tcacacctcc
acaggtattt gggaaggttc cagcatagtg gttagaccta 85500gccctggtgc cacctacctg
ggttcaaatc ctggctctac cgcttattca ctgtgtaacc 85560ctgggcaagt gaattagcct
cttggtgcca tagcttctcc atctgaaaat gaagatatct 85620aattcataga attgctggga
attctgagtt catctatgtg agttgcttgg gctgtgcacg 85680ggacatagga aatggccaat
aaactttagt tatgatgatt acctcctgtg cttagcacta 85740aaagctgatc aacaattgtt
ttctgaggat ggtgacaggg agggttcttc tctctccacc 85800ctagttctcc ttgggaagat
cagagaggtc aggtcatgtg cctaaggtca gattgtagca 85860ggcagcctag ctttgagccc
ctgcattcac ttcctctgct ctcccactgc ctggaagatc 85920tgcactgggc cccacccgag
cctttaccag caaggggcac cagaggccaa actgtggctg 85980cctgtttctc cacatagggt
ccagggtccc ctactttttt acttgtgctg tcatcgtgtc 86040caacctgagg caggtcagct
tgcccagatc cttgcacatg tgcagggtcc aaactgtcct 86100gtgttcccag gccaggcctc
gttcctccct gagtcggggg ctctcaaggt ggcatcatgt 86160cctcttttca gggaggctat
catctcccag aagcggctgg gctgcaatgg gctgggcttc 86220tcagacctgc caggggaagc
ccttggccag gctggtggct ccactggctc ctgataccca 86280aggtaagggc taggggctgg
gcaggggcag gggcagggag ggactgtggc ccctgcactc 86340caggtcatgt gtgtcttcta
ttcctcttca tctctggctc cttnnnnnnn nnnnnnnnnn 86400nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86460nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86520nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86580nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86640nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86700nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86760nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86820nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86880nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 86940nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87000nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87060nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87120nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87180nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87240nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87300nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87360nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87420nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87480nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87540nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87600nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87660nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87720nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87780nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 87840nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnntctg 87900ccccacctcg aataggtagg
atgaagccat tggcccagtc agcagctttc tgaggggtgt 87960gcaagcccct gctggactct
cagcccccat aaggttagaa ggcccagcct ttggcgtacg 88020cagcactaac cttggtttct
ctttgggatc ctccagatgg ggtggggata atgtccagga 88080gggcatgaac caagtgaggt
gtgaagagag atgctgcgga gggacagatg gacataaggg 88140cctgaccaat agagatagtg
tggaaaacta gccagagatt tggagtggct ggagctgggg 88200gccttgagga gagaaaggcc
atggtcaggc cagccagacc cagggctgag gctgggcgga 88260agacaggcag ctaggggggc
tttctggagt ggctgaggaa ggagtgttag tgggaagtgg 88320tggatgctct gccagagccc
cagaacccag acaagcctcc ctctgcagcc cctcgaggag 88380ttcccagggt ttctgctccg
tggaggggat tgtggaagtg cagagcctgt ggggacggga 88440ttctgccgct ctttccgttt
cttctcctgt atggaggtgg gggttcaaac tcgttctatc 88500ctagtaacca aaggatgagt
tccccaaatt gctattattg ggggtctgct tctgtcgagg 88560gggctgccat tccagtaaag
ggcaggcttg ggggcatgga cagataaatg agcaggtgtt 88620ggttccccgg ggactcctct
ccagctcatt aaaatggaat taaacgcttc ccaggcgcct 88680gacctttctg agctgctggc
aggagagggc agtgggagtc agggatggct gagaggggag 88740gagagggggg aggggaggga
ggggtacttg gctgggtctc ctctgcaccc atcttcctga 88800ctgagggagc caaggccgct
gcttggtttc tccgcaagct gctcccccca cccccggttt 88860ctggaacgga gctgctgttg
cacggagttc tcagggggtc gcctccccct attctttgct 88920cttggtctgc cccagggctg
gtcagctttg aggggcactg aggtgagggg ctgtgtgcag 88980aggtggggat tgggaggtgg
tggctgggtc acgcacctcc ttctctgctg agggcaaagg 89040gcctggggtg ccaggtgcct
gagaaggact tccttagatt gaggctatga ggactgggtc 89100aggagggaag taaggggaag
acatttggaa ggttgcttcc cttgtgggcg gaatgcttgc 89160catggccgct gctcaccttg
gctcaggctg ggccagaggc caatgtgtgt gtgtgtgtgt 89220gtgtgtgtgt gtctcaggga
cgctggtggg atcagatcac ttacacttaa ctcacccagt 89280agaactctgg tctggtcctg
cggcaggctg ggtgctggag ccgactctgc cttcagggag 89340ctctcagtct gggggaaggc
agggacaccc tccccaccac aggccagatg aaatactgtt 89400gccagcaggt gttctggtgg
caaagcctgg agcagcaagt ggtacctcat cacagagaaa 89460gcatttgtgt ggggccttgg
ggcacaggta ggaggtccac aggcagggaa gaagggaaag 89520gggattctag gcagaggagg
aatgtgagca aggcaggaag gaggccgggg gaaggggtgg 89580tgtgctgagg ggagagtgtg
gtcctgggga agctgaagta ggggtgcatg ctgttgagca 89640ggatgctagc cagctgggct
ctggctgcca ggagttttca acaaccgtcc cttcacctcc 89700tcaaataccc tgggcaggga
agaactcttg aaaggtgttt agattattca catctgcctc 89760tcctctaagc ctgcaccttc
ccactcatgt gtaaatgcac ttccctagga tgccccctcc 89820ccaaggcata catgtctgac
agatgcaccc tggctcacag gatctcactg cctcccagag 89880gtagcacagg cagccccaga
cttcccagct gctgccagat cctgagggca gagggtgcag 89940aaggaagatg gagagccaca
gggtcggttg atcttttggg aaggccgagt caccagctcc 90000ttcctggaca agccccattc
ccctctctca gtctctgctc ttagtattca tccactgatc 90060cacctaccca tccaccccct
catccatcag ttgaacaact atttcttgag tacccactgt 90120atgtcaggca tggagtgcta
ggtgctggga acacagaagt gaccaagaca gattagacag 90180gccctgcctt cacagaccat
atggtctgga gggttggtgg tgagaagcac taaagtgagc 90240ataaccccag ctacttggga
gtattccttg agctcaggag tttgaatctg gcctggagaa 90300tagagtgcga ctccatctct
aaagacaata aaaataacaa aaatactgca aaacaagtga 90360gcaaaataag gataggatca
cacgtgatgg caagtgctag caaggaaacc cctcgaggga 90420gtcctgcaaa ggaatgctgg
ggtccagtgg cgacgccatc agcgagggct ctctgaggaa 90480tatgctggcc aggtgcaggg
ctgtgtggct gacttctggg cctttacagc tcactgctca 90540aagcaccttg attgcaaatt
ttttgtgtgg aaagtctttg gctctgttcc ttaatcctgg 90600gataataagt ccctttgagg
agtggcagcc cttggtctct ggcatttgat gcctgatttg 90660tgcccactct tcccccagct
gcaccagcca caccagctcc ctgcacgggg atggggtgtt 90720catgccatta accattttga
acttggttag ggtggggacc tgggggctgt gctgggtttt 90780aaccctctct tacagccaca
gtgcccaatg ttgagtgttc ccactgggtc ccagacactt 90840gccctgatta gcaagagcag
gtgtaagtgt gtgttcctgt tggcgaacaa aaagccatga 90900gtgtgtgggg gtgattgtgt
gtgtttgtgt atgggggcgc caggtgcatg tgcatggctt 90960ttgggtaagt gaactatttc
ctgtgtacag gcatgaatgt gcctgtgggg atgctgtgga 91020cactgtaagg gtgggtgtgt
ggatgtcttt gtgtctgtga ctgcaccgtg tgtgtgtgtg 91080tgtgtgtgtg tgtaccacct
ccatgggaga ttgagtgtaa gtgcatgtgt gtgagggcct 91140gacgttcttc atgagagtgt
aggtgtgtgt gtttgtgcac atgctgggtg caagtaggcc 91200aaggcagccc gagaactggt
tgcccccaca gccttagagg ggtcccagcc ttctctattc 91260ttgagagatg ggaccaggtg
gaaggaacaa gaaccacgtc ctcctccatg tgctaacagt 91320aaaatgccaa catatttata
taagccatat gcaaatgaac catagcccca gcttctcctc 91380cctcccgccc ccgctgtcct
gtaggagtca cagattgagc ctcatccaga gcttaagttt 91440aaacaccatc cttgacagcc
caggtctctt ccaggtcttc ctgcctccaa tctccctccc 91500tcaaattcac cctacacccc
acagacagtg gccctcagat gctaaagtct gccatggctc 91560cccagtactc tcaggctaaa
gtctaacttc ttagcctggc actcaaggcc cttccttctg 91620tggtaccatg gaccacaccc
ctacctggat cctcatctcc ccgcaccacc taccgccagt 91680gtcctggtct cttcaaggtc
tacttgtcct ccccatgcca attcaggaag ccttccaaat 91740gtcctcccct ctgagctacc
cacctagttt tctctctcct tcctcaggta tgaggctcca 91800cacctcctcc cagtcatgtc
tccccactcg tcccacccca gacagactgt gagcttcccg 91860agaacctgct ggtctcctcc
tccccatctg ctcctggcag gagacccaga gctgaggcag 91920gcattggctg ctgactgggg
agggaggagg aaggaggagc ccccagtgca ggcgctgtgg 91980ggagctctgc aggtggtgag
cagctttgag taagctccgg aagctagtga cgcaggtggg 92040gagccttgct ggcagggcct
gtagtgggtc cctaggctgc caccctccct ccccaccgtc 92100tctcattttc ctcgacaagc
acccaagtag gagtggggga agggacttca cagagtatga 92160aagatgggct gagttccctg
gtgactggca cagggagctt ggagagggac aggatgatgg 92220gggtggtgga gagagtggat
ctagaggggg gaaggtgtgg gcagagaacg ggagggagtg 92280ggtggtgctg tcttcactct
gccactttct gctatgtgat tttgggcaag tcactccact 92340tttctggcca tggcttgcct
gccaggtgga ggcttgcatc acagtggtga gaatcacatg 92400taaggcaaag cacttcacga
acccatttat ccatttattc attcacccgt ccatcctcac 92460catggcaggt gcatcatact
gagcccattc ctttatccaa gacttagggg cagctcaaac 92520cctaactcag acaggataga
gccgggaggc tgaggctaat accaccaatt ctaaaatcag 92580gacctgcagc gctccataat
ctgtgagcta aaaaggggtc taaggtccct ccatcccctg 92640aaccatacac ccggactgtg
ctcttgatga gacagtgatt gaaaaggcag agacaaaaaa 92700gtttcacgtc cttaggttag
tcctaggaga cttcctacag gagggatttt cctggagctg 92760tctgagtggt cagaaagatg
gggttatcac tgaggcccac agactggagt gtgtatgtgt 92820tggtggggac cagtgtgtgc
tgcgcatggg gagggcactc tggcagagac agacactgag 92880agaggtcaca gctagttccc
ttctcccatc cctccaggtg cactgtggcc agctgagtga 92940taatgaggaa tggagcctgc
aggcggtgga gaagcatgtg agtgggagtg gggccatgtg 93000caatgaggct gaagaccctt
atcacagctg gtgggaagat ggcctggcca gggagctgga 93060cagacctggg tttcagcttc
ggctttgctg cttttgagct gtgtgacctt gagcaagtca 93120ctaaacctct ctgggcctca
gtttcacacc tgaaaatggg gataatgata gcaccgactg 93180acctagggca gtggtgaaac
aaaactggtc aaatatcttg taaatacaca cggttgccaa 93240cttacaattt tcgacttttt
gatggattta tggggaagca accctatcct aagtccagga 93300gcatctgtac ttagaaagaa
ccctccacat aatgatactg aggctctttc atgcctgaga 93360ctttatgatt ttgtgacttt
aacaaggact tacgacttcc tgagggggct ggagacagaa 93420atctgacatc ttgtcttgga
agaatctagg ggctagggat ggagatagac cctgtaccct 93480cctgttcctg gaccgccgga
cgctccaggg gctgtgggag cccccggggg agccctcagg 93540aaggtagagt ccagggatga
ggtgtttggg acggcggcgg ggtccctggg cccggcaggc 93600agagggaacg gcgggagcaa
aggcaggaat cccgctgcag caagcgcagc gagcttgggg 93660cgagcggcgc gctaaccgct
cggcctgccc cagaccctgg tcgccctgcg gagggtgcag 93720gtcctgcagc agcgcgggcc
cagggaggct ccccgagccg tccagaaccc cccggagggg 93780acggcggaag accagaaggg
cggggcggcg tacaccgacc gcgaccgcaa gatcctccaa 93840ctgtgcggtg agggcccggc
ctggacaggt cacgagggcg gggccgggca gaacttggag 93900gggaggtggg cgggttaggc
gatcccggga gccggcggcg ggcccggcgc ggagctgagc 93960ggcgcctgag ggacccggac
acggaggtgc ggaggggccc tctctctgac cggcgcctgg 94020cccttgcagg ggaactctac
gacctggatg cctcttccct gcagctcaaa gtgctccaat 94080acgtgagtcc ctgcgcccct
gccggccacc tccccgtcct gtctccctcc ggggaccaac 94140ttccccttga gccctccatc
tcagttccaa ttacgatgtc cttccttcct ctctcctcca 94200cccgcctgaa gagccccgga
gaggggagca ggtggggagt ggggtgaccc ggatccgcgg 94260tcaccccctc gccctgcctg
tccctctctc agctgcagca ggagacccgg gcatcccgct 94320gctgcctcct gctggtgtcg
gaggacaatc tccagctttc ttgcaaggtg agggcccagg 94380tccactgtag agcgggggcg
gggctgggcg aggaactcgg gtctccgagg gggaaatcca 94440ttgcctttcc tttaaccagc
cccctgcact ccgttcctca ggtcatcgga gacaaagtgc 94500tcggggaaga ggtcagcttt
cccgtgagtc ccgcgtctgt cttctcgttg gagtctgcag 94560gggcggttga ggccgggtag
acactcctgg gatctgcctg gagtatttgg atcttctaga 94620ctcttggaat ccgatggaat
tatctggatc ttgggactac ttagaaatgc tgcagggatc 94680acaacctgtg atcagcaggc
tctattagga agaatctctt agcatctaca gaaaggctta 94740cctgggacct gttcacttct
gttggagtat ttctggatat ggatctgcta gaatctgttg 94800acgagaatcc ttggagtctg
cttatctctc tcgtagttag ggaagactct agagtccttt 94860atagcgaatt ctgccagact
cccctccatc tctgctcatc aatgctgacc ctgtccacca 94920tttggactga ctgaagggtt
ctttgaaact tccagatttg agggtgggga caggttgaga 94980tcccctgacc tggggagtac
tgggccctga ctcagtctct cctcaccccc tagttgacag 95040gatgcctggg ccaggtggtg
gaagacaaga agtccatcca gctgaaggac ctcacctccg 95100taagtcatgg cctggctgac
ccagagggga aagaggagac cccactgcca gcccctagag 95160ccagggtctc tgttacagag
cagcctagga atggggcaga taagacctgg ggactttcta 95220ctgtcccatc tccatgacac
agagcttcca gccttgcatg agtcccttag aactgcctgt 95280tgcaaaatgt gatggagggc
tggaggaggg aagcatactg cgccctgctt ccctgccctg 95340acttgcctcg cctttgcagg
aggatgtaca acagctgcag agcatgttgg gctgtgagct 95400gcaggccatg ctctgtgtcc
ctgtcatcag ccgggccact gaccaggtgg tggccttggc 95460ctgcgccttc aacaagctag
aaggagactt gtgagtcttt gtgggatgat gcagatcagg 95520agatgtcact gagaggctgg
ctagggctcc acgagggtaa caatgtggga tgggtactgg 95580gcaggggcta ctgtctcagc
agcagtgggt tgaacagtgt gttagtgcaa gagaatgaaa 95640gtcatgttga ggtccaagct
agttcctctt ctcttctcct gcttcctgaa gtttgggtaa 95700tctgctcttg gggtattggg
ttccctccct tgccatccct gtttttgcat tactgctata 95760aactgctaga tggaggggtg
ggtgtgctct gggttggatg aaccctctgg gacccacaaa 95820gcatcatcaa cacagtggac
agtggctaaa gggaatatgc ttggggactg ggaaaagctg 95880tggatctttt gagcccctga
cagggcagct ataaaaatga tacacaaaaa tctctttttt 95940tgtgggcagg gcacagtgga
caggaaagca ggcttggagg cttagttgga aaggatatct 96000cgagaactga ggacaaacct
ggggtctaga aatggtgtca taaataaatt tcatatccta 96060caccaactca taaacaggca
gtaggtgcct gaattttatt gcaaatggat cttagttcag 96120ggagaaacag tgctgcgtct
gatgagccat ttctgtcctg ggtgcaggtt cacacttggg 96180ctggcaggat gagcagtttg
tgctgtgtca cataggtggg gagaagtaga cagatgaggg 96240gctgagtcct gatgcaaaga
gatgctgata ggatgctggt ctctggagtc caagcaaaca 96300ggctgggttt cagggcctgg
agctcctgca ggaggtggac actagagagc ctgggactag 96360gtaggtgtca gagcccgggc
ctgaggtctg ctggggtagg gtggagatcc aggagtccta 96420ggtctgagct gcagaaccta
ccagcatgga actgtgttga cagttgggtg ggcctggaga 96480aacaaagata ggggcaaggc
agaatcagct gaggcaggga gaatgtggga ttggtggcat 96540ttggaacttg tgggcatcct
aatggtggga gaatttatgc cattcagcaa acaaatattg 96600agcacttaat gttgccatcc
cagtgctgac cagatggcct tgggaaggcc tttggggaag 96660ggaaggtaga gtgaatgggg
gtccagcagg ggccatgact tcttgctgct ggctgtgaga 96720ttgggttcta ggatggcccc
agagctggag aagaggtggt atcagcagga aataaggatg 96780gggccttggt ggcagctttg
aggcccaggg caggggcagg gctatctctg ggtcccacgc 96840atttcaggga gtgagtgttg
aatgactgca tgagccaggg tggggctcag ctcagtgcag 96900tgactacaga gaagcttcct
gaaacacagc taagtagcca gagaacaggg gctccagaag 96960cccttcagct gtgagtggga
tggggctggt ggcaaggcca gggataggat acactgacga 97020cattagcaaa gacctccgaa
gtgtttcctc tgtaccaggc tctgcactgg gcatgggtga 97080tatagtcatg gccccatttc
ataagactca aagctcattt tcagggcata gagggaagag 97140agtgagaagg gtattctagg
ccgagggaac agtgtagaaa aaaaagcatg aaggtgtgaa 97200agagcccaag gttttctcag
aatgatgagg atctttgtgt ggctgaagct gagagatgtt 97260ctgggttgag gggtgacagg
tgggtggggc tagctgaggg accacaaatg taagaaaggt 97320gtgcagacag acccaggatg
gtggggatgg gatctagatc cgaatcactg gatggcaagc 97380atgaatgggg gatgccccac
cagggtggag caccaaggcc agccaaaaag tggggaaggg 97440cttaggcagg gacacctcag
ggcagcgtga tgtgggctaa ggcaggctct tcccatgacc 97500cacaccattg gtccacccag
ccccatgcag ctccccagtg acaaatcatt tggtggccag 97560attgaatgac gtgagcagga
tttggggctt atcttgtctc accagagcta gctccatgag 97620cagggcaagc agtcctctcc
acaccaccac cctaagattt ctggaggcac cgaatcaggg 97680ccagcggagt ccagggagag
tggggtagtg acaggagctg cacaagatag ggcagtgcca 97740ccgcccctcc ccaaggctgg
aggtgtgcct ggggaagagc agaacaccag cttgagccca 97800ggcaatctct agtctgaggg
aggagaccca gctttgggct gggtaaatcc caaatcagag 97860acgggaggta tggctctggt
ttcaagcatc taaggaggac tggagccctc cccttgggca 97920gcccccagtc tgcagggtca
tgggggtggg aagctgttcc aagggcctgt gcagtggtta 97980tatagttggc aggtgggtac
ccctgtgggc ttctgatgga acagaagtaa ggagagtggg 98040gagagaagcc agtcttccct
tccctcctga gtgagcccac cccctcctcc aggttcaccg 98100acgaggacga gcatgtgatc
cagcactgct tccactacac cagcaccgtg ctcaccagca 98160ccctggcctt ccagaaggaa
cagaaactca agtgtgagtg ccaggtgagt gacctgcctt 98220cagcctctct cgggcaccga
ctcgctcagt tttcagcccc gagagccatt cagaagggaa 98280atgcccatgt ctttctggac
tggtggcagc ccttccccag gtggctccat aacctcataa 98340cttgaaggct tgcagttgtt
caggacccgc gccactgccc gcaggcactg tatgtgatcg 98400ccctctagtg ttcaatatgt
gcactacagc aacacctagg cagctagagc tggcgtgaag 98460gcggctgaga cactcaggag
actcctcacc tgcaccgggg ctattccctc actccttcac 98520ttagtagcca aatgatataa
ttagacactg acagtttctg gcttgtccag tgagccctag 98580ggaaggaagg agaagacccg
ggtgctgttg gaggcagaag gttggatagg gtgaccccta 98640caccccgacc cccctatgat
ctccatttcc ttcattccag gctcttctcc aagtggcaaa 98700gaacctcttc acccacctgg
gtgagtgcac tgttctctct gcctggctgt gtgtgggcat 98760gggggctggc atttgcagag
gagaggcggg aggtcttggc agcctggtct caccctgcct 98820ggtcttctcc cttccccaga
tgacgtctct gtcctgctcc aggagatcat cacggaggcc 98880agaaacctca gcaacgcaga
gatgtgagtg actctaccca ggggacaggg cgagagaggc 98940tgtggccttc agtccccatc
atctcctttc ctgccccacc cacttccctt tctctgcctt 99000ctgcgggact tcatcacctt
ttgagggatc ctttatttca tgcctgtctc cctcgctaga 99060ctgtaggctc caatacagca
gggacagggc tggctttgga tcctcagctc ctatcacagt 99120gcctggcaca tagtaggtgc
ttccaaaaaa aaaaaaaaca aaacacttga atggacacgt 99180ttctggagcc agccagccct
gagcagagtg tcttaccttg gagcactcct cccaggcctc 99240ggaaatccgg cctttgcctc
cttatgggac gtgagggcga tcagaggggg ttgtcaggcc 99300ccagaggacc aaacccctcc
ctccacagct gctctgtgtt cctgctggat cagaatgagc 99360tggtggccaa ggtgttcgac
gggggcgtgg tggatgatga ggtgagaggg cgtggaggga 99420gtatgtggcc ctaggggtgt
ccgggagtcc gccggcggcg ctggggagcg gcccgaggtt 99480taacagtccc ctctgtggcc
gggtcactaa cttcttcctc tcgactccat ctctgctccg 99540gcagagctat gagatccgca
tcccggccga tcagggcatc gcgggacacg tggcgaccac 99600gggccagatc ctgaacatcc
ctgacgcata tgcccatccg cttttctacc gcggcgtgga 99660cgacagcacc ggcttccgca
cgcgcaacat cctctgcttc cccatcaaga acgagaacca 99720gggtgcgcgt ggcggcccgg
gcggaggggc ggggcctgcg ccgggcgggg cgggtccgag 99780cgagcggggg tggcaacact
tccccaccgc ctccggcgtc ccggagcata agggagtcgg 99840gttccatgcc tgggacgtac
gtaacctgcg gaaactgcga gggcaggtcc cggccggatc 99900cctccctcca accgatccct
ccctccaccg gtggttcctt gcccctctcc cttccccaga 99960ggtcatcggt gtggccgagc
tggtgaacaa gatcaatggg ccatggttca gcaagttcga 100020cgaggacctg gcgacggcct
tctccatcta ctgcggcatc agcatcgccc atgtgagggc 100080ggggttggga gtggggtgtg
gggtgatagg gggcggggcc cacgaaggac cctcggttct 100140cctcctccga ctgactctcc
ttgtggattg atcccttggt ctggcactca gagtcccgcc 100200gctggggtgc agccttcagg
acacgctggc cacctctggg ctcagtttcc catctaaaaa 100260ttgggcatac gatttcctgc
cctgtccact cagcctcctg ggaccatgag aaactcccgt 100320tgtcaaaacc tcctctcttc
cctggaagca gtctcaaccc aagccgagtg cttttttgga 100380agtgctgggt ctcggtgtcc
aggcctactg gcgctctggc ctgggaatcc agccccaagg 100440tccctgacat gatcccctcc
ttgcttctcc ttccctgcca tgggccttgg gctccatcac 100500tgaagcctgg atcaggtgtg
ggggagtgca aagggccaga ccaaatgctg ggagaacttg 100560atgaggagga accggcgcgg
gggtctggat gaaagtgggg gtgaggtctt tactgtggac 100620tggagcttga aggttttgac
tggggccaga atgggacagg aagtggggtg tctttttgac 100680cccttcatcc cagtcctggg
cattgctaaa ttttcacagc caccttcctt gagccccatc 100740tttccctctt tcccctagtc
tctcctatac aaaaaagtga atgaggctca gtatcgcagc 100800cacctggcca atgagatgat
gatgtaccac atgaaggtga ggcttgcaga gacctctggt 100860cctcctccca gattccccgg
ggacccaggg ccaggcaggg cttcctgatc aatctctact 100920gaggatgaga ggataggccc
agagccacag caggcctcct gccctcctta ggggcagctc 100980ccacccctgc ttagagacct
ctcctccaag ctgcttctga gctcagtccc aaggctggaa 101040gtagccagag gaaccagccc
agggagtaat tggttcagcc aggtattccc catgttcagg 101100gaataattcc catcttggga
attactgagg gctaggaagc tcacccagga cccgtcccca 101160tggcttccct aggtacaatg
cccatgcagc cctgggcagt cttaattgct gataatctat 101220cccattccct accctgggtc
acaaaagctg gcttagttcc atgtatatgg tagtcgctgt 101280tcatttggac atttcctctc
acctgtgtcc aaaccagaga ggcccagacc ttgtgagttg 101340gatcaaaact gtagtaggaa
gagttaaggt tagagagtag aaaggtctcc acaaaaggag 101400gactgctaca gttactgtgt
atgaaatgct gccatggttt gggggtgtca tgaaggggtg 101460ttgtcgatct ttgccaaggt
tatgctgtta cagataaagg gtggtcacct gcaggaaggc 101520gcgcggggtg ggctgcaggg
ctgtgagggg agggtggtga tttcctgccc agttacagtc 101580cacagcgtgg tggcccaact
gtggtacatt ctgggtgacg gatcccccac ctgccatggg 101640aatttgaggg tgaagacacc
agatggggtg aaggctgtct tctaatgctc tggctggtct 101700cctctaggtc tccgacgatg
agtataccaa acttctccat gatgggatcc agcctgtggc 101760tgccattgac tccaattttg
caagtttcac ctatacccct cgttccctgc ccgaggatga 101820cacgtccatg gtgagttgct
ctcctccact tgactggcca ggccgaaggt atgtagccag 101880aggcttaagt taaatgcgca
tcaagaactt cctgggaaga cagagtcatc aaggaaggct 101940gtggagggtc cctcagagat
ggaggggctt gtagtctgcc atcaggaagc catggggcct 102000gcccaggggc tagaggctgg
actggatgat cccaagggct gctcttggac caaccatgcc 102060cagggcatgt gacctcaggg
tttgcatccc tcccaaccct gtttttctaa cattttgtgt 102120gggcttggtt tcaagagttc
ttagttctta gatctctaaa aatgcatagc tctgagaacg 102180gttgcttcaa ctattttgtg
gttctctagt ttagatgtaa gtttctaaga ctccagatct 102240tgagtgtgga gcttgaagaa
ggacccaggc aagggccctg tcttgatact ggcagcccct 102300ctgatacctc cctctgccct
ctccaggcca tcctgagcat gctgcaggac atgaatttca 102360tcaacaacta caaaattgac
tgcccgaccc tggcccggtt cgtgcgccca cagacagccc 102420cagtcttcgc ctccctcttt
cctctactgt cacatccatt gcccccggca ttctggagag 102480gatctctcta aggatgactg
gggagaccca gtcttatggg ggtggggagg atccatgaat 102540gagaagcaat tcctagacac
tgaactgtca ataaaggcaa gaaatgaggc aaggcaaagc 102600ctggaggcaa ggccgagagt
gtgtagccag aggtttaagt tagatgtgca taggaacttc 102660ctgctaagac agagtcatca
aggaaggctg tggagggtcc ctcagggatg gaggggacat 102720gtagtttgcc atcatggggc
cgtgatggag gaggagaggc tgaggcccct cttctgccct 102780cttccctccc ccaggttctg
tttgatggtg aagaagggct accgggatcc cccctaccac 102840aactggatgc acgccttttc
tgtctcccac ttctgctacc tgctctacaa gaacctggag 102900ctcaccaact acctcgagtg
agtggctgca tctcccccac atctggcagc cactggggtc 102960cccttccctg ggacagggaa
gcaccccctg tgtgtcaggc actttacacg cactgcctca 103020tgggatcttc ttagccccag
gggactagag gggaaggctg tgagccccat cttccaggag 103080gggcttgctc acagccaagc
agctagtgaa gactgagcct gatttaaacc cgggtctgct 103140ggactccaaa ccagtgcttc
tttccaggaa gggaacccag gtgttccaac ctcctgtccc 103200agtggctcct gggcatgtca
tctcctgtct gtcctcttgg ggatttaggg agggaactgt 103260gggctgacct cttttttttc
tcctttctgc ctctcaacca gggacatcga gatctttgcc 103320ttgtttattt cctgcatgtg
tcatgacctg gaccacagag gcacaaacaa ctctttccag 103380gtggcctcgg tgagaccctg
ccctgctcac agtggggacc ctccatgggg tgtcttggat 103440ctcatcctct cccagcctga
atagggtggg agcgagtgag accaggagcc aggtttagac 103500acaggaggag gttcccccag
ggtttgcccc tggctctgag atagggagga ggggagaaag 103560gtggaagggc aggacactgc
tcagcctaaa gcagtggcac ttggatccgg atgtgaggag 103620tgaccacagt tttcctgggc
ttttccagaa atctgtgctg gctgcgctct acagctctga 103680gggctccgtc atggaggtat
cactcttctg tcccaccccg tccttcttcc cctttaaggc 103740cagtgacttg caaagttatg
acccagctcc tcctattccc aaaccatgct ctccagacag 103800gctgcgagag ctgcagccac
acctaggaca tgtctggctc attttcctgg agtgggcttg 103860gaagggtgca ggtgcggatg
atagcaagga tttgtgttca gcgtgtttcc ctttggctgc 103920ctgggaacac cccattcagc
cccctcctgc caaacttggg atgggctcca ctcccatcac 103980ttagcgtcac cttagattgt
ttggtttggg tctgcctacc tcctcgtgca caaggtctga 104040gccatttctg agttccctgc
acttggcaca gggcttggca cagagtagga gacacatttc 104100caaggtcacc ttgcctcatg
ctacttccca caacacctct ccagaggctg cccctgcttg 104160cacaccccca gagacgaggt
tctctgtctc tctcccagga ggcctggtgg cagtgctggt 104220tctgccctct gcccccctga
gataagctgc tccttttctg agtgacagcc cttcagcatc 104280cggaaatggg ggccttgccc
ttgcctcatc actgcctctc cttgtcagca aacaaatgtg 104340ttctgcatga tttggtgtct
aggactccaa aggatcattt caaaaatgtt ccagctttca 104400gggaccccag agcttacctt
gttgggtccc tgcatgtgac agctgaggag tctgaggctc 104460agagtggtct agggactcac
cctgggtcac acagagggtt gaaacagagc tcagaaaggg 104520aactggggcc cctgactccc
cctttctgac tgctctgctt acctgggggc tggagctgga 104580cgaggcccct gcttcctctc
ttggggtcaa tggtaaggga gcccatctgc cccagctggg 104640cccccatcac tcctctcccc
ccagaggcac cactttgctc aggccatcgc catcctcaac 104700acccacggct gcaacatctt
tgatcatttc tcccggaagg tgatggggtt gggggtgggg 104760tggggattga gggggagctg
ggagctggct ggaggtggga taaggagcca aggagtggag 104820gctcactggg atgggcaaat
gggtgggggt gtccagtagg agggcatgac acccctgccc 104880tcgcctcagg actatcagcg
catgctggat ctgatgcggg acatcatctt ggccacagac 104940ctggcccacc atctccgcat
cttcaaggac ctccagaaga tggctgaggg tgactgctgt 105000tagccccagt ccttggggct
ggggaggaac aaccagggga aggatttgcc aggggagcat 105060tcccagggtg cagacccatc
ccctgcaaca tcaacccttc tctggctgca cggccccccc 105120caggcagacc cagcactggc
cccttggctc ccatcaaggg tgcccaattc cctggaccgc 105180tctgggttgg gccctgggag
ccttgtcctc agaagggcaa agaggctggg ccccgctcct 105240tgaccccatc ctcccctcaa
cagtgggcta cgaccgaaac aacaagcagc accacagact 105300tctcctctgc ctcctcatga
cctcctgtga cctctctgac cagaccaagg gctggaagac 105360tacgagaaag atcgcggtag
gtgtagtcct ccctgggaag gcacaggctg cccaccctgc 105420ccagctttgg gtgccccctg
tgcctgaata ccctctctct gctcagctca gcctggctgt 105480gttctgggga gacagaaacc
tagaccatct cagggtgaca aatggagact cagagagggg 105540aacagaccta gcaagtcagt
ggctggtgga aggtgggccc caacccagcc actccctgcc 105600tcaggccatc ccactgccaa
gctggggctg gtggggacgg ctcctgagct gggactgaat 105660ccctgggcct cagttttctc
tcctgggaac gggctgtcag aggagcttgg gtggatgtat 105720cctacataga ggatgtgatg
agagtgttgg cctttcagga gctgatctac aaagaattct 105780tctcccaggg agacctggta
tgtgtggagt gaccccagga tgtccaggat gggggagggt 105840tcctggcctg ggacagggag
ggcttgaact agcctgaccc tggtacccga tggaggaatg 105900agagggacag gcctgacgac
tcgatgcctg caggagaagg ccatgggcaa caggccgatg 105960gagatgatgg accgggagaa
ggcctatatc cctgagctgc aaatcagctt catggagcac 106020attgcaatgc ccatctacaa
gtgagtgagc tcatggggac aagctgcacc ctgcacagag 106080agggtaggct ggagtgggga
catcacagga aacacaggtg ctgagattgg cctggcccag 106140ctccaactga ttcatcccct
tgcctctggg cataactgtc tcccgctgtg cccctcagtg 106200ggtccttcac ttcatccttg
gtcctcagtg gaaagagacc atcatgcttt cctaggtgtc 106260ctcctctgtc tcacattctt
gtggaagttc ttgttttttt tgagatggag tctcactctg 106320ttgcccaggc tggagtgcaa
tggcacgatc ttggctcact gcaacctccc cctcctgggt 106380tcaagcgatt ctcctgcctc
agcctcccaa gtagctggga ttacaggcat gcaccaccac 106440gcccagctaa ttttgtattt
ttagtagaga tggggcttca ccattttggt caggctggtc 106500ttgaactcct gacttcaggt
gatccacaca cctcggcatc tctgagtgtt gggattacag 106560gcgtgagcta ccgtacctgg
cccttgtgga aattctattt gttgtgtagc cctagtcttt 106620cttgctgccc atggtctgat
ttctggcctc tcaccctctg cccccatgca cccgcaggct 106680gttgcaggac ctgttcccca
aagcggcaga gctgtacgag cgcgtggcct ccaaccgtga 106740gcactggacc aaggtgtccc
acaagttcac catccgcggc ctcccaagta acaactcgct 106800ggacttcctg gatgaggagt
acgaggtgcc tgatctggat ggcactaggg cccccatcaa 106860tggctgctgc agccttgatg
ctgagtgatc ccctccaggg acacttccct gcccaggcca 106920cctcccacag ccctccactg
gtctggccag atgcactggg aacagagcca cgggtcctgg 106980gtcctagacc aggacttcct
gtgtgaccct ggacaagtac taccttcctg ggcctcagct 107040ttctcgtctg tataatggaa
gcaagacttc caacctcacg gagactttgt aatttgttct 107100ctgagagcac aggggtgacc
aatgagcagt gggccctact ctgcacctct gaccacacct 107160tggcaagtct ttcccaagcc
attctttgtc tgagcagctt gatggtttct ccttgcccca 107220tttctgcccc accagatctt
tgctcctttc cctttgagga ctcccaccct ttggggtctc 107280caggatcctc atggaagggg
aaggtgagac atctgagtga gcagagtgtg gcatcttgga 107340aacagtcctt agttctgtgg
gaggactaga aacagccgcg gggcgaaggc cccctgagga 107400ccactactat actgatggtg
ggattgggac ctgggggata caggggcccc aggaagaagc 107460tgccagaggg gcagctcagt
gctctgcaga gaggggccct ggggagaagc aggatgggat 107520tgatgggcag gagggatccc
cgcactggga gacaggccca ggtatgaatg agccagccat 107580gcttcctcct gcctgtgtga
cgctgggcga gtctcttccc ctgtctgggc caaacaggga 107640gcgggtaaga caatccatgc
tctaagatcc attttagatc aatgtctaaa atagctctat 107700cgctctgcgg agtcccagca
gaggctatgg aatgtttctg caaccctaag gcacagagag 107760cccaaccctg agtgtctcag
aggccccctg agtgttcccc ttggcctgag ccccttaccc 107820attcctgcag ccagtgagag
acctggcctc agccctggca gggctctctc ttcaaggcca 107880tatccacctg tgccctgggg
cttgggagac cccatagggc cgggactctt gggtcagccc 107940ggccactggc ttctctcttt
ttctccgttt cattctgtgt gcgttgtggg gtgggggagg 108000gggtccacct gccttacctt
tctgagttgc ctttagagag atgcgttttt ctaggactct 108060gtgcaactgt cgtatatggt
cccgtgggct gaccgctttg tacatgagaa taaatctatt 108120tctttctacc agtcctcccc
catggggctg tttgcagact ttgtgcttgg ggtgggtgga 108180gggggggaat agaactggga
gaggcaaacg ccctttggaa ctccatggct tccagggtcc 108240tccacccttg gtgcctagcc
ccccttctgg ggaagtcata gacctgttgg ggtactccct 108300aggccagatc gtggaggcta
aggggtgggt ggcagatgag aaggcctggc catggagcag 108360tgatgggaca tgttggctgg
cagagattgt agaatagagg aaaaacaaag gttgaggcaa 108420gcaggcaggc tgcctggagg
aggtagcctg gagcttgtcc tagaccctcc cagcgctggc 108480ctgccctggt catgagtgcc
catacggcga gggcctaggc ctctgaactc tgtttctagc 108540tgcagtgatg cctggctgtg
tcccaggaag tcccacatcc cagttactct gagtcctgcc 108600gaaggtgcac gcctgagtca
gactccacac cagatccagc cccgggttgt gtctgaggag 108660ttgcgtctgt tcctctgcat
gagagtgttt acttccgccc agtccaagat gggcagactg 108720caggttgggg ctacgcggag
gctctgcctg gcacagtctc cagaccctgt ccccgacttg 108780cctacccccc tctgagctcc
tctccgtgtt catctcttcc tggtcagtaa aggttgatgt 108840gttaagaggg tgggcactgg
ggtctccttt cttggtggga gcaggaagga gatggacagg 108900gccatcctgt gaccatcagc
cattgccagc tttgcctttg ggaccacaga gcccatctgc 108960ttcctctgca gctccccctg
ccccactagc ctgtctgggt ttggaatctg ctcctctggc 109020tgaatggtct ccaggtttcc
agcttccctt agcgtcatgg ggctccaggc tcctcccatt 109080cccagctcct gctgtgggct
ccccaagtcc gtctctatcc tctcacagca caggacccag 109140gcttggccag tgggtccccg
ggtgggggtg ggagtggtca gtttgtggcc cacggccaat 109200aagagatggc tattctaatg
gtgcctggct gaccccaggg tcactgtggg ctgatgtagc 109260tgctcttctg cctgacccct
gaccctgagt gtgtgtgcgt gttcctcttc cacaactctt 109320caggcaaaga gaaccttgac
cctgcatctg tctgtcccca gcccagccct cctttgaggc 109380tcatgctgtg acacatccct
gtttttcacc aaatggaggg aacaaccaca gatatttcct 109440tgtgcacgca ggaccctgtg
ctagggctga gggctttgtc tttgtcctgc tctggaaagt 109500ctcacagttt gattggagag
ctagatctaa actcagatgc aggccatgac aacgctgtgg 109560ggtgcccggc catggggctc
caggcaggat cataaccctg agaacaacaa tgaggtttga 109620aagatgagca gatgttgttt
ataggcaaaa ggggacaggc actcctggta gaagaaactg 109680cttttgcaaa ggcctcgaga
acagaaggga ctggcaggtg gaggagccga gagatggagg 109740aggaggcaag gccagatcct
gaagggcctt aaatgccagg ttgtggagtt tggctttatt 109800ctgtgggcag tggagaacca
gagaaaggtt ttcagtagga gagtgactca gaagtgcatt 109860ttagaaagat ccccctggag
agcagggaag tgactgcaag gggagagggt gggcagggat 109920tattctatgg gtgatgtgct
gtgccctggg ctgggcgagg agaggaattc ggagatgcta 109980ggttggcaga acatggtgac
cagtgggtcg ggggatgcag agggaggact tggaggggcc 110040ctgggaggtg gggtctatgc
cactccatga agagctgtgg gggctctgtt cagcatcacc 110100ctcacccaca acaggtattg
ggtggagcct ctggcagggg tgagctccct gcaaaggtga 110160gcaaaacagc tatctgagga
tgcccaggga ggagaggtgg gaggaaggga gagaggacag 110220atgggaggag gctctgcaca
gagcctgagg acagccctca ccaggttaca gaacacaagg 110280cttgacccca ttggcttcct
gtagctgtcc tgctctccca acttaatggt ttcattttgc 110340attttattta aatttcacaa
tgattctagc agataccatt agtctattct gcagccaagt 110400tgtctaaggt ttggagaggt
taagtaatgc accaaggtta ggatttgagc cctacctgtc 110460tgattcccct ccgagagctg
tctgattcct ttctcctcct ctgggatagg ggaaggagac 110520tcagaaggac ggggtctcca
tcttcagtct ttgcaagact attgtagggc attgggatgg 110580tgagcacaaa gtgggttgaa
gccccagaga aagagctgag agctgggatc aactgtgtgt 110640gtgcatgtgt gtgtctgtgt
gtgtgtgagt tggagtaggg ggcagggaga aaagagtggg 110700gtggtggtgg cttgtagtgc
agctcagggc caccaggtgg tgtccagccc tcgctgtcct 110760cacctcccca gaggtcagag
aaggatatgg gagggggtgg ggtggggtga gggggacgcg 110820gcggggacgg gggggacggt
ggttggtagt ctcactcctg tccattcacc tacaggttga 110880gtatccctta tccaaaatgc
ttggggccag aagtgtctca gatttaagat ttttttcgga 110940ttttggaata tttgcatata
cataatgaga tatcttggga atgagacccc aggctaaaca 111000ggaaattcat ttatgtttta
tatacacaca gcctgaagca gttttatata atattttgaa 111060taattttatg catgaaacaa
agtttgtgca cattgaagca agtgtggaat tttccacttg 111120tggcattatg tcggtgctaa
aaaatgtttt agattttgga gcattttgga tctcagaact 111180ttgcattagg aattgaggac
taagtctgat attctgtctt acccagattc ctacctaaga 111240ggtctaggaa gtcatgccct
acaaaccata cattctcatc ag 1112824905PRTHomo sapien 4Pro
Pro Pro Pro Gln Pro Cys Ala Asp Ser Leu Gln Asp Ala Leu Leu1
5 10 15Ser Leu Gly Ser Val Ile Asp Ile
Ser Gly Leu Gln Arg Ala Val Lys20 25
30Glu Ala Leu Ser Ala Val Leu Pro Arg Val Glu Thr Val Tyr Thr Tyr35
40 45Leu Leu Asp Gly Glu Ser Gln Leu Val Cys
Glu Asp Pro Pro His Glu50 55 60Leu Pro
Gln Glu Gly Lys Val Arg Glu Ala Ile Ile Ser Gln Lys Arg65
70 75 80Leu Gly Cys Asn Gly Leu Gly
Phe Ser Asp Leu Pro Gly Lys Pro Leu85 90
95Ala Arg Leu Val Ala Pro Leu Ala Pro Asp Thr Gln Val Leu Val Met100
105 110Pro Leu Ala Asp Lys Glu Ala Gly Ala
Val Ala Ala Val Ile Leu Val115 120 125His
Cys Gly Gln Leu Ser Asp Asn Glu Glu Trp Ser Leu Gln Ala Val130
135 140Glu Lys His Thr Leu Val Ala Leu Arg Arg Val
Gln Val Leu Gln Gln145 150 155
160Arg Gly Pro Arg Glu Ala Pro Arg Ala Val Gln Asn Pro Pro Glu
Gly165 170 175Thr Ala Glu Asp Gln Lys Gly
Gly Ala Ala Tyr Thr Asp Arg Asp Arg180 185
190Lys Ile Leu Gln Leu Cys Gly Glu Leu Tyr Asp Leu Asp Ala Ser Ser195
200 205Leu Gln Leu Lys Val Leu Gln Tyr Leu
Gln Gln Glu Thr Arg Ala Ser210 215 220Arg
Cys Cys Leu Leu Leu Val Ser Glu Asp Asn Leu Gln Leu Ser Cys225
230 235 240Lys Val Ile Gly Asp Lys
Val Leu Gly Glu Glu Val Ser Phe Pro Leu245 250
255Thr Gly Cys Leu Gly Gln Val Val Glu Asp Lys Lys Ser Ile Gln
Leu260 265 270Lys Asp Leu Thr Ser Glu Asp
Val Gln Gln Leu Gln Ser Met Leu Gly275 280
285Cys Glu Leu Gln Ala Met Leu Cys Val Pro Val Ile Ser Arg Ala Thr290
295 300Asp Gln Val Val Ala Leu Ala Cys Ala
Phe Asn Lys Leu Glu Gly Asp305 310 315
320Leu Phe Thr Asp Glu Asp Glu His Val Ile Gln His Cys Phe
His Tyr325 330 335Thr Ser Thr Val Leu Thr
Ser Thr Leu Ala Phe Gln Lys Glu Gln Lys340 345
350Leu Lys Cys Glu Cys Gln Ala Leu Leu Gln Val Ala Lys Asn Leu
Phe355 360 365Thr His Leu Asp Asp Val Ser
Val Leu Leu Gln Glu Ile Ile Thr Glu370 375
380Ala Arg Asn Leu Ser Asn Ala Glu Ile Cys Ser Val Phe Leu Leu Asp385
390 395 400Gln Asn Glu Leu
Val Ala Lys Val Phe Asp Gly Gly Val Val Asp Asp405 410
415Glu Ser Tyr Glu Ile Arg Ile Pro Ala Asp Gln Gly Ile Ala
Gly His420 425 430Val Ala Thr Thr Gly Gln
Ile Leu Asn Ile Pro Asp Ala Tyr Ala His435 440
445Pro Leu Phe Tyr Arg Gly Val Asp Asp Ser Thr Gly Phe Arg Thr
Arg450 455 460Asn Ile Leu Cys Phe Pro Ile
Lys Asn Glu Asn Gln Glu Val Ile Gly465 470
475 480Val Ala Glu Leu Val Asn Lys Ile Asn Gly Pro Trp
Phe Ser Lys Phe485 490 495Asp Glu Asp Leu
Ala Thr Ala Phe Ser Ile Tyr Cys Gly Ile Ser Ile500 505
510Ala His Ser Leu Leu Tyr Lys Lys Val Asn Glu Ala Gln Tyr
Arg Ser515 520 525His Leu Ala Asn Glu Met
Met Met Tyr His Met Lys Val Ser Asp Asp530 535
540Glu Tyr Thr Lys Leu Leu His Asp Gly Ile Gln Pro Val Ala Ala
Ile545 550 555 560Asp Ser
Asn Phe Ala Ser Phe Thr Tyr Thr Pro Arg Ser Leu Pro Glu565
570 575Asp Asp Thr Ser Met Ala Ile Leu Ser Met Leu Gln
Asp Met Asn Phe580 585 590Ile Asn Asn Tyr
Lys Ile Asp Cys Pro Thr Leu Ala Arg Phe Cys Leu595 600
605Met Val Lys Lys Gly Tyr Arg Asp Pro Pro Tyr His Asn Trp
Met His610 615 620Ala Phe Ser Val Ser His
Phe Cys Tyr Leu Leu Tyr Lys Asn Leu Glu625 630
635 640Leu Thr Asn Tyr Leu Glu Asp Ile Glu Ile Phe
Ala Leu Phe Ile Ser645 650 655Cys Met Cys
His Asp Leu Asp His Arg Gly Thr Asn Asn Ser Phe Gln660
665 670Val Ala Ser Lys Ser Val Leu Ala Ala Leu Tyr Ser
Ser Glu Gly Ser675 680 685Val Met Glu Arg
His His Phe Ala Gln Ala Ile Ala Ile Leu Asn Thr690 695
700His Gly Cys Asn Ile Phe Asp His Phe Ser Arg Lys Asp Tyr
Gln Arg705 710 715 720Met
Leu Asp Leu Met Arg Asp Ile Ile Leu Ala Thr Asp Leu Ala His725
730 735His Leu Arg Ile Phe Lys Asp Leu Gln Lys Met
Ala Glu Val Gly Tyr740 745 750Asp Arg Asn
Asn Lys Gln His His Arg Leu Leu Leu Cys Leu Leu Met755
760 765Thr Ser Cys Asp Leu Ser Asp Gln Thr Lys Gly Trp
Lys Thr Thr Arg770 775 780Lys Ile Ala Glu
Leu Ile Tyr Lys Glu Phe Phe Ser Gln Gly Asp Leu785 790
795 800Glu Lys Ala Met Gly Asn Arg Pro Met
Glu Met Met Asp Arg Glu Lys805 810 815Ala
Tyr Ile Pro Glu Leu Gln Ile Ser Phe Met Glu His Ile Ala Met820
825 830Pro Ile Tyr Lys Leu Leu Gln Asp Leu Phe Pro
Lys Ala Ala Glu Leu835 840 845Tyr Glu Arg
Val Ala Ser Asn Arg Glu His Trp Thr Lys Val Ser His850
855 860Lys Phe Thr Ile Arg Gly Leu Pro Ser Asn Asn Ser
Leu Asp Phe Leu865 870 875
880Asp Glu Glu Tyr Glu Val Pro Asp Leu Asp Gly Thr Arg Ala Pro Ile885
890 895Asn Gly Cys Cys Ser Leu Asp Ala
Glu900 9055921PRTBos taurus 5Met Arg Arg Gln Pro Ala Ala
Ser Arg Asp Leu Phe Ala Gln Glu Pro1 5 10
15Val Pro Pro Gly Ser Gly Asp Gly Ala Leu Gln Asp Ala Leu
Leu Ser20 25 30Leu Gly Ser Val Ile Asp
Val Ala Gly Leu Gln Gln Ala Val Lys Glu35 40
45Ala Leu Ser Ala Val Leu Pro Lys Val Glu Thr Val Tyr Thr Tyr Leu50
55 60Leu Asp Gly Glu Ser Arg Leu Val Cys
Glu Glu Pro Pro His Glu Leu65 70 75
80Pro Gln Glu Gly Lys Val Arg Glu Ala Val Ile Ser Arg Lys
Arg Leu85 90 95Gly Cys Asn Gly Leu Gly
Pro Ser Asp Leu Pro Gly Lys Pro Leu Ala100 105
110Arg Leu Val Ala Pro Leu Ala Pro Asp Thr Gln Val Leu Val Ile
Pro115 120 125Leu Val Asp Lys Glu Ala Gly
Ala Val Ala Ala Val Ile Leu Val His130 135
140Cys Gly Gln Leu Ser Asp Asn Glu Glu Trp Ser Leu Gln Ala Val Glu145
150 155 160Lys His Thr Leu
Val Ala Leu Lys Arg Val Gln Ala Leu Gln Gln Arg165 170
175Glu Ser Ser Val Ala Pro Glu Ala Thr Gln Asn Pro Pro Glu
Glu Ala180 185 190Ala Gly Asp Gln Lys Gly
Gly Val Ala Tyr Thr Asn Gln Asp Arg Lys195 200
205Ile Leu Gln Leu Cys Gly Glu Leu Tyr Asp Leu Asp Ala Ser Ser
Leu210 215 220Gln Leu Lys Val Leu Gln Tyr
Leu Gln Gln Glu Thr Gln Ala Ser Arg225 230
235 240Cys Cys Leu Leu Leu Val Ser Glu Asp Asn Leu Gln
Leu Ser Cys Lys245 250 255Val Ile Gly Asp
Lys Val Leu Glu Glu Glu Ile Ser Phe Pro Leu Thr260 265
270Thr Gly Arg Leu Gly Gln Val Val Glu Asp Lys Lys Ser Ile
Gln Leu275 280 285Lys Asp Leu Thr Ser Glu
Asp Met Gln Gln Leu Gln Ser Met Leu Gly290 295
300Cys Glu Val Gln Ala Met Leu Cys Val Pro Val Ile Ser Arg Ala
Thr305 310 315 320Asp Gln
Val Val Ala Leu Ala Cys Ala Phe Asn Lys Leu Gly Gly Asp325
330 335Leu Phe Thr Asp Gln Asp Glu His Val Ile Gln His
Cys Phe His Tyr340 345 350Thr Ser Thr Val
Leu Thr Ser Thr Leu Ala Phe Gln Lys Glu Gln Lys355 360
365Leu Lys Cys Glu Cys Gln Ala Leu Leu Gln Val Ala Lys Asn
Leu Phe370 375 380Thr His Leu Asp Asp Val
Ser Val Leu Leu Gln Glu Ile Ile Thr Glu385 390
395 400Ala Arg Asn Leu Ser Asn Ala Glu Ile Cys Ser
Val Phe Leu Leu Asp405 410 415Gln Asn Glu
Leu Val Ala Lys Val Phe Asp Gly Gly Val Val Glu Asp420
425 430Glu Ser Tyr Glu Ile Arg Ile Pro Ala Asp Gln Gly
Ile Ala Gly His435 440 445Val Ala Thr Thr
Gly Gln Ile Leu Asn Ile Pro Asp Ala Tyr Ala His450 455
460Pro Leu Phe Tyr Arg Gly Val Asp Asp Ser Thr Gly Phe Arg
Thr Arg465 470 475 480Asn
Ile Leu Cys Phe Pro Ile Lys Asn Glu Asn Gln Glu Val Ile Gly485
490 495Val Ala Glu Leu Val Asn Lys Ile Asn Gly Pro
Trp Phe Ser Lys Phe500 505 510Asp Glu Asp
Leu Ala Thr Ala Phe Ser Ile Tyr Cys Gly Ile Ser Ile515
520 525Ala His Ser Leu Leu Tyr Lys Lys Val Asn Glu Ala
Gln Tyr Arg Ser530 535 540His Leu Ala Asn
Glu Met Met Met Tyr His Met Lys Val Ser Asp Asp545 550
555 560Glu Tyr Thr Lys Leu Leu His Asp Gly
Ile Gln Pro Val Ala Ala Ile565 570 575Asp
Ser Asn Phe Ala Ser Phe Thr Tyr Thr Pro Arg Ser Leu Pro Glu580
585 590Asp Asp Thr Ser Met Ala Ile Leu Ser Met Leu
Gln Asp Met Asn Phe595 600 605Ile Asn Asn
Tyr Lys Ile Asp Cys Pro Thr Leu Ala Arg Phe Cys Leu610
615 620Met Val Lys Lys Gly Tyr Arg Asp Pro Pro Tyr His
Asn Trp Met His625 630 635
640Ala Phe Ser Val Ser His Phe Cys Tyr Leu Leu Tyr Lys Asn Leu Glu645
650 655Leu Thr Asn Tyr Leu Glu Asp Met Glu
Ile Phe Ala Leu Phe Ile Ser660 665 670Cys
Met Cys His Asp Leu Asp His Arg Gly Thr Asn Asn Ser Phe Gln675
680 685Val Ala Ser Lys Ser Val Leu Ala Ala Leu Tyr
Ser Ser Glu Gly Ser690 695 700Val Met Glu
Arg His His Phe Ala Gln Ala Ile Ala Ile Leu Asn Thr705
710 715 720His Gly Cys Asn Ile Phe Asp
His Phe Ser Arg Lys Asp Tyr Gln Arg725 730
735Met Leu Asp Leu Met Arg Asp Ile Ile Leu Ala Thr Asp Leu Ala His740
745 750His Leu Arg Ile Phe Lys Asp Leu Gln
Lys Met Ala Glu Val Gly Tyr755 760 765Asp
Arg Thr Asn Lys Gln His His Ser Leu Leu Leu Cys Leu Leu Met770
775 780Thr Ser Cys Asp Leu Ser Asp Gln Thr Lys Gly
Trp Lys Thr Thr Arg785 790 795
800Lys Ile Ala Glu Leu Ile Tyr Lys Glu Phe Phe Ser Gln Gly Asp
Leu805 810 815Glu Lys Ala Met Gly Asn Arg
Pro Met Glu Met Met Asp Arg Glu Lys820 825
830Ala Tyr Ile Pro Glu Leu Gln Ile Ser Phe Met Glu His Ile Ala Met835
840 845Pro Ile Tyr Lys Leu Leu Gln Asp Leu
Phe Pro Lys Ala Ala Glu Leu850 855 860Tyr
Glu Arg Val Ala Ser Asn Arg Glu His Trp Thr Lys Val Ser His865
870 875 880Lys Phe Thr Ile Arg Gly
Leu Pro Ser Asn Asn Ser Leu Asp Phe Leu885 890
895Asp Glu Glu Tyr Glu Val Pro Asp Leu Asp Gly Ala Arg Ala Pro
Ile900 905 910Asn Gly Cys Cys Ser Leu Asp
Ala Glu915 920
User Contributions:
Comment about this patent or add new information about this topic: