Patent application number | Description | Published |
20090016544 | LOW-POWER DIGITAL-TO-ANALOG CONVERTER - A digital-to-analog converter (DAC) with a digital segment having a digital data input and an analog segment coupled to the digital segment and having an analog output to output an analog signal corresponding to the digital data. The analog segment includes one or more gain stages and a feedback structure to couple the analog output to the one or more gain stages to attenuate signal distortion at the analog output. A combined gain of the one or more gain stages determines a signal distortion attenuation characteristic of the analog segment. | 01-15-2009 |
20090213914 | CAPACITIVE ISOLATION CIRCUITRY - An integrated circuit having voltage isolation capabilities includes a plurality of communications channels for transceiving data from the integrated circuit. Each of the communications channel includes capacitive isolation circuitry located in conductive layers of the integrated circuit for providing a high voltage isolation link. The capacitive isolation circuitry distributes a first portion of a high voltage isolation signal across a first group of capacitors on a first link and a second link in the capacitive isolation circuitry and distributes a second portion of the high voltage isolation signal across a second group of capacitors in the first link and the second link in the capacitive isolation circuitry. A differential receiver on each of the plurality of communications channels receives the data on the first link and the second link. A differential transmitter on each of the plurality of communications channels transmits the data on the first link at a selected one of a first phase and a second phase and for transmitting the data on the second link at the selected one of the first phase and the second phase. The second phase is 180 degrees out of phase with the first phase. Each of the differential transmitters controls the selection of the first phase and the second phase on each of the first link and the second link such that only the first phase or the second phase is cross coupled onto a selected communications channel from adjacent communications channels. | 08-27-2009 |
20090243028 | CAPACITIVE ISOLATION CIRCUITRY WITH IMPROVED COMMON MODE DETECTOR - An integrated circuit having voltage isolation capabilities comprising a first galvanically isolated area of the integrated circuit containing a first group of functional circuitry for processing a data stream. The first group of functional circuitry located in a substrate of the integrated circuit. Capacitive isolation circuitry located in conductive layers of the integrated circuit provides a high voltage isolation link between the first group of functional circuitry and a second group of functional circuitry connected to the integrated circuit through the capacitive isolation circuitry. The capacitive isolation circuitry includes a differential transmitter for transmitting data in a differential signal to the second group of functional circuitry via the capacitive isolation circuitry. A differential receiver receives data within the differential signal from the second group of functional circuitry via the capacitive isolation circuitry. A detector circuit within the differential receiver detects the received data. The detector circuit monitors the differential signal and generates a first logical output when a voltage generated responsive to the differential signal exceeds a programmable voltage threshold level and generates a second logical output when the voltage generated responsive to the differential signal falls below the programmable voltage threshold level. | 10-01-2009 |
20100327930 | SCHMITT TRIGGER WITH GATED TRANSITION LEVEL CONTROL - A Schmitt trigger comprises first and second circuitry. The first circuitry receives an input voltage and provides an output voltage at either a logical “low” or a logical “high” voltage level responsive to the input voltage and a first bias voltage. The second circuitry connects to the first circuitry to generate a second bias current for generating the output voltage. The second bias current is larger than the first bias current. The Schmitt trigger operates in a low power mode of operation using only the first bias voltage to maintain the logical “low” voltage level or the logical “high” voltage level at a substantially constant level. In a high power mode of operation the Schmitt trigger uses the second bias voltage during transition periods between the logical “low” voltage level and the logical “high” voltage level. | 12-30-2010 |
20120241905 | SUBSTRATE ISOLATION STRUCTURE - An integrated circuit includes a conductive substrate pick-up region in the substrate that forms a perimeter around a portion of the substrate. Conductive stripes traverse the portion of the substrate within the perimeter and are coupled to a low impedance node along with the substrate pick-up region. A capacitor has a bottom plate formed above the conductive stripes. The pick-up region and the conductive stripes absorb injected current caused by parasitic capacitance between the bottom plate of the capacitor and the substrate region thereby reducing cross-talk caused by the injected current. | 09-27-2012 |
20130221937 | Voltage Regulator with Adjustable Feedback - A voltage regulator circuit with variable feedback is disclosed. In one embodiment, a voltage regulator includes an amplifier having a first input configured to receive a reference voltage and a second input configured to receive a feedback signal. The voltage regulator further includes first and second transistors each having respective gate terminals coupled to an output of the amplifier. A resistor network coupled to the second input of the amplifier and further coupled to the first and second transistors. The resistor network is configured to produce the feedback signal based on currents through the first and second transistors, respectively. | 08-29-2013 |
20130221940 | LINEAR REGULATOR - A technique includes using a pass device of a linear regulator to provide an output signal for the linear regulator in response to a signal that is received at a control terminal of the pass device. The control terminal is coupled to a node, and the node is associated with a bias current. The technique includes using a feedback path to communicate a feedback current with the node to regulate the output signal. The use of the feedback path includes regulating a magnitude of the feedback current to be within a range of magnitudes, which include a magnitude that exceeds a magnitude of the bias current. | 08-29-2013 |
20140184435 | Successive Approximation Register Analog-to-Digital Converter with Multiple Capacitive Sampling Circuits and Method - A circuit includes a comparator including a first input, a second input, and an output. The circuit further includes a plurality of capacitive sampling circuits configured to be selectively coupled to the first and second inputs. Each of the plurality of capacitive sampling circuits includes first and second capacitors, and includes first and second conversion switches configured to selectively couple the first and second capacitors to the first and second inputs, respectively. The first and second conversion switches of a selected one of the plurality of capacitive sampling circuits are closed to couple the selected one to the first and second inputs of the comparator during a conversion phase. | 07-03-2014 |
20140333465 | Clocked Reference Buffer in a Successive Approximation Analog-to-Digital Converter - A voltage reference circuit includes a capacitor including a first terminal and including a second terminal coupled to a power supply node. The voltage reference circuit further includes an amplifier, a first transistor, and a switch. The amplifier includes a first input configured to receive a reference voltage input signal, a second input configured to receive a feedback signal, and an output. The first transistor includes a source coupled to the second input of the amplifier and to an output node, a gate coupled to the capacitor, and a drain. The first transistor is configured to provide a reference voltage at the source based on a charge provided to the gate by the capacitor. The switch includes a first terminal coupled to the output of the amplifier, and includes a second terminal coupled to the first terminal of the capacitor. | 11-13-2014 |
20150061913 | Dual-Path Comparator and Method - A method includes receiving a differential voltage signal at first and second inputs of a comparator and selectively providing the differential voltage signal to one of a first conversion path and a second conversion path of the comparator during a conversion phase to determine a digital value corresponding to the differential voltage signal. The first and second conversion paths including first and second pluralities of gain stages, respectively. The method further includes coupling the selected one of the first conversion path and the second conversion path to an output to provide the digital value. | 03-05-2015 |