Patent application number | Description | Published |
20090000275 | INTERNAL COMBUSTION ENGINE HAVING COMPRESSOR WITH FIRST AND SECOND TRIBUTARY INLETS - An internal combustion engine ( | 01-01-2009 |
20100037856 | EXHAUST SYSTEM FOR ENGINE BRAKING - An engine braking system includes a turbocharger having a turbine and a compressor. An exhaust manifold includes a first pipe for channeling a first portion of the engine exhaust and a second pipe for channeling a second portion of the engine exhaust. The first and second pipes are connected to an inlet of the turbine. A cross pipe, as part of an exhaust gas recirculation (EGR) conduit, is open between the first and second pipes and at one end to the remaining portion of the EGR conduit. A valve can be arranged within the cross pipe and ca be operable in a first mode of operation to block flow between the first and second pipes and allow flow between the first pipe and the remaining portion of the EGR conduit and to allow flow between the first and second pipes and the inlet of the turbine. The valve is operable in a second mode of operation to allow flow between the first and second pipes, and to reduce or block flow between the second pipe and the turbine inlet. | 02-18-2010 |
20110100324 | HIGH-TEMPERATURE-FLOW ENGINE BRAKE WITH VALVE ACTUATION - A control system and method for engine braking for a includes an engine braking control and at least one exhaust valve actuator responsive to demands from the braking control for causing the exhaust valve to open. The braking control is configured to command the exhaust valve actuator to substantially open and substantially close the exhaust valve at least twice during each engine cycle, a first event and a second event, when the pressure within the exhaust manifold is greater than the pressure in the cylinder. The braking control can also command the exhaust valve actuator to substantially open and substantially close during a third event between the first and second events. | 05-05-2011 |
20110120411 | SOLENOID CONTROL FOR VALVE ACTUATION IN ENGINE BRAKE - An apparatus and method for varying a counter force to valve spring preload of a brake exhaust valve to undertake engine braking, includes a solenoid controlled hydraulic actuator. A control cylinder is arranged to move with a rocker arm and a control piston is arranged to slide within the control cylinder. During engine braking the control piston slides to press the valve stem to open the brake exhaust valve. An oil chamber is arranged above the control piston and is open into the control cylinder. A source of pressurized oil is selectably introduced into the oil chamber by the solenoid controlled hydraulic actuator to slide the control piston within the control cylinder to open and hold open the brake exhaust valve. | 05-26-2011 |
20110232279 | Internal Combustion Engine Having Compressor With First And Second Tributary Inlets - An internal combustion engine ( | 09-29-2011 |
20120174887 | ENGINE BRAKE CAMSHAFT LOBE LUBRICATION METHOD - In an engine braking system of the type wherein a cam lobe lifts a follower by direct contact, wherein the follower is at least partially contained in a brake housing containing oil. A slave piston is also at least partially contained in the brake housing, and during engine braking, movement of the follower causes the oil to move the slave piston outward. Movement of the slave piston opens an engine braking exhaust valve to open a flow path between an engine cylinder and an exhaust conduit. An oil passage through the follower is provided to lubricate an interface between a flat face of the follower and the cam lobe with oil from the brake housing. The oil passage has an outlet hole that is open on the flat face outside of the contact area between the flat face and the cam lobe. | 07-12-2012 |
20140196698 | VVA CONTROL OF NOx IN A LOW AP AREA OF AN ENGINE OPERATING MAP - When the difference by which pressure in an engine exhaust manifold exceeds pressure in an engine intake manifold becomes less than a selected difference while an intake valve operating mechanism is closing cylinder intake valves at a selected time in the engine cycle, while an EGR system is conveying the engine exhaust component of an air/exhaust mixture from an exhaust system to an intake system, and a certain quantity of NOx is present in engine exhaust entering the exhaust manifold, the quantity of NOx present in engine exhaust entering the exhaust manifold is reduced below that certain quantity by causing the intake valve operating mechanism to close the cylinder intake valves earlier in the engine cycle than the selected time. | 07-17-2014 |
20140202422 | CONTROLLING CYLINDER USAGE DURING REDUCED LOAD ON AN INTERNAL COMBUSTION PROPULSION ENGINE - While an engine is miming with all engine cylinders being fueled, a historical record of engine output torque and engine speed is compiled. When the historical record discloses a change in engine operation from a relatively greater output torque and engine speed to a relatively lesser output torque and speed, fueling of at least one engine cylinder ceases while engine output torque and engine speed remain substantially unchanged at the relatively lesser output torque and speed by continuing fueling of other engine cylinders and by causing at least one mechanism to control the timing of operation of cylinder intake and exhaust valves of the at least one engine cylinder to substantially minimize pumping loss attributable to the at least one engine cylinder. | 07-24-2014 |
20140366528 | COORDINATING VARIABLE VALVE ACTUATION AND TURBOCHARGER OPERATION IN AN INTERNAL COMBUSTION ENGINE - An engine control system coordinates control of a pressure regulating mechanism associated with a turbocharger turbine and control of a variable valve actuating (VVA) mechanism for expanding the range of possible exhaust gas recirculation rates over a large portion of an engine operating map to provide EGR rates which are greater than typical present-day levels while mitigating engine pumping losses by causing the turbocharger to operate with better efficiency in some regions of the map where it otherwise would not. Turbocharger efficiency is improved by controlling the VVA mechanism to set the timing of operation of its respective cylinder valves in accordance with a predetermined correlation of operating efficiencies of a compressor to timing of operation of respective engine cylinder valves, causing the compressor to operate at points of better efficiency than it otherwise would without use of VVA. | 12-18-2014 |