Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Norio Koma, Gifu JP

Norio Koma, Gifu JP

Patent application numberDescriptionPublished
20080303983DISPLAY DEVICE - The invention is directed to a higher contrast in a display device having a lighting device as a front light. A lighting portion is attached to a reflective liquid crystal display portion. A first transparent substrate and a second transparent substrate made of a glass substrate etc. are attached to each other with a sealing layer coated on those peripheral portions therebetween. The back surface of the first transparent substrate is attached to the reflective liquid crystal display portion, and an organic EL element is formed on the front surface of the first transparent substrate. The organic EL element is sealed in a space surrounded by the first transparent substrate, the second transparent substrate, and the sealing layer. The organic EL element is formed in a region corresponding to a pixel region of the reflective liquid crystal display portion. A desiccant layer is formed on the front surface of the second transparent substrate.12-11-2008
20080309850DISPLAY DEVICE - The invention is directed to a higher contrast in a display device having a lighting device as a front light. A lighting portion is attached to a reflective liquid crystal display portion. A first transparent substrate and a second transparent substrate made of a glass substrate etc. are attached to each other with a sealing layer coated on those peripheral portions therebetween. The back surface of the first transparent substrate is attached to the reflective liquid crystal display portion, and an organic EL element is formed on the front surface of the first transparent substrate. The organic EL element is sealed in a space surrounded by the first transparent substrate, the second transparent substrate, and the sealing layer. The organic EL element is formed in a region corresponding to a pixel region of the reflective liquid crystal display portion. A desiccant layer is formed on the front surface of the second transparent substrate.12-18-2008
20090153789Vertically Aligned Liquid Crystal Display - A vertically aligned type liquid crystal display includes a liquid crystal layer disposed between pixel electrodes and a common electrode and containing vertically aligned liquid crystal molecules, the orientation of the liquid crystal molecules being controlled by an electric field. An orientation controller is formed on the common electrode at a position opposing the pixel electrode and an aspect ratio, i.e., a vertical to horizontal length ratio of the pixel electrode is set to at least 2. Alternatively, the pixel electrode is partitioned into at least two electrode regions so that each region represents a divided pixel electrode.06-18-2009
20100226120ILLUMINATION DEVICE AND DISPLAY APPARATUS - An illumination device includes: a substrate; a first transparent electrode covering approximately an entire surface of a display region of the substrate; a second transparent electrode which overlaps with the first transparent electrode when seen in plan view and covers approximately the entire surface of the display region; and a plurality of island shaped light emitting elements disposed between the first transparent electrode and the second transparent electrode. The first and second transparent electrodes are formed as single continuous films.09-09-2010
20100231825ILLUMINATION APPARATUS, DISPLAY APPARATUS, AND ELECTRONIC DEVICE INCLUDING A DISPLAY APPARATUS - An illumination apparatus includes: a substrate; reflective layers formed upon the substrate; and light-emitting layers formed upon respective reflective layers and disposed so as to overlap the respective reflective layers when viewed from above. The reflective layers are formed in a convex shape protruding toward the respective light-emitting layers, and when reflecting light irradiated from the light-emitting layers, diffuse and reflect the light.09-16-2010
20110199567VERTICALLY ALIGNED LIQUID CRYSTAL DISPLAY - A vertically aligned type liquid crystal display includes a liquid crystal layer disposed between pixel electrodes and a common electrode and containing vertically aligned liquid crystal molecules, the orientation of the liquid crystal molecules being controlled by an electric field. An orientation controller is formed on the common electrode at a position opposing the pixel electrode and an aspect ratio, i.e., a vertical to horizontal length ratio of the pixel electrode is set to at least 2. Alternatively, the pixel electrode is partitioned into at least two electrode regions so that each region represents a divided pixel electrode. An orientation controller is formed on the common electrode so as to correspond to each divided pixel electrode, an aspect ratio of each divided pixel electrode is set to at least 2. As such, the influence at the edge sections of the pixel electrode is reduced, viewing angle characteristic and transmittance are improved, and average response time is shortened.08-18-2011
20110205481PIXEL CIRCUIT, LIQUID-CRYSTAL DEVICE, AND ELECTRONIC DEVICE - A pixel circuit that is connected with a scanning line and a data line includes a first transistor of which a gate electrode is connected with the scanning line and one of a source electrode and a drain electrode is connected with the data line, a second transistor of which a gate electrode is connected with the scanning line, one of a source electrode and a drain electrode is connected with the first transistor, and the other one of the source electrode and the drain electrode is connected with a first node, an auxiliary capacitor connected with a node at which the first transistor and the second transistor are connected to each other, a pixel electrode connected with the first node, a counter electrode opposed to the pixel electrode, liquid crystal held between the pixel electrode and the counter electrode, and a holding capacitor connected with the first node.08-25-2011
20110221792LIQUID CRYSTAL DEVICE, METHOD OF DRIVING THE SAME, AND ELECTRONIC APPLIANCE - A liquid crystal device includes: a pixel for outputting a specified color light, which is provided with liquid crystals and an electrode for driving the liquid crystals and outputs light of the specified color; a pixel for controlling luminance and color purity, which outputs a control light for controlling the luminance and the color purity of the output light of the specified color; and a driving unit driving the pixel for outputting a specified color light, and the pixel for controlling luminance and color purity based on brightness information that indicates the brightness of an external environmental light.09-15-2011
20120256207ILLUMINATION DEVICE AND DISPLAY APPARATUS - An illumination device includes: a substrate; a first transparent electrode covering approximately an entire surface of a display region of the substrate; a second transparent electrode which overlaps with the first transparent electrode when seen in plan view and covers approximately the entire surface of the display region; and a plurality of island shaped light emitting elements disposed between the first transparent electrode and the second transparent electrode. The first and second transparent electrodes are formed as single continuous films.10-11-2012
20130038828VERTICALLY ALIGNED LIQUID CRYSTAL DISPLAY - A vertically aligned type liquid crystal display includes a liquid crystal layer disposed between pixel electrodes and a common electrode and containing vertically aligned liquid crystal molecules, the orientation of the liquid crystal molecules being controlled by an electric field. An orientation controller is formed on the common electrode at a position opposing the pixel electrode and an aspect ratio, i.e., a vertical to horizontal length ratio of the pixel electrode is set to at least 2. Alternatively, the pixel electrode is partitioned into at least two electrode regions so that each region represents a divided pixel electrode. An orientation controller is formed on the common electrode so as to correspond to each divided pixel electrode, an aspect ratio of each divided pixel electrode is set to at least 2. As such, the influence at the edge sections of the pixel electrode is reduced, viewing angle characteristic and transmittance are improved, and average response time is shortened.02-14-2013

Patent applications by Norio Koma, Gifu JP

Website © 2015 Advameg, Inc.