Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Mujahid Muhammad, Essex Junction US

Mujahid Muhammad, Essex Junction, VT US

Patent application numberDescriptionPublished
20090026492LATERAL JUNCTION BREAKDOWN TRIGGERED SILICON CONTROLLED RECTIFIER BASED ELECTROSTATIC DISCHARGE PROTECTION DEVICE - The components of a silicon controlled rectifier, which are a p-doped anode, an n-well middle region, a p-well middle region, and an n-doped cathode, are formed along sidewalls and a bottom surface of a shallow trench isolation structure. The p-doped anode and the n-doped cathode are formed directly underneath a top surface of a silicon substrate. A trigger mechanism that provides an instantaneous turn-on current to latch the silicon controlled rectifier to an on-state is also provided. The trigger mechanism provides a temporary surge in the voltage of the p-doped middle region, causing the instantaneous turn-on current to flow from the p-doped middle region to the n-doped cathode. Combined with the proximity of the p-doped anode to the n-doped cathode, the trigger mechanism provides a fast turn on and a short low resistance current path for the electrostatic discharge protection circuit.01-29-2009
20090231766ELETROSTATIC DISCHARGE (ESD) DEVICE AND METHOD OF FABRICATING - A structure and method of fabricating electrostatic discharge (EDS) circuitry in an integrated circuit chip by integrating a lateral bipolar, either a p-n-p with a NMOSFET or a n-p-n with a PMOSFET within a triple well. The lateral bipolar preferably includes diodes at the I/O and/or the VDDs of the circuitry.09-17-2009
20100181621SIGNAL AND POWER SUPPLY INTEGRATED ESD PROTECTION DEVICE - An integrated circuit, design structures and methods of forming the integrated circuit which includes a signal pad ESD coupled to an I/O signal pad and a power supply ESD coupled to a source VDD. The signal pad ESD and the power supply ESD are integrated in a single ESD structure.07-22-2010
20100246076Electrical Overstress Protection Circuit - A semiconductor circuit for electric overstress (EOS) protection is provided. The semiconductor circuit employs an electrostatic discharge (ESD) protection circuit, which has a resistor-capacitor (RC) time-delay network connected to a discharge capacitor. An electronic component that has voltage snapback property or a diodic behavior is connected to alter the logic state of the gate of the discharge transistor under an EOS event. Particularly, the electronic component is configured to turn on the gate of the discharge capacitor throughout the duration of an electrical overstress (EOS) condition as well as throughout the duration of an ESD event. A design structure may be employed to design or manufacture a semiconductor circuit that provides protection against an EOS condition without time limitation, i.e., without being limited by the time constant of the RC time delay network for EOS events that last longer than 1 microsecond.09-30-2010
20100265622ROBUST ESD PROTECTION CIRCUIT, METHOD AND DESIGN STRUCTURE FOR TOLERANT AND FAILSAFE DESIGNS - A robust ESD protection circuit, method and design structure for tolerant and failsafe designs are disclosed. A circuit includes a middle junction control circuit that turns off a top NFET of a stacked NFET electrostatic discharge (ESD) protection circuit during an ESD event.10-21-2010
20110286135Silicon Controlled Rectifier Based Electrostatic Discharge Protection Circuit With Integrated JFETS, Method Of Operation And Design Structure - An enhanced turn-on time SCR based electrostatic discharge (ESD) protection circuit includes an integrated JFET, method of use and design structure. The enhanced turn-on time silicon controlled rectifier (SCR) based electrostatic discharge (ESD) protection circuit includes an integrated JFET in series with an NPN base.11-24-2011
20120043583LOW LEAKAGE, LOW CAPACITANCE ELECTROSTATIC DISCHARGE (ESD) SILICON CONTROLLED RECITIFER (SCR), METHODS OF MANUFACTURE AND DESIGN STRUCTURE - A low leakage, low capacitance diode based triggered electrostatic discharge (ESD) silicon controlled rectifiers (SCR), methods of manufacture and design structure are provided. The method includes providing a silicon film on an insulator layer. The method further includes forming isolation regions which extend from an upper side of the silicon layer to the insulator layer. The method further includes forming one or more diodes in the silicon layer, including a p+ region and an n+ region formed in a well bordered by the isolation regions. The isolation regions isolate the one or more diodes in a vertical direction and the insulator layer isolates the one or more diodes from an underlying P or N type substrate, in a horizontal direction.02-23-2012
20120091530Low trigger voltage electrostatic discharge NFET in triple well CMOS technology - An electrostatic discharge (ESD) protection device for an integrated circuit includes a buried layer of a first polarity type formed in a substrate of a second polarity type. A well region of the second polarity type is formed above the buried layer. An FET of the first polarity type is formed within the well region. An inner pair of shallow wells of the first polarity type is disposed adjacent to source and drain diffusion regions of the FET, the inner pair of shallow wells having a depth such that a bottom of the inner pair of shallow wells is above a top of the buried layer. An outer pair of deep wells of the first polarity type extends down to the top of the buried layer such that the outer pair of deep wells and the buried layer define a perimeter of the well region of the second polarity type.04-19-2012
20120126285Vertical NPNP Structure In a Triple Well CMOS Process - A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.05-24-2012
20120250195ELECTROSTATIC DISCHARGE POWER CLAMP WITH A JFET BASED RC TRIGGER CIRCUIT - An ESD power clamp circuit and method of ESD protection. The ESD power clamp circuit includes: a power clamp device coupled to a resistive/capacitive (RC) network, the RC network including a capacitor as the capacitive element of the RC network and one or more junction field effect transistors (JFETs) configured as variable resistors as the resistive element of the RC network.10-04-2012
20120305984SCR/MOS CLAMP FOR ESD PROTECTION OF INTEGRATED CIRCUITS - An electrostatic discharge (ESD) protection circuit, methods of fabricating an ESD protection circuit, methods of providing ESD protection, and design structures for an ESD protection circuit. An NFET may be formed in a p-well and a PFET may be formed in an n-well. A butted p-n junction formed between the p-well and n-well results in an NPNP structure that forms an SCR integrated with the NFET and PFET. The NFET, PFET and SCR are configured to collectively protect a pad, such as a power pad, from ESD events. During normal operation, the NFET, PFET, and SCR are biased by an RC-trigger circuit so that the ESD protection circuit is in a high impedance state. During an ESD event while the chip is unpowered, the RC-trigger circuit outputs trigger signals that cause the SCR, NFET, and PFET to enter into conductive states and cooperatively to shunt ESD currents away from the protected pad.12-06-2012
20130009207VERTICAL NPNP STRUCTURE IN A TRIPLE WELL CMOS PROCESS - A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.01-10-2013
20130020645ESD FIELD-EFFECT TRANSISTOR AND INTEGRATED DIFFUSION RESISTOR - An electrostatic discharge protection device, methods of fabricating an electrostatic discharge protection device, and design structures for an electrostatic discharge protection device. A drain of a first field-effect transistor and a diffusion resistor of higher electrical resistance may be formed as different portions of a doped region. The diffusion resistor, which is directly coupled with the drain of the first field-effect transistor, may be defined using an isolation region of dielectric material disposed in the doped region and selective silicide formation. The electrostatic discharge protection device may also include a second field-effect transistor having a drain as a portion the doped region that is directly coupled with the diffusion resistor and indirectly coupled by the diffusion resistor with the drain of the first field-effect transistor.01-24-2013
20130215539REDUCED CURRENT LEAKAGE IN RC ESD CLAMPS - Aspects of the invention provide an electrostatic discharge (ESD) protection device with reduced current leakage, and a related method. In one embodiment, an ESD protection device for an integrated circuit (IC) is provided. The ESD protection device includes: a resistor-capacitor (RC) timing circuit for selectively turning on the ESD protection device during an ESD event; a trigger circuit for receiving an output of the RC timing circuit and generating a trigger pulse for driving at least one of: a first ESD clamp and a second ESD clamp; and a selection circuit for selecting one of: the trigger circuit or a charge pump for controlling the second ESD clamp.08-22-2013
20130293991CURRENT LEAKAGE IN RC ESD CLAMPS - Aspects of the invention provide an electrostatic discharge (ESD) protection device for eliminating current leakage, and a related method. In one embodiment, an ESD protection device includes: a resistor-capacitor (RC) circuit for receiving a power supply voltage; an ESD clamp including a plurality of n-type field-effect transistors (nFETs) for protecting the IC during an ESD event; a trigger circuit for receiving an output of the RC circuit and generating a trigger pulse to turn on the ESD clamp during the ESD event; and an nFET bias selection circuit connected to the trigger circuit, the nFET bias selection circuit for selecting one of: a low voltage supply or a negative bias voltage supply for the trigger circuit, such that the trigger circuit generates a trigger pulse, in response to selecting the negative bias voltage supply, to turn off the ESD clamp during normal operation.11-07-2013
20140061803ELECTROSTATIC DISCHARGE (ESD) DEVICE AND METHOD OF FABRICATING - A structure and method of fabricating electrostatic discharge (EDS) circuitry in an integrated circuit chip by integrating a lateral bipolar, either a p-n-p with a NMOSFET or a n-p-n with a PMOSFET within a triple well. The lateral bipolar preferably includes diodes at the I/O and/or the VDDs of the circuitry.03-06-2014
20140339649FINFET TYPE DEVICE USING LDMOS - The present invention is a finFET type semiconductor device using LDMOS features. The device includes a first portion of a substrate doped with a second doping type and has a first trench, second trench, and first fin. The second portion of the substrate with a first doping type includes a third trench and second fin. The second fin between the second and third trench covers a part the first portion and a part of the second portion of the substrate. A first segment of the second fin is between the second segment and second trench. A second segment covers a part of the second portion of the substrate and is between the first segment and third trench. A gate covering at least a part of the first segment and a part of the first portion and a part of the second portion of the substrate.11-20-2014
20150041890HIGH VOLTAGE LATERAL DOUBLE-DIFFUSED METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR (LDMOSFET) HAVING A DEEP FULLY DEPLETED DRAIN DRIFT REGION - Disclosed are semiconductor structures. Each semiconductor structure can comprise a substrate and at least one laterally double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) on the substrate. Each LDMOSFET can have a fully-depleted deep drain drift region (i.e., a fully depleted deep ballast resistor region) for providing a relatively high blocking voltage. Different configurations for the drain drift regions are disclosed and these different configurations can also vary as a function of the conductivity type of the LDMOSFET. Additionally, each semiconductor structure can comprise an isolation band positioned below the LDMOSFET and an isolation well positioned laterally around the LDMOSFET and extending vertically to the isolation band such that the LDMOSFET is electrically isolated from both a lower portion of the substrate and any adjacent devices on the substrate.02-12-2015

Patent applications by Mujahid Muhammad, Essex Junction, VT US

Website © 2015 Advameg, Inc.