Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Michael Layh, Aalen DE

Michael Layh, Aalen DE

Patent application numberDescriptionPublished
20090021715MICROLITHOGRAPHIC ILLUMINATION SYSTEM - A microlithographic illumination system can include a light distribution device that can generate a two-dimensional intensity distribution in a first illumination plane. A first raster array of optical raster elements can generates a raster array of secondary light sources. A device with an additional optical effect can be disposed spatially adjacent to the two raster arrays. The device can be configured as an illumination angle variation device. The device can influence the intensity and/or the phase and/or the beam direction of the illumination light. The influence can be such that an intensity contribution of raster elements to the total illumination intensity can vary across the illumination field. This can enable the illumination intensity to be influenced across the illumination field in a defined manner with respect to the total illumination intensity and/or with respect to the intensity contributions from different directions of illumination.01-22-2009
20090021716ILLUMINATION SYSTEM FOR A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS - Illumination systems for microlithographic projection exposure apparatus, as well as related systems, components and methods are disclosed. In some embodiments, an illumination system includes one or more scattering structures and an optical integrator that produces a plurality of secondary light sources.01-22-2009
20090021839OPTICAL INTEGRATOR FOR AN ILLUMINATION SYSTEM OF A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS - The disclosure relates to an optical integrator configured to produce a plurality of secondary light sources in an illumination system of a microlithographic projection exposure apparatus. The disclosure also relates to a method of manufacturing an array of elongated microlenses for use in such an illumination system. Arrays of elongated microlenses are often contained in optical integrators or scattering plates of such illumination systems.01-22-2009
20090262324ILLUMINATION OPTICS FOR PROJECTION MICROLITHOGRAPHY AND RELATED METHODS - A microlithographic projection exposure apparatus (10-22-2009
20100039629METHOD AND DEVICE FOR MONITORING MULTIPLE MIRROR ARRAYS IN AN ILLUMINATION SYSTEM OF A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS - An illumination system of a microlithographic projection exposure apparatus has a pupil surface and an essentially flat arrangement of desirably individually drivable beam deviating elements for variable illumination of the pupil surface. Each beam deviating element allows deviation of a projection light beam incident on it to be achieved as a function of a control signal applied to the beam deviating element. A measurement illumination instrument directs a measurement light beam, independent of the projection light beams, onto a beam deviating element. A detector instrument records the measurement light beam after deviation by the beam deviating element. An evaluation unit determines the deviation of the projection light beam from measurement signals provided by the detector instrument.02-18-2010
20100157269ILLUMINATION SYSTEM FOR ILLUMINATING A MASK IN A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS - An illumination system for illuminating a mask in a scanning microlithographic projection exposure apparatus has an objective with an object plane, at least one pupil surface and an image plane in which a mask can be arranged. A beam deflection array of reflective or transparent beam deflection elements is provided, where each beam deflection element is adapted to deflect an impinging light ray by a deflection angle that is variable in response to a control signal. The beam deflection elements are arranged in or in close proximity to the object plane of the objective.06-24-2010
20100265482ILLUMINATION SYSTEM FOR ILLUMINATING A MASK IN A MICROLITHOGRAPHIC EXPOSURE APPARATUS - An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.10-21-2010
20100283984MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS - A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.11-11-2010
20100283985MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS - A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.11-11-2010
20110083542OPTICAL INTEGRATOR FOR AN ILLUMINATION SYSTEM OF A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS - The disclosure relates to an optical integrator configured to produce a plurality of secondary light sources in an illumination system of a microlithographic projection exposure apparatus. The disclosure also relates to a method of manufacturing an array of elongated microlenses for use in such an illumination system. Arrays of elongated microlenses are often contained in optical integrators or scattering plates of such illumination systems.04-14-2011
20110096317COMPONENT FOR SETTING A SCAN-INTEGRATED ILLUMINATION ENERGY IN AN OBJECT PLANE OF A MICROLITHOGRAPHY PROJECTION EXPOSURE APPARATUS - A component for setting a scan-integrated illumination energy in an object plane of a microlithography projection exposure apparatus is disclosed. The component includes a plurality of diaphragms which are arranged alongside one another with respect to a direction perpendicular to the scan movement and which differ in their form and the position of which can be altered approximately in the scan direction so that a portion of the illumination energy can be vignetted by at least one diaphragm. The form of the individual diaphragm is specifically adapted to the form of the illumination in a diaphragm plane in which the component is arranged. This has the effect that at least parts of the delimiting edges of two diaphragms always differ in the case of an arbitrary displacement of the diaphragms.04-28-2011
20110102758ILLUMINATION SYSTEM FOR A MICROLITHOGRAPHY PROJECTION EXPOSURE APPARATUS, MICROLITHOGRAPHY PROJECTION EXPOSURE APPARATUS COMPRISING SUCH AN ILLUMINATION SYSTEM, AND FOURIER OPTICAL SYSTEM - An illumination system for a microlithography projection exposure apparatus for illuminating an illumination field with the light from a primary light source has a variably adjustable pupil shaping unit for receiving light from the primary light source and for generating a variably adjustable two-dimensional intensity distribution in a pupil shaping surface of the illumination system. The pupil shaping unit has a Fourier optical system for converting an entrance beam bundle entering through an entrance plane of the Fourier optical system into an exit beam bundle exiting from an exit plane of the Fourier optical system. The Fourier optical system has a focal length f05-05-2011
20110177463ILLUMINATION SYSTEM FOR EUV MICROLITHOGRAPHY - An illumination system for EUV microlithography includes an EUV light source which generates EUV illumination light with an etendue that is higher than 0.01 mm07-21-2011
20120153189OPTICAL SYSTEM FOR GENERATING A LIGHT BEAM FOR TREATING A SUBSTRATE - An optical system for generating a light beam for treating a substrate arranged in a substrate plane is disclosed. The optical system includes first and second optical arrangements.06-21-2012
20120242968METHOD FOR ADJUSTING AN ILLUMINATION SYSTEM OF A PROJECTION EXPOSURE APPARATUS FOR PROJECTION LITHOGRAPHY - A method includes moving a correction device into a neutral position; subsequently ascertaining, for a given arrangement of imaging light channels in the illumination optical unit of the projection exposure apparatus, intensity distributions of at least some of the individual imaging light partial beams along a transverse coordinate transverse to a displacement direction of an object to be imaged; subsequently ascertaining, in dependence on the transverse coordinate, an actual variation of actual values of structure image sizes of object structures in an image field, onto which the object is imaged; and subsequently specifying a predetermined variation of the structure image sizes over the transverse coordinate and displacing correction elements of the correction device, starting from the neutral position, such that the actual variation matches the predetermined variation within a tolerance bandwidth. The method can provide improved imaging results as compared to known uniformity adjustment.09-27-2012
20120293784METHOD AND DEVICE FOR MONITORING MULTIPLE MIRROR ARRAYS IN AN ILLUMINATION SYSTEM OF A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS - Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.11-22-2012

Patent applications by Michael Layh, Aalen DE

Website © 2015 Advameg, Inc.