Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Michael Allen Greminger, St. Anthony US

Michael Allen Greminger, St. Anthony, MN US

Patent application numberDescriptionPublished
20100097726COST REDUCED MICROACTUATOR SUSPENSION - An improved microactuator suspension is provided for use with high density storage media. The number of microactuator elements is reduced to one and placed perpendicularly to the longitudinal axis of the suspension arm to maximize the windage and resonance performance and minimize the microactuator's contribution to bending stiffness and the off track bending component. An improved electrical connection eliminates the requirement for a jumper. These improvements reduce cost by reducing part count and assembly complexity.04-22-2010
20100097727RECESSED BASE PLATE FOR DATA TRANSDUCER SUSPENSION - A suspension assembly with reduced total vertical thickness is provided for a data transducing system that includes a dual-stage actuation system for positioning a data transducer. A first structural element of the suspension assembly includes a plate portion and a boss tower that is connectable to a main actuator of the dual-stage actuation system. A second structural element of the suspension assembly includes a recess that receives the plate portion of the first structural element, an opening through which the boss tower extends for connection to the main actuator of the dual-stage actuation system, and a flexible region to which a microactuator element of the dual-stage actuation system is connected. The suspension assembly also includes a support structure connected to the flexible region of the second structural element that carries the data transducer, and an electrical circuit connection system for making electrical connections to the data transducer and to the microactuator of the dual-stage actuation system.04-22-2010
20110019311TOP BOND DESIGN FOR PERFORMANCE ENHANCEMENT - An assembly includes a slider having an air bearing surface and a slider mounting surface opposite the air bearing surface. The slider mounting surface includes first, second, third, and fourth slider pads. A first slider trace electrically shorts the first slider pad with the third slider pad. A second slider trace electrically shorts the second slider pad with the fourth slider pad. A transducing head is supported by the slider. The transducing head includes a positive terminal electrically connected to the first slider pad and a negative terminal electrically connected to the second slider pad. The first, second, third, and fourth slider pads can be connected to pads on a connection circuit with interleaved traces.01-27-2011
20110075302BASEPLATE RESONANT AXIS OPTIMIZATION - In one implementation, the presently disclosed technology teaches an apparatus with a head attached to an end of a baseplate. The baseplate includes a tilted section that causes a torsion axis of the baseplate to pass near the head. In another implementation, the presently disclosed technology teaches an apparatus with a load beam attached to a baseplate. The apparatus also includes a head attached to an opposite end of the load beam from the baseplate. The baseplate includes a mass-shifted section that causes a torsion axis of the apparatus to pass through the head. In yet another implementation, the presently disclosed technology teaches a method for reducing baseplate resonance amplitude. The method includes shifting a baseplate mass on a suspension toward an adjacent disc surface to move a baseplate torsion axis to pass near a head.03-31-2011
20110096440HEAD GIMBAL ASSEMBLY WITH CONTACT DETECTION - An apparatus and associated method for a head gimbal assembly (HGA) that detects a contact event. Various embodiments of the present invention are generally directed to a load beam coupled to a plate via a gimbal. The plate has a cantilevered ramp limiter which extends forward from the gimbal to engage a ramp load/unload structure. A slider is affixed to a lower surface of the plate opposite the gimbal while a strain gage is affixed to the ramp limiter.04-28-2011
20120099224SLIDER FOR A HEAD GIMBAL ASSEMBLY WITH AN INVERTED DIMPLE - Apparatus and method for forming a head gimbal assembly (HGA). In accordance with various embodiments, a slider is formed with opposing first and second side surfaces, an air bearing feature on said first side surface and a dimple extending from said second side surface adapted to facilitate multi-axial rotation of the slider.04-26-2012
20120099226COMPACT MICROACTUATOR HEAD ASSEMBLY - Method and apparatus for a head gimbal assembly (HGA) which incorporates a microactuator. In accordance with various embodiments, a gimbal assembly has a gimbal island disposed within an aperture of a gimbal plate, which is mechanically decoupled from the gimbal island. At least one microactuator element is attached between the gimbal island and the gimbal plate to allow rotation of the gimbal island independent of the gimbal plate. The gimbal assembly is suspended from a dimple which extends from the gimbal island.04-26-2012
20130021698GIMBAL LIMITER FOR SUSPENSION WITH LIFT TAB - A head suspension for a disk drive with a load beam having continuous rails and a distal lift tab. A dimple is positioned proximal to the lift tab, either on the load beam or the gimbal, the dimple providing a pitch axis and a roll axis for the slider. The suspension also includes at least one tab member fixed in relation to the load beam, where each of the at least one tab member is aligned with or is distal to the dimple. The at least one tab and a portion of the gimbal define a gimbal limiter that is aligned with or distal to the dimple. The at least one tab member extends either longitudinally or laterally from the load beam at or distal to the dimple.01-24-2013
20130321957GIMBAL LIMITER FOR SUSPENSION WITH LIFT TAB - A head suspension for a disk drive with a load beam having continuous rails and a distal lift tab. A dimple is positioned proximal to the lift tab, either on the load beam or the gimbal, the dimple providing a pitch axis and a roll axis for the slider. The suspension also includes at least one tab member fixed in relation to the load beam, where each of the at least one tab member is aligned with or is distal to the dimple. The at least one tab and a portion of the gimbal define a gimbal limiter that is aligned with or distal to the dimple. The at least one tab member extends either longitudinally or laterally from the load beam at or distal to the dimple.12-05-2013
20150085400BASEPLATE RESONANT AXIS OPTIMIZATION - In one implementation, the presently disclosed technology teaches an apparatus with a head attached to an end of a baseplate. The baseplate includes a tilted section that causes a torsion axis of the baseplate to pass near the head. In another implementation, the presently disclosed technology teaches an apparatus with a load beam attached to a baseplate. The apparatus also includes a head attached to an opposite end of the load beam from the baseplate. The baseplate includes a mass-shifted section that causes a torsion axis of the apparatus to pass through the head. In yet another implementation, the presently disclosed technology teaches a method for reducing baseplate resonance amplitude. The method includes shifting a baseplate mass on a suspension toward an adjacent disc surface to move a baseplate torsion axis to pass near a head.03-26-2015

Patent applications by Michael Allen Greminger, St. Anthony, MN US

Website © 2015 Advameg, Inc.