Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Mcgee, MI

Gary E. Mcgee, Oxford, MI US

Patent application numberDescriptionPublished
20100193268HYBRID VEHICLE DRIVE SYSTEM - A drive system is provided for a hybrid vehicle that has an engine with a crankshaft and a motor/generator having a shaft member. The drive system includes a starter sprocket connected for rotation with the shaft member and a crankshaft sprocket connected for rotation with the crankshaft. A chain is engaged with the starter sprocket and the crankshaft sprocket. A planetary gear set is configured to multiply torque of the motor/generator, with the multiplied torque being provided to the engine crankshaft via the sprockets and the chain to start the engine.08-05-2010
20110277728CONTROL SYSTEM AND METHOD FOR IMPROVING ENGINE STOP-START RESPONSE TIME - A control system for an engine includes a stop-start initiation module and a load control module. The stop-start initiation module shuts down the engine in response to an engine shutdown request. The load control module, in response to the engine shutdown request, increases a rate at which a rotational speed of the engine decreases during engine shutdown by increasing a rotational load input to the engine by an engine accessory coupled to a crankshaft of the engine. A method for an engine includes shutting down the engine in response to an engine shutdown request. The method further includes increasing, in response to the engine shutdown request, a rate at which a rotational speed of the engine decreases during engine shutdown by increasing a rotational load input to the engine by an engine accessory coupled to a crankshaft of the engine.11-17-2011
20110290212SYSTEMS AND METHODS FOR IMPROVED ENGINE START-STOP RESPONSE - A control system for a vehicle that includes an engine includes an engine-stop module and a fuel control module. The engine-stop module determines whether to stop the engine based on at least one of input from a driver of the vehicle and vehicle operating parameters. The fuel control module stops the engine and controls a rate of engine speed decay by disabling fueling to cylinders of the engine according to a predetermined sequence.12-01-2011
20120031231STOP-START SELF-SYNCHRONIZING STARTER SYSTEM - A starter system is provided for an engine having a stop-start capability. The starter system includes a first gear coupled to the engine, wherein the first gear rotates at a speed of the engine. The starter system also includes a starter arranged relative to the engine. The starter includes a second gear arranged to selectively mesh with and apply torque to the first gear in order to start the engine, such that the second gear is capable of rotating at the speed of the engine. The starter additionally includes a synchronizer arranged to substantially match the speed of the first gear with the speed of the engine prior to engagement of the first and second gears, such that the second gear is enabled to mesh with and apply torque to the first gear to thereby start the engine. The starter system and the engine may be employed in a vehicle.02-09-2012
20130264164METHOD OF OPERATING A TORQUE CONVERTER CLUTCH - A method of operating a torque converter clutch in an engine start-stop vehicle improves launch after an auto stop event. During the autostop event, hydraulic fluid is supplied to the torque converter clutch operator through one or more solenoid valves by an auxiliary electric pump. When the prime mover is started at the conclusion of the autostop event, the torque converter clutch is thus locked, assuring rapid and sufficient torque transfer through the torque converter to the transmission and improved acceleration during vehicle launch. As the vehicle accelerates, the hydraulic pressure in the clutch operator is reduced and slip through the clutch increased to achieve a smooth launch and return to conventional torque converter operation.10-10-2013

Patent applications by Gary E. Mcgee, Oxford, MI US

H. Dean Mcgee, Rochester Hills, MI US

Patent application numberDescriptionPublished
20080288109CONTROL METHOD FOR SYNCHRONOUS HIGH SPEED MOTION STOP FOR MULTI-TOP LOADERS ACROSS CONTROLLERS - A synchronous high speed motion stop for a series of multi-top loaders residing on “n” controllers on one rail achieves effective detection of the servo-error status and shut off of the trailing controller's servo power within 3 ITP time. The control method reduces the unnecessary error recovery because it only shuts off its immediate trailing controller without aborting its leading controller, allowing the leading controller to complete the cycle tasks. The cascade control method produces a synchronous high-speed motion stop for the robots across the controllers and effectively prevents the collision between the robots.11-20-2008
20090199690METHOD OF CONTROLLING A ROBOT FOR SMALL SHAPE GENERATION - A method of controlling robot motion for small shape generation is provided. The method includes the steps of: a) providing a robot having a plurality of interconnected distal links with a respective plurality major axes and a respective plurality of minor axes, the robot having a controller for moving the robot to a starting position and along a path including a series of interpolated positions to be followed relative a workpiece; b) moving the robot to the starting position; c) determining a next interpolated position on the path, wherein the robot remains fixed in position about at least one of the major axes and a location and an approach vector of the next interpolated position can be achieved; and d) moving the robot to the next interpolated position. A method where the robot remains fixed in position about all major axes is also provided.08-13-2009
20090204258DYNAMIC SPACE CHECK FOR MULTI-ARM SYSTEM MOVING ON A RAIL - A system and method for controlling motion interference avoidance for a plurality of robots are disclosed, the system and method including a dynamic space check system wherein an efficiency of operation is maximized and a potential for interference or collision is minimized.08-13-2009
20090326711MULTI-ARM ROBOT SYSTEM INTERFERENCE CHECK VIA THREE DIMENSIONAL AUTOMATIC ZONES - A system and method for controlling avoiding collisions in a workcell containing multiple robots is provided. The system includes a sequence of instructions residing on a controller for execution thereon to perform an interference check automatic zone method. The interference check automatic zone method includes the steps of: determining a first portion of a common space that is occupied during a movement of a first robot along a first programmed path; determining a second portion of the common space that is occupied during a movement of a second robot along a second programmed path; comparing the first portion and the second portion to determine if an overlap exists therebetween; and moving the first robot and the second robot in response to whether or not the overlap exists.12-31-2009
20100191374SECONDARY POSITION FEEDBACK CONTROL OF A ROBOT - A method of and apparatus for achieving dynamic robot accuracy includes a control system utilizing a dual position loop control. An outer position loop uses secondary encoders on the output side of the gear train of a robot joint axis, while the inner position loop uses the primary encoder attached to the motor. Both single and dual loop control can be used on the same robot and tooling axes.07-29-2010
20120215351METHOD AND SYSTEM FOR AUTOMATICALLY PREVENTING DEADLOCK IN MULTI-ROBOT SYSTEMS - A system and method for controlling avoiding collisions and deadlocks in a workcell containing multiple robots automatically determines the potential deadlock conditions and identifies a way to avoid these conditions. Deadlock conditions are eliminated by determining the deadlock-free motion statements prior to execution of the motions that have potential deadlock conditions. This determination of deadlock-free motion statements can be done offline, outside normal execution, or it can be done during normal production execution. If there is sufficient CPU processing time available, the determination during normal production execution provides the most flexibility to respond to dynamic conditions such as changes in I/O timing or the timing of external events or sequences. For minimal CPU impact the determination is done offline where many permutations of programming sequences can be analyzed and an optimized sequence of execution may be found.08-23-2012
20130116828ROBOT TEACH DEVICE WITH 3-D DISPLAY - A method and an apparatus for displaying three-dimensional workcell data includes a hand-held pendant that is provided with 3-D workcell data representing a model of a machine and associated components in a workcell. The hand-held pendant has a display that generates a 3-D visual representation of the workcell data. The pendant can be operated by a user to manipulate the visual representation to change a user viewpoint and to show motion of the machine with associated process information.05-09-2013
20130166068NUMERICAL CONTROL PROGRAM EXECUTION BY ROBOT - A system and a method for converting a machine tool program in NC programming language to permit a robot controller to execute the program. A robot controller converts the NC program into robot language according to a conversion configuration table, and uses the converted language as pseudo program data internally stored in a data memory within the robot controller. Each M-code (Miscellaneous code) in the NC program is executed as a sub-program call using the robot language. The content of the sub-programs can be freely defined and programmed by the user and, therefore, can be customized for the specific application.06-27-2013
20140067128HAPTIC TEACH PENDANT - An apparatus for providing haptic feedback to a teach pendant including a teach pendant having a housing and a processor disposed therein. The processor is in signal communication with a robot controller and is configured to monitor and control a robot. At least one haptic device is disposed on the teach pendant. The haptic device is in signal communication with the processor and configured for providing haptic feedback through the teach pendant to a user upon the occurrence of a haptic event.03-06-2014

Patent applications by H. Dean Mcgee, Rochester Hills, MI US

John Mcgee, Troy, MI US

Patent application numberDescriptionPublished
20120121929MILDLY ALKALINE THIN INORGANIC CORROSION PROTECTIVE COATING FOR METAL SUBSTRATES - Disclosed is a neutral to alkaline inorganic conversion coating composition that can be applied directly to a metal surface without a phosphatizing pre-treatment and that provides significant corrosion protection to the surface. The coating composition is very versatile and can accommodate addition of a wide variety of organic polymers which can be added directly to the coating composition thus eliminating multistep coating processes.05-17-2012

John D. Mcgee, Troy, MI US

Patent application numberDescriptionPublished
20100291307RELEASE ON DEMAND CORROSION INHIBITOR COMPOSITION - Disclosed is a release on demand type corrosion inhibitor composition for a metal substrate formed from only non-electrically conductive film forming copolymer(s); a nitrogen containing functional group X, where the group X comprises a pyridine, a dihydropyridine, a pyrrole, an imidazole, or a mixtures thereof; and a metallate anion. The metallate anion binds to a nitrogen in the functional group X by ion pairing. A localized rise in pH is believed to cause release of the anion via a protonation/deprotonation reaction and the released anion suppresses the corrosion formation. The coating composition includes no electrically conductive polymers.11-18-2010
20110056779HIGH PERFORMANCE ADHESIVES AND METHODS FOR THEIR USE - The present invention is directed to benzoxazine-containing adhesives having high adhesive strength at high temperature. These materials are especially useful in automotive applications, in particular, as adhesives for brake components. Methods of their use are also described.03-10-2011
20110076486WATER-BASED ADHESIVE FOR LAMINATION OF POLYMERS TO METAL SUBSTRATES - What is disclosed is a water-based adhesive composition that is an aqueous dispersion or emulsion of a polymer component having functional groups that are inactive in a reversible manner in the adhesive composition as prepared; and a water-soluble, or water emulsion, or dispersion of a cross linker component having functional groups wherein the functional groups are inactive in a reversible manner in the adhesive composition as prepared. Preferably the adhesive composition has a pH of from 7 to 11 and a volatile stabilizing base component is used to inactivate the functional groups and to provide the pH. The functional groups in the polymer component and the cross linker component are activated when the volatile base is removed during lamination heat treatment. The adhesive composition can be used to adhere a variety of plastic films to metal substrates without reliance on non-water-based adhesives.03-31-2011
20140262791ELECTRODEPOSITION OF AN AUTODEPOSITABLE POLYMER - Coating bath compositions and processes useful in depositing organic polymeric coatings on metal substrates at low voltages are provided, the baths comprising one or more dispersed organic film forming polymers; and an etchant; wherein the principle film forming polymer is stabilized in the bath by the presence of anionic surfactant, but can be readily anodically deposited under low voltage. The invention also relates to processes of depositing a coating and metal substrates coated using the baths and processes of the invention.09-18-2014
20140272433INORGANIC COMPOSITE COATINGS COMPRISING NOVEL FUNCTIONALIZED ACRYLICS - Disclosed is a sol-gel coating composition comprising: one or more silane hydrolysis promoting acids; at least one silanol precursor; and an acrylic-based co-polymer comprising nitrogen-containing organic functional groups, and methods of making and using same, as well as metals coated using the compositions.09-18-2014
20150147646CONDUCTIVE PRIMER COMPOSITIONS FOR A NON-AQUEOUS ELECTROLYTE ELECTRICAL ENERGY STORAGE DEVICE - A conductive coating composition for use in electrical energy storage devices, which contain a non-aqueous electrolyte, is provided comprising an organic polymeric binder comprising one or more water-soluble polymers; water; solid conductive particles dispersed in the binder; and phosphorus based acid bound to at least one of the water-soluble polymers and present in a range of 0.025-10.0% by weight of the water-soluble polymers, as well as methods of making and using said conductive coating composition, coated current collectors and electrical energy storage devices made therefrom.05-28-2015

Patent applications by John D. Mcgee, Troy, MI US

Jonathan Wesley Mcgee, Ann Arbor, MI US

Patent application numberDescriptionPublished
20160075061METHODS TO INCREASE STRUCTURAL PERFORMANCE, STRENGTH AND DURABILITY OF FABRIC-REINFORCED COMPOSITE MATERIALS BY PRE-STRESSING - Methods to increase structural performance, strength, and durability of textile-reinforced composite materials are provided. The textile reinforcement may be knitted, for example, in a flat bed weft knitting machine. The method may include pre-stressing a textile reinforcement preform by applying tension. A polymeric precursor may be introduced to the pre-stressed textile reinforcement preform. The polymeric precursor may then be cured or consolidated, followed by releasing of the applied tension to form the composite article comprising polymer and the pre-stressed textile reinforcement. In other aspects, a composite article is provided that has a pre-stressed textile reinforcement structure and a cured polymer. The textile reinforcement may be a knitted, lightweight, seamless, unitary structure. The knitted reinforcement structure may have distinct first and second knitted regions with different levels of pre-stress, thus providing enhanced control over strength, rigidity, and flexibility of the composite article.03-17-2016

Patrick O. Mcgee, Bloomfield Hills, MI US

Patent application numberDescriptionPublished
20090250959Motor Vehicle Endgate Hinge Having Dual Pivot Axes - An assembly for opening and closing a passageway into the body of a motor vehicle includes a post secured to the body at a lateral side of the passageway, an endgate for opening and closing the passageway, and a hinge secured to the endgate and the post. The hinge defines a lateral axis and supports the endgate for pivoting about the lateral axis relative to the post, and the hinge defines an upright axis and supports the endgate for pivoting about the upright axis relative to the post.10-08-2009

Patrick O. Mcgee, Bloomfiled, MI US

Patent application numberDescriptionPublished
20090250960HINGE AND CATCH ASSEMBLY FOR MOTOR VEHICLE ENDGATE SYSTEM - An assembly for opening and closing a passageway into the body of a vehicle includes a post secured to the body at a lateral side of the passageway, an endgate for opening and closing the passageway and able to swing alternately about a lateral axis and an upright axis, a pivot support secured to the first post and aligned with the lateral axis, and a pivot secured to the endgate and aligned with the lateral axis, for alternately engaging and disengaging the pivot support, with the engagement supporting the endgate for pivoting about the lateral axis, and with the disengagement permitting the endgate to pivot about the upright axis.10-08-2009

Robert L. Mcgee, Midland, MI US

Patent application numberDescriptionPublished
20090208765Thermoplastic Olefin Polymer Blend and Adhesive Films made Therefrom - The invention includes a multilayer film having at least 2 layers: (A) an adhesive layer comprising at least 40 weight percent of an ethylene/alkyl acrylate copolymer having a Vicat point (ASTM D 1525) of no more than 40 centigrade (° C.), at least 1 and at most 10 weight percent of an ethylene/alpha, beta-ethylenically unsaturated carboxylic acid copolymer, and at least 20 weight percent of a low density polyethylene, and 0 to at most 7 weight percent filler, hereinafter referred to as composition A; and (C) a barrier layer comprising at least 90 weight percent high density polyethylene, hereinafter referred to as composition C, in each layer, the percentages being based upon combined weight of polymers and filler and selected to total 100 percent by weight. Preferably the film further comprises at least one layer (B) a core layer comprising at least 20 weight percent linear low density polyethylene (LLDPE), at least 20 weight percent low density polyethylene different from LLDPE, at least 10 weight percent high density polyethylene and 0 to at most 5 weight percent filler, hereinafter referred to as composition B, the percentages being based upon combined weight of polymers and filler and selected to total 100 percent by weight. Such a film is useful to protect surfaces and preferably adheres when needed for protection and is removable after protection is no longer desired. Preferably, the film curls to an extent sufficient to help protect the edges of the protected surface.08-20-2009
20090311472SHRINK LABELS OF ORIENTED POLYSTYRENE FILM CONTAINING SMALL RUBBER PARTICLES AND LOW RUBBER PARTICLE GEL CONTENT AND BLOCK COPOLYMERS - A polymer composition containing (a) a high impact polystyrene (HIPS) component with a block copolymer grafted to polystyrene, a rubbery conjugated diene content of one to seven weight percent based on HIPS weight, less than 10 weight-percent gel concentration, an average rubber particle size of between one and 0.01 micrometers, about 40 to about 90 volume percent of the rubber particles have diameters of less than about 0.4 microns and from about 10 to about 60 volume percent of the rubber particles have diameters between about 0.4 and about 2.5 microns, a majority of rubber particles with a core/shell morphology and a concentration that accounts for 10 to 70 weight-percent of the total polymer composition weight and one to five weight-percent rubbery diene based on total polymer composition weight; (b) from 10 to 70 weight percent of a general purpose polystyrene and from about 2 to about 80 weight-percent of a styrene block copolymer component, both based on total polymer composition weight. In a film, preferably oriented, wherein the polymer composition accounts for at least 95 weight-percent of the film, with the balance of the film or film composition weight being additives. Shrink labels are made from the film.12-17-2009
20100098935ADHESIVES FILMS - This invention comprises a film useful as an adhesive, a composition useful to make the film, and a laminate comprising the film contiguous with at least one metal substrate, at least one foam substrate or combination thereof. The composition comprises (a) at least one anhydride grafted olefin polymer, (b) at least one high density polyethylene, and (c) at least one elastomer which preferably has a tensile elongation at break of at least about 585%, a density of at most about 0.900 g/cm04-22-2010
20100215877MULTILAYER COEXTRUDED SHRINK LABELS OF ORIENTED POLYSTYRENE FILM CONTAINING SMALL RUBBER PARTICLES AND LOW RUBBER PARTICLE GEL CONTENT AND BLOCK COPOLYMERS - A multilayer film comprises at least 3 layers including a first outer layer, a second outer layer and between the first and second outer layers at least one core layer. The first and second outer layers each comprise at least about 75 weight percent of (a) at least one high impact polystyrene (HIPS) component. The at least one core layer comprises (b) at least one styrene block copolymer that is present at a concentration of at least about 2 weight percent of the polymers in the film; and-polymers (a), (b) and (c) at least one general purpose polystyrene having a weight-average molecular weight of more than 200,000 grams per mole and 350,000 grams per mole or less and that is present at a concentration of at least about 10 weight percent and up to at most about 50 weight percent of the polymers in the composition account for 100 percent by weight of the polymers in the polymer composition excluding polymeric additives.08-26-2010
20100297438POLYMER FILM COMPRISING ROUGHENING MATERIAL - The present invention is directed to a polymer film comprising a roughening material. The polymer film comprises a base polyolefin, and a roughening material present in an amount of equal to or greater than about 3 weight percent, based on total weight of the polymer film, wherein the roughening material has an average particle size ranging from about 20 to about 60 microns. A multilayer film including an adhesive layer and the polymer film is also disclosed.11-25-2010
20100316843POLYMER FILM COMPRISING ROUGHENING MATERIAL - The present invention is directed to a multilayer polymer film for application to and removal from a substrate, having controlled surface adhesion and peelably removable from a surface, the film having a layer comprising components (A) at least one polyolefin, (B) an adhesive composition in an amount equal to or greater than 3 weight percent, (C) a tackifier composition in an amount of from 1 to 12 weight percent, (D) at least one colorant in an amount from 0 to 15 weight percent, (E) anti-block additive in an amount of less than 1 weight percent, and (F) roughening material in an amount of less than or equal to 20 weight percent, each based on total weight of the adhesive layer; the components (A) through (F) with optional incidental carriers and additives being 100 percent by weight of the adhesive layer; wherein the adhesive composition consists essentially of ethylene/methyl acrylate and ethylene/acrylic acid in a weight ratio of from 60:40 to 50:15, that is, 77:23, ethylene/methyl acrylate to ethylene/acrylic acid; the tackifier is selected from a terpene phenolic resin or an acrylic hot melt resin; and the roughening material has an average particle size ranging from 20 to 60 microns.12-16-2010
20130112270ELECTRONIC DEVICE MODULE COMPRISING AN ETHYLENE MULTI-BLOCK COPOLYMER - An electronic device module comprises: 05-09-2013
20130118583ELECTRONIC DEVICE MODULE COMPRISING POLYOLEFIN COPOLYMER - An electronic device module comprising: 05-16-2013
20140242235METHODS OF HANDLING PAPAYA - Provided is a method of storing papaya comprising the step of exposing papaya to an atmosphere that contains a cyclopropene compound, wherein either (a) the papayas are in a modified-atmosphere package during exposure to the cyclopropene compound, or (b) the papayas are placed into a modified-atmosphere package after exposure to the cyclopropene compound, and the papaya remain in the modified atmosphere package for at least two hours. In some embodiments, the modified-atmosphere package is constructed so that the transmission rate of oxygen for the entire package is from 200 to 40,000 cubic centimeters per day per kilogram of papaya.08-28-2014
20140262426CONTROLLED PEEL LAMINATE ADHESIVE FILMS - Disclosed is a multilayer adhesive film comprising surface adhesive layers, an internal Controlled Bond Layer (“CBL”) comprising a propylene-based polymer strippably adhered to an adjacent layer; an internal Strong Bond Layer (“SBL”) different than the CBL having a facial surface in adhering contact to the CBL and; optionally, one or more different internal Filler Layer(s) located between the SBL and the adhesive surface layer on the side of the SBL opposite to the adhered CBL. In preferred embodiments the adhesive comprises an ethylene/ethylenically unsaturated carboxylic acid copolymer. The adhesive films are used in calbe shielding structures.09-18-2014
20150183193Modified Ethylene-Based Films to Promote Isocyanate Chemical Reactions in Polyurethane Laminting Adhesives - In the construction of a multilayer film in which an ethylene-based polymer layer is joined to one another layer by a polyurethane (PU) adhesive, the rate of cure and the degree of cure of the PU adhesive are accelerated by incorporating into the ethylene-based polymer layer a functional compound with active hydrogens, e.g., a polyol, and/or a cure catalyst, e.g., an amine, zinc or tin-based compound. The catalyst and reactive functionality may be present on the same molecule (e.g. alkoxylated amine or zinc ricinoleate). The catalyst and isocyanate reactive compound will migrate into the PU adhesive over time and accelerate the rate and promote the degree of PU adhesive cure, and the functional compound will promote the migration of the cure catalyst into the PU adhesive. In turn, this accelerated cure inhibits the migration of residual, monomeric amines from the PU adhesive into and through the ethylene-based polymer.07-02-2015
20150208679METHODS OF HANDLING AVOCADOS AND SYSTEM - This invention is based on unexpected synergistic effect of a cyclopropene compound and a modified atmosphere package to extend shelf life and/or storage for avocados. Provided is a method of storing avocados comprising the step of exposing avocados to an atmosphere that contains a cyclopropene compound, wherein either (a) the avocados are in a modified-atmosphere package during exposure to the cyclopropene compound, or (b) the avocados are placed into a modified-atmosphere package after exposure to the cyclopropene compound, and the avocados remain in the modified atmosphere package for at least two hours. In some embodiments, the modified-atmosphere package is constructed so that the transmission rate of oxygen for the entire package is from 200 to 40,000 cubic centimeters per day per kilogram of avocados.07-30-2015
20150224747Film Barrier to Isocyanate Monomer Migration - The invention provides a multilayer film comprising at least two layers A1 and B: A1. a first film layer A1 formed from a composition A1 comprising at least one of the following: an hydroxyl (OH) functionalized ethylene-based polymer and/or a amine-functionalized ethylene-based polymer; and B. a second film layer B formed from a composition B comprising at least one isocyanate. The invention also provides a multilayer film comprising at least two layers A2 and B: A2. A first film layer A2 formed from a composition A2 comprising an anhydride functionalized ethylene-based polymer; and B. A second film layer B formed from a composition B comprising at least one isocyanate.08-13-2015
20150237877METHODS OF HANDLING PERSIMMONS - Provided is a method of storing persimmons comprising the step of exposing persimmons to an atmosphere that contains a cyclopropene compound, wherein either (a) the persimmons are in a modified-atmosphere package during exposure to the cyclopropene compound, or (b) the persimmons are placed into a modified-atmosphere package after exposure to the cyclopropene compound, and the persimmons remain in the modified atmosphere package for at least two hours. In some embodiments, the modified-atmosphere package is constructed so that the transmission rate of oxygen for the entire package is from 200 to 40,000 cubic centimeters per day per kilogram of persimmons.08-27-2015
20150274406NON-UNIFORMLY PERFORATED PLASTIC BAG - Provided is a perforated plastic bag wherein the volume of said bag is 100 liters or more; wherein the average perforation diameter is 500 micrometers or less; wherein said plastic bag comprises a lower zone and a top zone, wherein the perforation density of said lower zone is greater than the perforation density of said top zone. Also provided is a method of using such a plastic bag.10-01-2015
20150321823MODIFIED ATMOSPHERE PACKAGE FOR BANANAS - There is provided an enclosure comprising: a polymeric film; wherein said polymeric film comprises one or more copolymers of ethylene with a polar monomer; and wherein the oxygen transmission rate of said enclosure is 8,000 to 16,000 cm3/hour. Also provided is a method of handling bananas comprising: (a) harvesting green bananas; (b) then placing said green bananas into such an enclosure; (c) then storing said enclosure at 20° C. or lower for 1 week or longer; (d) then ripening said bananas or allowing said bananas to ripen.11-12-2015

Patent applications by Robert L. Mcgee, Midland, MI US

Robert Lee Mcgee, Midland, MI US

Patent application numberDescriptionPublished
20100129635FACED INSULATION AND METHOD OF MAKING SAME - The present invention is an improved product (and process for making the same) that includes as a single integrated structure an insulation layer (particularly a layer that includes insulation made from a polymeric synthetic material) and a facer layer that helps function to resist moisture and retard vapor. An optional bond interface layer including at least one adhesive joins the facer layer with the insulation layer.05-27-2010

Rochelle Mcgee, Waterford, MI US

Patent application numberDescriptionPublished
20160049697BATTERY PACK CONTAINING COMMUNICATION ELECTRONICS - A communication electronics module is provided having a casing like a conventional battery and includes terminals which enable the module to fit into a battery socket. The module may also be incorporated into a single-cell battery or a multiple-cell battery pack. The module communicates with both the battery, the electronic device powered by the battery and other remote electronics devices.02-18-2016

Ryan Mcgee, Ann Arbor, MI US

Patent application numberDescriptionPublished
20110136625Hybrid Electric Vehicle Hold Function - A vehicle powertrain with engine start-stop characteristics is capable of maintaining a vehicle stationary on a roadway with a gradient when wheel brakes are applied to stop the vehicle as the engine is shut down. Vehicle creep and vehicle launch is achieved as the engine is re-started following detection of a brake release signal based on engine speed.06-09-2011
20110166732DISTANCE BASED BATTERY CHARGE DEPLETION CONTROL FOR PHEV ENERGY MANAGEMENT - In a plug-in hybrid electric vehicle (PHEV), the vehicle may be operated in a charge-(CD) mode to ensure that the battery is effectively discharged or in a charge-sustaining (CS) mode in which the battery state of charge is maintained by operating the internal combustion engine predominantly for propulsion. In trips that are longer than that which fully depletes the battery storage, it is possible to control the proportion in a manner that is between CS and CD modes to provide overall higher efficiency while still effectively discharging the battery over the course of the trip. Such higher efficiency operation is possible when information about the distance until the next charging event is available.07-07-2011
20110166733PLUG-IN HYBRID ELECTRIC VEHICLE BATTERY STATE OF CHARGE HOLD FUNCTION AND ENERGY MANAGEMENT - A plugin hybrid electric vehicle includes an internal combustion engine, a battery, an electric machine, and a controller. The vehicle is operable in a primary electric vehicle driving mode (EV mode) and in a hybrid electric vehicle driving mode (HEV mode). The controller is programmed to receive input from the driver representing a desired operating mode and a desired energy reservation. If the desired operating mode is HEV mode, then a state of charge (SOC) offset is established as the smaller of a maximum SOC offset and an allowable SOC offset, otherwise, the SOC offset is established based on the desired energy reservation. The vehicle is operated based on the SOC offset.07-07-2011
20140066255BRAKE APPLY AND RELEASE DETECTION FOR STOP/START VEHICLE - A vehicle is provided with an engine that is configured for automatic shutdown and restart. The vehicle is also provided with a controller that is configured to shutdown the engine in response to brake effort exceeding a first threshold and to restart the engine in response to brake effort decreasing below a second threshold. The first threshold and the second threshold are based on an estimated vehicle mass and a road gradient.03-06-2014

Ryan A. Mcgee, Ann Arbor, MI US

Patent application numberDescriptionPublished
20100279818Control of a Dry, Dual-Clutch Transmission During an Engine Restart of a Hybrid Electric Vehicle - A method for controlling an engine restart in a hybrid electric powertrain, including the steps of stopping the engine, using an electric power source and an electro-mechanical actuator connected to the source to engage a gear and stroke to zero torque capacity a dry clutch of a dual-clutch transmission, initiating an automatic engine restart, and increasing the torque capacity of the clutch to a desired torque capacity during the engine restart.11-04-2010
20100304926Transmission Clutch Stroking Control During an Engine Restart In a Hybrid Electric Vehicle - A method for controlling restart of an engine in a hybrid electric powertrain includes stopping the vehicle and engine, initiating the restart, estimating time required to restart the engine after the restart is initiated, filling and stroking launch elements of a transmission, when the estimated time substantially equals a second estimated time required to fill and stroke said launch elements, and increasing the torque capacity of the launch elements to accelerate the vehicle.12-02-2010
20100305790Wheel Torque Disturbance Suppression - A method for controlling restart of an engine in a hybrid electric powertrain, includes engaging a gear of a transmission, releasing a brake pedal, maintaining fluid pressure at an adaptively determined magnitude in a wheel brake, initiating a restart the engine, and reducing fluid pressure in the wheel brake when the engine restarts.12-02-2010
20100305820Engine Speed Reduction Preparatory to an Engine Restart - A method for restarting an engine of a vehicle includes stopping the vehicle and holding the vehicle stationary, reducing engine speed, increasing a rate of reduction of engine speed, if engine speed is less than a reference speed when a desired restart of the engine is indicated, and initiating an engine restart when engine speed is substantially zero.12-02-2010
20110065548Brake Assisted Vehicle Engine Restart on a Road Grade - A method for restarting an engine of a vehicle stopped on a grade, comprising the steps of engaging a gear of a transmission through which the engine and wheels of the vehicle are driveably connected mutually, using brake pressure to engage wheel brakes and produce a road gradient wheel torque that holds the vehicle stationary on the grade, initiating an engine restart, operating the engine to produce wheel torque equal to or greater than the road gradient wheel torque, and releasing the brake pressure.03-17-2011
20110070999Control of an Engine Restart in a Hybrid Electric Vehicle - A method for restarting an engine in a hybrid electric powertrain includes using an auxiliary pump while the engine is shutdown to maintain stroke pressure in an oncoming transmission friction control element whose engagement is required to launch the vehicle following the restart, initiating an automatic engine restart, increasing a torque capacity of the control element while the engine is restarting, and using pressure produced by a transmission pump in the transmission to lock the control element after the engine restarts.03-24-2011
20110071001Brake Assisted Control of an Engine Restart Event - A method for restarting an engine of a vehicle includes engaging a gear of a transmission that driveably connects the engine and wheels of the vehicle; maintaining a current brake pressure greater than a reference brake pressure; initiating an automatic engine restart; using a timer to count down during a period of predetermined length; using a pump to produce a desired magnitude of brake pressure sufficient to suppress a wheel torque surge produced by restarting the engine and to hold the vehicle stationary; and releasing the brake pressure if either the timer expires or a peak in engine speed occurs.03-24-2011
20110184600Adaptive Initial Estimation and Dynamic Determination and Update of Distance Until Charge of a Plug-In Hybrid Electric Vehicle - An electric vehicle such as a PHEV or a BEV and a method of control includes receiving from a user of the vehicle, at an interface of the vehicle, a distance until charge (DUC) value indicative of the distance from a current position that the vehicle is intended to be driven before the vehicle is recharged. Battery usage of the vehicle is controlled as a function of the DUC value. An initial estimate of the DUC value may be made by obtaining historical distance between charges (DBC) values indicative of the distance the vehicle has been driven between each of one or more pairs of consecutive charges of the vehicle. The estimated DUC value is based on the DBC values.07-28-2011
20150105214Coordinating Regenative Braking with Torque Converter Clutch Operation - A method for controlling a vehicle regenerative braking event includes maintaining a converter clutch closed while braking, while an engine connected to the impeller is running, opening the converter clutch when impeller speed reaches a reference speed difference relative to engine idle speed, and while the engine is off, opening the converter clutch when impeller speed reaches a speed required for a transmission pump, connected to an impeller, to produce line pressure at a desired magnitude.04-16-2015
20150232086SMOOTHING HYBRID VEHICLE ENGINE SHUTDOWN - A method of smoothing hybrid vehicle engine shutdown. A powered and rotating electric machine is used to slow deceleration of an unpowered and rotating engine by transferring torque through a clutch from the machine to the unpowered engine. Prior to the machine being powered, torque may be transferred through the clutch from the unpowered and rotating engine to the unpowered machine to accelerate passage of the engine through a resonance frequency.08-20-2015
20150283989CLUTCH CALIBRATION FOR A HYBRID ELECTRIC POWERTRAIN - Calibration of an engine disconnect clutch for a hybrid electric powertrain. The clutch is prestroked while an engine and machine are stopped. A machine torque is increased until the machine starts rotating. A pressure of the clutch is adjusted as a function of a torque produced by the machine when the machine started rotating.10-08-2015

Patent applications by Ryan A. Mcgee, Ann Arbor, MI US

Ryan Abraham Mcgee, Ann Arbor, MI US

Patent application numberDescriptionPublished
20110162897VEHICLE SOLAR PANEL ARRAY WITH HIGH VOLTAGE OUTPUT - An automotive vehicle may include a plurality of solar cells electrically connected to form a solar panel array having a minimum output voltage at a specified standard solar irradiance. The vehicle may also include a battery pack having an output voltage at least equal to the minimum output voltage of the array and configured to provide energy for moving the vehicle. The vehicle may further include a controller configured to selectively electrically connect the array and battery pack to trickle charge the battery pack.07-07-2011
20110166730ENGINE TRANSIENT MITIGATION FOR HYBRID VEHICLES - A method and system for limiting a fast transient in an engine in a hybrid vehicle is provided. The predicted fuel loss percentage is calculated from an inferred air-fuel ratio (inferred lambda). The rate limit term is calculated from a measured air-fuel ratio (measured lambda) and an engine torque command change rate. The predicted fuel loss percentage and the rate limit term are inputs into a calibration table to determine an engine power rate limit and an engine torque rate limit. An engine torque command is limited using the engine torque rate limit to control a fast engine torque transient for an engine. An engine power command is limited using the engine power rate limit to control the fast engine power transient for the engine.07-07-2011
20110166731Energy Management Control of a Plug-In Hybrid Electric Vehicle - A drive-home button is provided in the dashboard of a plug-in hybrid electric vehicle (PHEV). The driver presses this button when heading home or to other predetermined destination at which charging is routinely performed. The actual route, the driving style, and other relevant vehicle/road information during the trip home are stored to build up a statistical database. During a present trip home, a highly probably route is predicted based on prior trips and an energy management profile is calculated. The commands to the internal combustion engine and the electric motor are selected to cause the vehicle's battery to be substantially discharged upon arriving at home based on actual data of energy usage by the operator of the vehicle during prior trips. By using actual data, the prediction of energy usage is more accurate allowing more complete discharge of the battery.07-07-2011
20110172865Method For Optimizing Powertrain Efficiency For A Vehicle - A vehicle powertrain includes an engine, an electric machine operable to output torque to at least one vehicle wheel, and an electric power source operable to provide electric power to the electric machine. A method for optimizing powertrain efficiency includes generating a plurality of three-dimensional maps of optimized engine speeds for combinations of vehicle power and vehicle speed at a plurality of predetermined powers of the electrical power source. Each of the maps corresponds to one of the predetermined powers of the electrical power source. The maps are used to determine an optimized engine speed for a given power of the electrical power source, a given vehicle power and a given vehicle speed.07-14-2011
20110172867Engine Power Elevation and Active Battery Charge Energy Management Strategies for Plug-In Hybrid Electric Vehicles - A method for a plug-in hybrid electric vehicle (PHEV) having an engine and a battery configured to respectively deliver engine power and battery power to provide a total output power for powering the vehicle includes the following. An elevated engine power which falls within a total output power range where only engine power without battery power may be delivered to power the vehicle in response to a driver demand power and which is greater than the combination of the driver demand power and vehicle powering losses is determined. The engine delivers the elevated engine power in response to the driver demand power. The extra engine power is transferred to the battery for the battery to buffer.07-14-2011
20110257826Vehicle Stability And Steerability Control Via Electronic Torque Distribution - A system for distributing propulsion to front and rear axles of a vehicle includes: a front axle motor coupled to the front axle and a rear axle motor coupled to the rear axle. An electronic control unit (ECU) electronically coupled to the motors commands the rear axle motor to increase torque supplied to the rear axle during understeer and commands the front axle motor to increase torque supplied to the front axle during oversteer. A method to distribute propulsion to front and rear axles of a vehicle includes estimating actual yaw rate, estimating desired yaw rate, providing electrical energy to the front axle motor during oversteer, and providing electrical energy to the rear axle motor during understeer. Additionally, electrical energy may be extracted from the rear axle motor during oversteer and electrical energy may be extracted from the front axle motor during understeer.10-20-2011
20110263379Multiple-Mode Power Split Hybrid Powertrain - A hybrid electric vehicle powertrain having a mechanical power source and an electro-mechanical power source, including a generator, a motor and a battery. Driving torque developed by the mechanical power source is delivered through one clutch of a geared transmission to a power output shaft. The electric motor of the electro-mechanical power source delivers driving torque through a second clutch of the geared transmission. A mechanical reverse drive torque is used to improve reverse drive performance. A reduction in duration of operation in a negative power split during a driving event is achieved to improve vehicle powertrain efficiency. A series drive is available as the mechanical power source drives the generator to charge the battery, which drives the motor. The generator may act as an engine starter motor.10-27-2011
20110270468Methods and Apparatus for Dynamic Powertrain Management - A computer-implemented method includes determining that a vehicle powertrain feature is engaged. The method further includes relaying, to a remote computing source, a request for a computation to be performed relating to the engaged powertrain feature. The method additionally includes receiving a result of the computation at a vehicle computing system and transferring the result of the computation to a powertrain for use in controlling the powertrain feature.11-03-2011
20110288697Electric Motor Enhanced Driveability In Vehicle Handling And Stability Control Events - A system and method are disclosed for controlling a vehicle during a turn in which a braking torque is applied to an inside wheel of the vehicle when understeer is detected and to an outside wheel when oversteer is detected. Electrical energy commanded to an electric motor coupled to a first axle of the vehicle is increased in response to application of the braking torque to compensate for the applied braking torque.11-24-2011
20110307129VEHICLE STEERABILITY AND STABILITY CONTROL VIA INDEPENDENT WHEEL TORQUE CONTROL - An independent wheel torque control algorithm is disclosed for controlling motor torques applied to individual electric motors coupled to vehicle wheels in an electric vehicle. In a first range of vehicle states, vehicle steerability is favored so that the operator of the vehicle suffers little or no longitudinal propulsion loss while steering is enhanced. In a second range of vehicle states, vehicle stability is favored. According to embodiments of the disclosure, a desired yaw moment is computed and then may be reduced in magnitude due to system limitations, electrical or friction limits, which prevents the desired yaw moment from being fully realized.12-15-2011
20120035795DISTANCE ORIENTED ENERGY MANAGEMENT STRATEGY FOR A HYBRID ELECTRIC VEHICLE - A vehicle and a method to control a vehicle includes selecting a trip route for the vehicle using a user interface, generating a charge reference profile of a battery coupled to an electric motor based on the trip, and commanding propulsion devices in the vehicle based on a location of the vehicle with respect to the trip route such that a state of charge (SOC) of the battery tracks the reference profile.02-09-2012
20120116620Plug-In Hybrid Electric Vehicle and Method of Control for Providing Distance to Empty and Equivalent Trip Fuel Economy Information - A powertrain for a hybrid electric vehicle (HEV) such as a plug-in hybrid electric vehicle (PHEV) includes an engine, a fuel tank, a battery, and a controller. The controller is configured to determine a distance to empty value as a sum of fuel in the fuel tank and a battery equivalent amount of fuel, the sum multiplied by an average fuel economy of the PHEV based on a driving condition of the vehicle.05-10-2012
20120185117Hybrid Vehicle and Method of Control for Engine Transient Mitigation - A hybrid vehicle and method of control are associated with the following operation. A quantized previous engine power command based on a previous engine power command is obtained. A current engine power command is quantized. The quantized current engine power command is maintained if the magnitude of the difference between the current engine power command and the quantized previous engine power command is larger than a threshold. The quantized current engine power command is set equal to the quantized previous engine power command if the magnitude of the difference between the current engine power command and the quantized previous engine power command is smaller than the threshold. An output engine power command based on the quantized current engine power command is generated. An engine of the hybrid vehicle is operated based on the output engine power command.07-19-2012
20120197503ENGINE RESTART STRATEGY - A vehicle includes an internal combustion engine, a transmission having a neutral state and an engaged state, and a controller. The controller is configured to determine a restart condition for the engine; and to classify the restart condition as one of: (i) a no wheel torque restart condition, and (ii) a wheel torque restart condition. The state of the transmission is set based on the restart condition classification, and the engine is started.08-02-2012
20120271492Transient Operation Energy Management Strategy for a Hybrid Electric Vehicle Powertrain - A method and system for providing a dynamic torque band for hybrid electric vehicle (HEV) transient management includes determining a torque band indicative of an engine torque operation region representing efficient operation of the powertrain across a range of engine speeds. An engine torque command based on an actual speed of the engine is generated. The engine torque command is outputted to the engine if the engine torque command is within the torque band. The engine torque command is modified to be within the torque band if the engine torque command is out of the torque band and the modified engine torque command is outputted to the engine.10-25-2012
20120290149Methods and Apparatus for Selective Power Enablement with Predictive Capability - A computer implemented method includes examining a travel route to determine the presence of emission control zones along the route. The method further includes determining how much power will be required to operate a vehicle along the portions of the route within the emission control zones. Also, this method includes preserving the determined amount of power required to operate the vehicle along the portions of the route within the emission control zones. Further, the method includes selectively activating a vehicle electric power mode using the preserved power while the vehicle is operating within the emission control zones.11-15-2012
20120290159Location Enhanced Distance Until Charge (DUC) Estimation for a Plug-In Hybrid Electric Vehicle (PHEV) - A method and a system augment or improve a distance until charge (DUC) estimation for a vehicle such as a plug-in hybrid electric vehicle (PHEV) by using location information. Such location information may be provided by a global positioning system (GPS) or the like associated with the vehicle. The method and the system generally estimate the DUC value as a function of past driving pattern historical data that is relevant to a current driving situation. To this end, the method and the system ignore past driving pattern historical data that is not relevant to the current driving situation when estimating the DUC value.11-15-2012
20120293313Method and Apparatus for Generating Vehicle Vibration to Alert Vehicle User of Warning - A drive torque modulation is generated in response to an unintentional lane departure or traffic/obstacle intervention in an electric vehicle or a hybrid-electric vehicle (HEV). At least one of propulsion and braking of the vehicle is controlled via a motor of the vehicle in accordance with the torque modulation. Vehicle oscillation is generated through the torque modulation to let the driver be aware of the impending dangerous driving situation.11-22-2012
20130018545TRAFFIC DENSITY ESTIMATIONAANM Prakah-Asante; Kwaku O.AACI Commerce Twp.AAST MIAACO USAAGP Prakah-Asante; Kwaku O. Commerce Twp. MI USAANM Tseng; FlingAACI Ann ArborAAST MIAACO USAAGP Tseng; Fling Ann Arbor MI USAANM Filev; Dimitar PetrovAACI NoviAAST MIAACO USAAGP Filev; Dimitar Petrov Novi MI USAANM Lu; JianboAACI LivoniaAAST MIAACO USAAGP Lu; Jianbo Livonia MI USAANM McGee; Ryan AbrahamAACI Ann ArborAAST MIAACO USAAGP McGee; Ryan Abraham Ann Arbor MI USAANM Greenberg; Jeffrey AllenAACI Ann ArborAAST MIAACO USAAGP Greenberg; Jeffrey Allen Ann Arbor MI USAANM Strumolo; Gary StevenAACI Beverly HillsAAST MIAACO USAAGP Strumolo; Gary Steven Beverly Hills MI US - Traffic density may be estimated by increasing a value of a parameter if an object enters a predefined zone on a side of the vehicle and decreasing the value of the parameter after an object exits the predefined zone such that the value of the parameter increases as traffic in a vicinity of the vehicle increases and decreases as traffic in the vicinity of the vehicle decreases.01-17-2013
20130131900Engine Power Elevation Energy Management Strategies for Hybrid Vehicles - A method for a hybrid vehicle includes outputting from an engine at least an elevated engine power while a driver demand power is greater than the elevated engine power. The method further includes outputting just the elevated engine power from the engine while the driver demand power is less than the elevated engine power and transferring from the engine to a traction battery an extra engine power between the elevated engine power and the driver demand power.05-23-2013
20130151149VEHICLE NAVIGATION SYSTEM SYNCHRONIZATION WITH USER CALENDAR - A Vehicle navigation system connects to a user's smart-phone or an online internet-based calendar service to download a user event schedule/calendar containing a list of upcoming user appointments. The next event within the list is identified, and is searched for the presence of a location identifier, i.e., an appointment venue or the name of the person with whom the appointment is fixed. Upon finding a location identifier, the user is prompted to confirm whether the identified location corresponds to the user's next intended destination, when the time of arriving at the identified location is close to the time when the next appointment occurs. Once the user confirms, the identified location is construed as the next intended destination and a destination input to the navigation system is automatically provided to plan the next trip accordingly.06-13-2013
20130179015Electronic Stability Control System for Electric Drive Vehicle - A stability control system for a vehicle that has an electric traction motor that provides torque to an axle through a differential. The traction motor responds to an instability event that is sensed by sensors on the vehicle by initially reducing the torque provided to the traction wheels to regain steering control. The traction motor then pulses increased torque in sequence with the application of braking force to provide enhanced direct yaw moment control.07-11-2013
20130179070ADAPTIVE METHOD FOR TRIP PREDICTION - A method for predicting a final destination of a vehicle comprises the steps of acquiring a start location of the vehicle, providing a predetermined waypoint distance from the start location, determining a current waypoint location once the vehicle travels the predetermined waypoint distance, receiving historical destination data from a database, including previous destinations associated with the current waypoint location. Then, making a prediction at the current waypoint location of the final destination based on the historical destination data.07-11-2013
20130218379Methods and Apparatus for Predicting a Driver Destination - A computer implemented trip-planning method includes accessing one or more destination elements of a matrix of driver information, the accessing based at least in part on a trip start time and day of week. Each accessed element has a probability associated therewith, indicating the likelihood of the element being the destination at which a vehicle trip will end, based at least the start time and day of week. The method also includes selecting, from the one or more elements, a destination having the highest probability of being the destination at which the vehicle trip will end. Further, the method includes utilizing the selected destination as an end destination for the purposes of trip planning.08-22-2013
20130261966SYSTEM AND METHOD FOR DETERMINING A VEHICLE ROUTE - A method for determining a route for a vehicle includes receiving input indicative of a driver's dynamic control of the vehicle, determining the driver's driving style based on the input, and selecting values of parameters representing the driver's anticipated dynamic control of the vehicle based on the driving style. The method also includes identifying a plurality of candidate routes between an origin and destination, partitioning each of the candidate routes into a set of predefined route patterns, and determining an energy usage associated with each of the candidate routes based on the selected values and the set of predefined route patterns defining the candidate route. The method further includes identifying the candidate route having the minimum energy usage and providing output describing the route having the minimum energy usage.10-03-2013
20130274969Feed Forward and Feedback Adjustment of Motor Torque During Clutch Engagement - A hybrid electric vehicle having a motor and an engine that are selectively connected on a driveline and controlled by a controller. The controller is configured to schedule additional motor torque to compensate for engine inertia drag based upon a clutch pressure value and a clutch slip speed value during a period of clutch engagement. The controller is also configured to maintain vehicle acceleration using a proportional integral controller to adjust the motor torque during a period of clutch engagement.10-17-2013
20140000971HYBRID VEHICLE AND ASSOCIATED ENGINE SPEED CONTROL METHOD01-02-2014
20140004994HYBRID VEHICLE AND ASSOCIATED CONTROL METHOD01-02-2014
20140005865HYBRID VEHICLE AND ASSOCIATED OUTPUT TORQUE CONTROL METHOD01-02-2014
20140005867HYBRID VEHICLE AND ASSOCIATED CONTROL METHOD01-02-2014
20140005868HYBRID VEHICLE AND ASSOCIATED ENGINE SPEED CONTROL METHOD01-02-2014
20140012442METHOD AND SYSTEM TO AVOID UNINTENDED ENGINE ON/OFFS FOR HYBRID VEHICLES - A system and method for controlling a hybrid electric vehicle powertrain having an engine defining one power source, and a traction motor and electrical storage device defining another power source include inhibiting a stopping and a starting of the engine based upon an unintended tip-out event and an unintended tip-in event, respectively. The total power demand and the available electric power are determined. The total power demand is filtered. The engine is prevented from being pulled-up or pulled-down based upon a difference between the total power demand and the filtered power demand being exceeding a threshold. However, if the difference exceeds the threshold, and if the available electric power exceeds the total power demand, then the engine is permitted to pull-up or pull-down.01-09-2014
20140046577INITIATING PREPARATIONS FOR ENGINE AUTOSTOP PRIOR TO VEHICLE STOP - A stop/start vehicle includes at least one controller that, in response to predicting a vehicle stop, initiates an engine pre-shutdown protocol such that vehicle subsystems begin to prepare for engine shutdown prior to a speed of the vehicle reaching approximately zero to reduce time between the speed of the vehicle reaching approximately zero and engine shutdown.02-13-2014
20140067154KINEMATIC ROAD GRADIENT ESTIMATION - A vehicle and a vehicle system are provided with a controller that is configured to generate output indicative of a kinematic road gradient estimation using an extended Kalman filter. The extended Kalman filter includes a system input based on a longitudinal acceleration and an acceleration offset, and a system output based on a predicted vehicle speed. The acceleration offset is based on at least one of a lateral velocity, a lateral offset, and a vehicle pitch angle. The controller is further configured to generate output indicative of a kinematic quality factor corresponding to an availability of the kinematic road gradient estimation.03-06-2014
20140067155DYNAMIC ROAD GRADIENT ESTIMATION - A vehicle and vehicle system are provided with a controller that is configured to generate output indicative of a vehicle mass estimation. The vehicle mass estimation is based on a longitudinal acceleration and a wheel torque when at least one of the longitudinal acceleration, a vehicle speed and a yaw rate indicate an occurrence of a qualified event. The controller is further configured to generate output indicative of a dynamic road gradient estimation based on the vehicle speed, the wheel torque and the vehicle mass estimation.03-06-2014
20140067224WHEEL TORQUE DISTURBANCE SUPPRESSION CONTROL FOR VEHICLE HOLD BEFORE/DURING ENGINE STARTUP - A vehicle-hold control method is used to hold an engine-powered vehicle from rolling backward on a road gradient during an engine start. The engine shuts down when the vehicle is stopped following operation of the vehicle under engine power. The engine is re-started during an engine cranking interval as vehicle wheel brakes are applied. The brakes are released in response to detection of pre-calibrated engine speed characteristics.03-06-2014
20140074386PREDICTIVE AFTERTREATMENT SCHEDULING FOR A VEHICLE - A method to control a hybrid electric vehicle includes operating a compression ignition engine based on an engine-on request, and performing an exhaust aftertreatment procedure when a fraction of an engine-on time is greater than an aftertreatment condition threshold. A vehicle has a compression ignition engine with an exhaust aftertreatment system, and a controller. The controller is configured to: (i) operate the engine based on an engine-on request, and (ii) perform an exhaust aftertreatment procedure for the vehicle when an engine-on fraction for a designated time is greater than an aftertreatment condition threshold. A computer readable medium having stored data representing instructions executable by a controller to control a vehicle includes instructions for operating the engine based on an engine-on request, and instructions for performing an exhaust aftertreatment procedure for the vehicle when an engine-on time fraction is greater than an aftertreatment condition threshold.03-13-2014
20140081563ENGINE-ON TIME PREDICTOR FOR AFTERTREATMENT SCHEDULING FOR A VEHICLE - A method to control a hybrid electric vehicle (HEV) having a compression ignition engine includes operating the engine based on an engine-on request and performing an exhaust aftertreatment procedure based on a completion time for the aftertreatment procedure compared to a predicted engine-on time determined using a driving pattern. An HEV is provided with a compression ignition engine with an aftertreatment system, and a controller. The controller is configured to: (i) operate the engine based on an engine-on request, and (ii) perform an exhaust aftertreatment procedure for the vehicle based on a completion time for the aftertreatment procedure compared to a predicted engine-on time determined using a driving pattern. A computer readable medium having stored data representing instructions executable by a controller to control a vehicle is provided with instructions for operating the engine based on an engine-on request, and instructions for performing an exhaust aftertreatment procedure.03-20-2014
20140088858ASSESSMENT OF DRIVING BEHAVIOR OF A DRIVER OF A MOTOR VEHICLE - Various embodiments relating to driving behavior of a driver of a motor vehicle are disclosed. In one embodiment, a method may include assessing driving behavior of the driver according to a comparison of a current value of a coasting characteristic relative to a reference value. The current value may be determined during operation of the motor vehicle. The reference value of the coasting characteristic may be determined from operation of the motor vehicle during at least one past operating phase or another duration. The method further includes displaying a visualization representative of assessed driving behavior of the driver.03-27-2014
20140163789TRIP ORIENTED ENERGY MANAGEMENT CONTROL - An engine, electric machine and battery of a vehicle are operated such that a state of charge of the battery generally decreases and then achieves approximately a charge-depletion-to-charge-sustaining transition threshold after the vehicle has been driven a distance greater than the pure electrical range of the vehicle.06-12-2014
20140172292Methods and Apparatus for Context Based Trip Planning - A system includes a processor configured to receive vehicle location and context information. The processor is also configured to execute a prediction algorithm to predict one or more next-destinations based on the location and context information compared to observed driver behavior stored in a database and deliver the one or more next-destinations to a vehicle computing system. The processor is further configured to receive next-destination input and utilizing the next-destination input as a new vehicle location and estimating new context information, repeat execution of the prediction algorithm, delivery of the predicted next-destinations, and receipt of the next-destination input, until input indicating completed journey assembly is received.06-19-2014
20140300494LOCATION BASED FEATURE USAGE PREDICTION FOR CONTEXTUAL HMI - A vehicle system having a controller configured to receive a sensor input. The controller may generate a feature score based at least in part on the sensor input and a location data within a database. The controller may associate the feature score to a selectable option. The controller may instruct a user interface device to display the selectable option in response to the feature score.10-09-2014
20140304635SYSTEM ARCHITECTURE FOR CONTEXTUAL HMI DETECTORS - A vehicle controller having at least one contextual module configured to receive a sensor input and generate an output representing a driving context. The vehicle controller may have a processor configured to receive the output from the one or more contextual modules. The processor may generate a feature score based on the output and associate the feature score with a selectable option. The processor may select the selectable option with the highest feature score to promote to a user interface device.10-09-2014
20140350766HYBRID VEHICLE AND ASSOCIATED CONTROL METHOD - A hybrid vehicle and method of control are disclosed wherein the ratio of engine speed to vehicle speed varies continuously in some operating modes and is controlled to simulate a discrete ratio transmission in other operating modes. The disclosure specifies the method of controlling the engine speed and the combined output torque of the engine and at least one traction motor in each of the operating modes. Transitions among operating modes occur in response to driver movement of a shift lever, driver operation of shift selectors, and changes in vehicle speed.11-27-2014
20150019132SYSTEM AND METHOD FOR VEHICLE ROUTING USING STOCHASTIC OPTIMIZATION - A vehicle system enabling a processor to calculate the most efficient route to a destination based on estimated energy usage, vehicle data, and other inputs until the final destination is reached. The vehicle system may receive location related data that may include the current vehicle location and one or more destination points. The vehicle system may receive one or more energy usage affecting parameters from a vehicle related system. The system may calculate a most efficient route based on the location related data and the one or more energy usage affecting parameters and present the most efficient route to a device. The vehicle system may repeat the steps of receiving, calculating, presenting until a destination is reached.01-15-2015
20150066264METHODS AND SYSTEMS FOR HYBRID DRIVELINE CONTROL - Systems and methods for operating and hybrid driveline are presented. In one example, driver demand torque may be supplied to vehicle wheels via a hydraulic torque path and a friction torque path. Torque is distributed between the friction torque path and the hydraulic torque path in a way that ensures that driver demand torque is met and the friction torque path transfers torque up to its capacity.03-05-2015
20150111693HYBRID VEHICLE IDLE AND CREEP CONTROL - A vehicle includes an engine having a crankshaft, a transmission having an input, and a torque converter mechanically coupled to the input. The vehicle further includes an electric machine mechanically coupled to the torque converter, a clutch configured to mechanically couple the electric machine and crankshaft, and one or more controllers. The one or more controllers are programmed to, in response to the transmission being in a drive or reverse gear and a speed of the vehicle being less than a predetermined value in an absence of driver demand, control the electric machine to achieve a target speed to cause the torque converter to output torque such that the speed of the vehicle approaches a generally constant speed less than or equal to the predetermined value when the vehicle is on a generally flat grade.04-23-2015
20150112522Hybrid-Electric Vehicle Plug-Out Mode Energy Management - A vehicle includes an engine, an electric machine, a battery, and at least one controller. The vehicle may further comprise a port for supplying power to a load external to the vehicle. The controller is programmed to operate the engine at a power level based on a difference between a battery voltage and a reference voltage such that a power output by the electric machine reduces the difference. The power level may define an engine operating point that minimizes fuel consumption. The operating point may be an engine torque and an engine speed. The power level may be further based on a state of charge of the battery. The electric machine may be operated to cause the engine to rotate at an engine speed corresponding to the selected power level. The difference may be caused by varying power drawn by a load external to the vehicle.04-23-2015
20150112523HYBRID VEHICLE ENGINE START - A vehicle includes an engine having a crankshaft, a transmission having an input, and an electric machine mechanically coupled to the transmission input. The vehicle further includes a clutch configured to mechanically couple the electric machine and engine crankshaft, and at least one controller. The at least one controller, in response to an engine start condition and subsequent partial engagement of the clutch, outputs a torque command for the electric machine to increase the speed of the crankshaft to a speed of the electric machine before commanding fuel injection of the engine. The torque command is based on driver demanded torque and a change in speed of the crankshaft caused by changes in pressure to the clutch.04-23-2015
20150112524HYBRID VEHICLE ENGINE STARTS - A vehicle includes a starter motor, an engine having an output mechanically coupled to the starter motor, a transmission having an input, and an electric machine mechanically coupled to the transmission input. The vehicle further includes a clutch configured to mechanically couple the electric machine and the output of the engine, and at least one controller. The at least one controller is programmed to initiate an engine start based on driver demand. The controller is further configured to enable pressure to the clutch for the engine start if driver demand is less than a calibratable torque value or enable the starter motor for the engine start if the driver demand is greater than a calibratable torque value. The controller may lock the clutch to the output of the engine in response to the speed of the engine being approximately equal to the speed of the electric machine.04-23-2015
20150112525HYBRID VEHICLE POWERTRAIN MANAGEMENT SYSTEM AND METHOD - A vehicle is provided with a powertrain including an electric motor, an internal combustion engine, and a turbocharger. The vehicle further includes a controller programmed to apply a variable filter to engine torque commands that are responsive to driver demand. The filter affects commands having a rate of increase greater than a predetermined threshold such that corresponding rates of increase in both engine torque and turbocharger speed are limited to respective rates less than the maximum available levels in order to reduce a surge in engine output emissions. The controller additionally issues commands for motor torque such that overall powertrain torque satisfies the driver demand.04-23-2015
20150120106Vehicle Dynamic Controls Coordination System for Dual-Axle Driven Electric Vehicles - An electric vehicle (HEV/BEV/EV) includes a dynamic traction control (DTC) system configured to perform a DTC process and an electric motor enhanced dynamic wheel torque control by brake (eDWT-B) system configured to perform an eDWT-B process. A controller selects according to a vehicle criterion a combination of the DTC and eDWT-B processes to control a vehicle operation.04-30-2015
20150120107PHEV Energy Management Control with Trip-Oriented Energy Consumption Preplanning - A driving pattern based plug-in hybrid electric vehicle (PHEV) energy consumption preplanning process enables a PHEV trip-oriented energy management control (TEMC) to utilize scalable levels of available trip foreknowledge in order to optimize the onboard energy (fuel and electricity) usage. The preplanning process generates an optimal battery state-of-charge (SOC) depletion profile for a given trip to be traveled by a PHEV. The preplanning process may generate the battery SOC profile using a driving pattern based dynamic programming (DP) algorithm. The TEMC controls the onboard energy usage in accordance with the battery SOC profile, which is optimized for the trip. The preplanning process makes use of spatial domain normalized drive power demand (SNDP) (or S-NDP) distributions in which each set of distributions is indicative of a respective driving pattern. The trip foreknowledge is used to select the driving pattern best representative of the driving process for the trip.04-30-2015
20150120157ROAD GRADE ESTIMATION FOR A TRAILERED VEHICLE - An example vehicle control method includes, among other things, controlling a towing vehicle based upon a trailered vehicle road grade.04-30-2015
20150126329SYSTEM AND METHOD FOR UPSHIFT TORQUE MODIFICATION USING AN UPSTREAM CLUTCH IN A HYBRID VEHICLE - A hybrid vehicle has an engine, an electric machine connected to the engine by an upstream clutch, a transmission gearbox connected to the electric machine by a downstream clutch, and a controller. The controller is configured to, in response to a commanded upshift of the gearbox, modulate a pressure of the upstream clutch. A method for controlling a vehicle includes, in response to a commanded upshift of a gearbox, controlling an upstream clutch to a first nonzero speed differential corresponding to a first inertia connected to and upstream of the gearbox to reduce inertia torque during the upshift. A method for controlling a vehicle includes, in response to a commanded upshift of a gearbox when the vehicle is beyond an electrical limit and a fast path torque reduction limit, slipping an upstream clutch and reducing torque outputs of an engine and an electric machine.05-07-2015
20150134159SYSTEM FOR CONTROLLING OVERALL COASTING TORQUE IN A HYBRID ELECTRIC VEHICLE - A hybrid vehicle is provided that includes an engine, a reversible electric machine capable of generating and providing electric power, and a clutch for selectively engaging the engine to the electric machine. While the vehicle is traveling, an operator of the vehicle may release (“tip-out”) the accelerator pedal, indicating a desire for a reduction in speed and/or acceleration of the vehicle. If the clutch is engaged during the tip-out, the at least one controller is programmed to disengage the clutch and alter a commanded torque to the electric machine in response to the tip-out of the accelerator pedal to simulate compression braking of the engine. If the vehicle is operating in an electric-only mode of propulsion during the tip-out, and if a state-of-charge of the battery is relatively high, the controller is programmed to activate the engine and provide compression torque to the driveline in response to the tip-out.05-14-2015
20150134160METHOD AND SYSTEM FOR SELECTING AN ENGINE OPERATING POINT FOR A HYBRID VEHICLE - A vehicle includes a powertrain having an engine and an electric machine (M/G) connected by an upstream clutch, and a gearbox connected to the M/G by a torque converter. A controller is configured to, in response to a Park or Neutral gear selection and an electrical power request from the M/G, operate the engine at an engine speed and an engine torque based on the request and M/G speed and torque for improved powertrain efficiency. A method is provided for controlling a vehicle. In response to a Park or Neutral gear selection and an electrical power request from the M/G, the engine is operated at an engine speed and an engine torque based on the request and M/G speed and torque for improved powertrain efficiency.05-14-2015
20150134161LOAD-BASED VEHICLE OPERATING CONTROL - A hybrid electric vehicle includes an engine and an electric machine, both capable of providing propulsion power. A clutch is configured to selectively couple the engine to the electric machine. At times, the vehicle may be subject to excessive loads, such as a large amount of weight in the vehicle or the vehicle towing another object. At least one controller is programmed to engage the clutch and start the engine in response to a load of the vehicle exceeding a predetermined threshold and a release of the brake pedal while the vehicle is stopped and in drive. This increases available engine torque prior to vehicle launch in anticipation of an upcoming acceleration demand.05-14-2015
20150134162LOAD-BASED VEHICLE OPERATING CONTROL - A hybrid vehicle includes an engine and an electric machine, both capable of propelling the vehicle. The electric machine is electrically connected to a high voltage traction battery. The state of charge of the battery can decrease if the battery is used to power the electric machine, and can increase if the electric machine supplies power to the battery via regenerative braking. Constraints are placed on the vehicle such that the battery operates within a preferred operating window, defined between minimum and maximum state of charge thresholds. At least one controller is programmed to alter the preferred operating window of the battery in response to various vehicular activities, such as when the vehicle is towing another object, or when the vehicle weighs above a certain threshold due to contents within the vehicle, for example.05-14-2015
20150197243PREDICTIVE ENGINE PULL UP AND PULL DOWN IN HYBRID VEHICLE - A system and method for controlling a hybrid vehicle having an engine configured to automatically stop in response to an engine stop request and automatically start in response to an engine start request include selectively inhibiting an engine stop request based on an anticipated duration of an expected decreased driver power command state to reduce occurrence of successive automatic stops and automatic starts.07-16-2015
20150203091POWERTRAIN CONTROL OF A HYBRID VEHICLE IN PARK OR NEUTRAL - A hybrid vehicle includes an engine and an electric machine selectively coupled to the engine via a clutch. The engine, electric machine, and clutch are arranged along a common axis. At least one controller is programmed to execute various commands when the vehicle is in park or neutral and the accelerator pedal of the vehicle is depressed. This enhances perceived vehicle reactions in response to accelerator pedal movement. To do so, the controller is programmed to control a rate of speed increase of the electric machine based on a rate of the depression of the accelerator pedal (e.g., “speed control”). Furthermore, the torque output of the engine is controlled to a target value irrespective of engine speed and engine torque is converted into electric energy via the electric machine (e.g., “torque control”). The rate of speed increase of the electric machine is altered when the engine is started.07-23-2015
20150203092TORQUE BASED ENERGY MANAGEMENT IN HYBRID VEHICLE - A system and method for controlling a powertrain in a hybrid vehicle having an engine and a traction motor include commanding the engine to provide an engine torque corresponding with a desired performance characteristic at a current engine speed. The method additionally includes commanding the motor to provide a motor torque to compensate a difference between an operator torque request and the engine torque.07-23-2015
20150203096System and Method for Controlling Battery Power Based on Predicted Battery Energy Usage - A system and method for controlling battery power in a hybrid vehicle for a given driver demand that balances battery state of charge and battery capacity limits while operating the engine at a system efficient engine power. Predictive information may be used to predict battery energy usage during a future time window that indicates a charging opportunity (excess power will be absorbed by the battery) or a boosting opportunity (battery power will be discharged). Based on this information and the current state of charge of the battery, an associated battery power for a given driver demand is determined.07-23-2015
20150203105ENGINE TORQUE IMBALANCE COMPENSATION IN HYBRID VEHICLE - A system and method for controlling a fraction motor in a hybrid vehicle includes varying a traction motor torque in response to an engine cylinder misfire. The traction motor torque is varied to compensate for an engine torque shortfall due to the engine cylinder misfire, reducing a torque imbalance caused by the misfire.07-23-2015
20150224976CANCELLING CREEP TORQUE IN A HYBRID VEHICLE - A hybrid vehicle includes an engine and an electric machine, both capable of propelling the vehicle. The electric machine provides creep torque to propel the vehicle at a slow speed or hold the vehicle when on an incline. At least one controller is programmed to cancel or otherwise inhibit the electric machine from generating the creep torque in response to a brake torque or brake torque request exceeding a calibratible threshold. The calibratible threshold varies based upon vehicle incline, vehicle mass, and/or vehicle speed.08-13-2015
20150239467HYBRID ELECTRIC VEHICLE AND METHOD OF STARTING ENGINE - Two methods may be used to start the engine of a hybrid electric vehicle while the vehicle is moving under electric power. When smoothness is most important, a disconnect clutch is partially engaged to initiate engine rotation and then released as the engine accelerates under its own power toward a motor speed. When rapid starting is most important, the disconnect clutch torque capacity is controlled to decrease the time required for the engine to accelerates to the motor speed. A torque converter bypass clutch is disengaged during the engine restart under either method. Also, the motor torque is adjusted under either method to compensate for the torque provided to the engine.08-27-2015
20150239475HYBRID VEHICLE AND METHOD OF OPERATION - A hybrid electric vehicle includes a powertrain controller and an anti-lock braking system (ABS) controller. The powertrain controller modulates the torque delivered by an internal combustion engine, a generator, and a motor to deliver a desired torque to two drive wheels. The ABS controller modulates the braking torque exerted by brakes on each of the four wheels. During modest braking events with good traction, the motor recaptures vehicle kinetic energy. During heavy braking and/or poor traction, the ABS controller and motor controller each respond to speed sensor signals to modulate the motor and brake torques to minimize stopping distance. The motor torque responds more quickly than the brake torque such that the frequency of oscillation is higher for the combined system than for an independent ABS system.08-27-2015
20150283997HYBRID VEHICLE ENGINE STARTS - A vehicle includes a starter motor, an engine having an output mechanically coupled to the starter motor, a transmission having an input, and an electric machine mechanically coupled to the transmission input. The vehicle further includes a clutch configured to mechanically couple the electric machine and the output of the engine, and at least one controller. The at least one controller is programmed to initiate an engine start based on driver demand. The controller is further configured to enable pressure to the clutch for the engine start if driver demand is less than a calibratable torque value or enable the starter motor for the engine start if the driver demand is greater than a calibratable torque value. The controller may lock the clutch to the output of the engine in response to the speed of the engine being approximately equal to the speed of the electric machine.10-08-2015
20150360677METHOD AND SYSTEM FOR SELECTING AN ENGINE OPERATING POINT FOR A HYBRID VEHICLE - A vehicle includes a powertrain having an engine and an electric machine (M/G) connected by an upstream clutch, and a gearbox connected to the M/G by a torque converter. A controller is configured to, in response to a Park or Neutral gear selection and an electrical power request from the M/G, operate the engine at an engine speed and an engine torque based on the request and M/G speed and torque for improved powertrain efficiency. A method is provided for controlling a vehicle. In response to a Park or Neutral gear selection and an electrical power request from the M/G, the engine is operated at an engine speed and an engine torque based on the request and M/G speed and torque for improved powertrain efficiency.12-17-2015

Patent applications by Ryan Abraham Mcgee, Ann Arbor, MI US

Website © 2016 Advameg, Inc.