Patent application number | Description | Published |
20100246076 | Electrical Overstress Protection Circuit - A semiconductor circuit for electric overstress (EOS) protection is provided. The semiconductor circuit employs an electrostatic discharge (ESD) protection circuit, which has a resistor-capacitor (RC) time-delay network connected to a discharge capacitor. An electronic component that has voltage snapback property or a diodic behavior is connected to alter the logic state of the gate of the discharge transistor under an EOS event. Particularly, the electronic component is configured to turn on the gate of the discharge capacitor throughout the duration of an electrical overstress (EOS) condition as well as throughout the duration of an ESD event. A design structure may be employed to design or manufacture a semiconductor circuit that provides protection against an EOS condition without time limitation, i.e., without being limited by the time constant of the RC time delay network for EOS events that last longer than 1 microsecond. | 09-30-2010 |
20100265622 | ROBUST ESD PROTECTION CIRCUIT, METHOD AND DESIGN STRUCTURE FOR TOLERANT AND FAILSAFE DESIGNS - A robust ESD protection circuit, method and design structure for tolerant and failsafe designs are disclosed. A circuit includes a middle junction control circuit that turns off a top NFET of a stacked NFET electrostatic discharge (ESD) protection circuit during an ESD event. | 10-21-2010 |
20110117711 | DOUBLE GATE DEPLETION MODE MOSFET - A metal-oxide-semiconductor field effect transistor (MOSFET) has a body layer that follows the contour of exposed surfaces of a semiconductor substrate and contains a bottom surface of a shallow trench and adjoined sidewalls. A bottom electrode layer vertically abuts the body layer and provides an electrical bias to the body layer. A top electrode and source and drain regions are formed on the body layer. The thickness of the body layer is selected to allow full depletion of the body layer by the top electrode and a bottom electrode layer. The portion of the body layer underneath the shallow trench extends the length of a channel to enable a high voltage operation. Further, the MOSFET provides a double gate configuration and a tight control of the channel to enable a complete pinch-off of the channel and a low off-current in a compact volume. | 05-19-2011 |
20110286135 | Silicon Controlled Rectifier Based Electrostatic Discharge Protection Circuit With Integrated JFETS, Method Of Operation And Design Structure - An enhanced turn-on time SCR based electrostatic discharge (ESD) protection circuit includes an integrated JFET, method of use and design structure. The enhanced turn-on time silicon controlled rectifier (SCR) based electrostatic discharge (ESD) protection circuit includes an integrated JFET in series with an NPN base. | 11-24-2011 |
20120091530 | Low trigger voltage electrostatic discharge NFET in triple well CMOS technology - An electrostatic discharge (ESD) protection device for an integrated circuit includes a buried layer of a first polarity type formed in a substrate of a second polarity type. A well region of the second polarity type is formed above the buried layer. An FET of the first polarity type is formed within the well region. An inner pair of shallow wells of the first polarity type is disposed adjacent to source and drain diffusion regions of the FET, the inner pair of shallow wells having a depth such that a bottom of the inner pair of shallow wells is above a top of the buried layer. An outer pair of deep wells of the first polarity type extends down to the top of the buried layer such that the outer pair of deep wells and the buried layer define a perimeter of the well region of the second polarity type. | 04-19-2012 |
20120126285 | Vertical NPNP Structure In a Triple Well CMOS Process - A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events. | 05-24-2012 |
20120305984 | SCR/MOS CLAMP FOR ESD PROTECTION OF INTEGRATED CIRCUITS - An electrostatic discharge (ESD) protection circuit, methods of fabricating an ESD protection circuit, methods of providing ESD protection, and design structures for an ESD protection circuit. An NFET may be formed in a p-well and a PFET may be formed in an n-well. A butted p-n junction formed between the p-well and n-well results in an NPNP structure that forms an SCR integrated with the NFET and PFET. The NFET, PFET and SCR are configured to collectively protect a pad, such as a power pad, from ESD events. During normal operation, the NFET, PFET, and SCR are biased by an RC-trigger circuit so that the ESD protection circuit is in a high impedance state. During an ESD event while the chip is unpowered, the RC-trigger circuit outputs trigger signals that cause the SCR, NFET, and PFET to enter into conductive states and cooperatively to shunt ESD currents away from the protected pad. | 12-06-2012 |
20130009207 | VERTICAL NPNP STRUCTURE IN A TRIPLE WELL CMOS PROCESS - A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events. | 01-10-2013 |
20130020645 | ESD FIELD-EFFECT TRANSISTOR AND INTEGRATED DIFFUSION RESISTOR - An electrostatic discharge protection device, methods of fabricating an electrostatic discharge protection device, and design structures for an electrostatic discharge protection device. A drain of a first field-effect transistor and a diffusion resistor of higher electrical resistance may be formed as different portions of a doped region. The diffusion resistor, which is directly coupled with the drain of the first field-effect transistor, may be defined using an isolation region of dielectric material disposed in the doped region and selective silicide formation. The electrostatic discharge protection device may also include a second field-effect transistor having a drain as a portion the doped region that is directly coupled with the diffusion resistor and indirectly coupled by the diffusion resistor with the drain of the first field-effect transistor. | 01-24-2013 |
20140244202 | CHARACTERIZATION OF INTERFACE RESISTANCE IN A MULTI-LAYER CONDUCTIVE STRUCTURE - Disclosed is a test structure that can be used to characterize a specific interface resistance within a multi-layer conductive structure, such as a multi-layer ohmic contact. In the test structure first and second transmission line model (TLM) structures both incorporate a row of essentially identical contact pads separated by spaces with progressively increasing lengths. Conductive mesas, also with progressively increasing lengths, are positioned within the spaces between all but the initial pair of adjacent contacts pads. The first and second TLM structures differ only with respect to the presence of a single conductive layer on each of the conductive mesas. System, method and computer program product embodiments are able to extract resistance parameters associated with the first and second TLM structures, including conductive mesa to conductive layer interface resistances, based current-voltage measurements acquired from both of the TLM structures. | 08-28-2014 |
20140339649 | FINFET TYPE DEVICE USING LDMOS - The present invention is a finFET type semiconductor device using LDMOS features. The device includes a first portion of a substrate doped with a second doping type and has a first trench, second trench, and first fin. The second portion of the substrate with a first doping type includes a third trench and second fin. The second fin between the second and third trench covers a part the first portion and a part of the second portion of the substrate. A first segment of the second fin is between the second segment and second trench. A second segment covers a part of the second portion of the substrate and is between the first segment and third trench. A gate covering at least a part of the first segment and a part of the first portion and a part of the second portion of the substrate. | 11-20-2014 |
20150041890 | HIGH VOLTAGE LATERAL DOUBLE-DIFFUSED METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR (LDMOSFET) HAVING A DEEP FULLY DEPLETED DRAIN DRIFT REGION - Disclosed are semiconductor structures. Each semiconductor structure can comprise a substrate and at least one laterally double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) on the substrate. Each LDMOSFET can have a fully-depleted deep drain drift region (i.e., a fully depleted deep ballast resistor region) for providing a relatively high blocking voltage. Different configurations for the drain drift regions are disclosed and these different configurations can also vary as a function of the conductivity type of the LDMOSFET. Additionally, each semiconductor structure can comprise an isolation band positioned below the LDMOSFET and an isolation well positioned laterally around the LDMOSFET and extending vertically to the isolation band such that the LDMOSFET is electrically isolated from both a lower portion of the substrate and any adjacent devices on the substrate. | 02-12-2015 |