# Fook-Luen Heng, Yorktown Heights US

## Fook-Luen Heng, Yorktown Heights, NY US

Patent application number | Description | Published |
---|---|---|

20080301597 | Method to Determine the Root Causes of Failure Patterns by Using Spatial Correlation of Tester Data - A method for determining the root causes of fail patterns in integrated circuit chips is provide wherein a known integrated circuit chip layout is used to identify a plurality of potential defects and a plurality of potential fail patterns in the integrated circuit chip. Correlations between the potential defects and the potential fail patterns that result from those defects are identified. Based on this identification, the potential fail patterns are grouped by common potential defect. An actual integrated circuit chip that is manufactured in accordance with the test layout is tested for failure patterns. These failure patterns are then compared to the groupings of potential fail patterns. When a match is found, that is when a given group of fail patterns is found in the actual integrated circuit chip, then the potential defect associated with the potential fail patterns to which the actual fail patterns are matched is identified. This defect is the root cause of the failure pattern in the actual chip. | 12-04-2008 |

20080301624 | SYSTEM AND METHOD FOR EMPLOYING PATTERNING PROCESS STATISTICS FOR GROUND RULES WAIVERS AND OPTIMIZATION - A system and method of employing patterning process statistics to evaluate layouts for intersect area analysis includes applying Optical Proximity Correction (OPC) to the layout, simulating images formed by the mask and applying patterning process variation distributions to influence and determine corrective actions taken to improve and optimize the rules for compliance by the layout. The process variation distributions are mapped to an intersect area distribution by creating a histogram based upon a plurality of processes for an intersect area. The intersect area is analyzed using the histogram to provide ground rule waivers and optimization. | 12-04-2008 |

20090089726 | Layout Quality Gauge for Integrated Circuit Design - A method for layout design includes steps or acts of: receiving a layout for design of an integrated circuit chip; designing mask shapes for the layout; transmitting the mask shapes to a litho simulator for generating wafer shapes; receiving the wafer shapes; calculating electrically equivalent gate lengths for the wafer shapes; analyzing the gate lengths to check for conformity against a threshold value, wherein the threshold value represents a desired value of electrically equivalent gate lengths; placing markers on the layout at those locations where the gate length violates the threshold value; and generating a histogram of gate lengths for comparing layouts for electrically equivalent gate lengths for layout quality. | 04-02-2009 |

20090171644 | CA RESISTANCE VARIABILITY PREDICTION METHODOLOGY - A methodology for obtaining improved prediction of CA resistance in electronic circuits and, particularly, an improved CA resistance model adapted to capture larger than anticipated “out of spec” regime. In one embodiment, a novel bucketization scheme is implemented that is codified to provide a circuit designer with considerably better design options for handling large CA variability as seen through the design manual. The tools developed for modeling the impact of CA variable resistance phenomena provide developers with a resistance model, such as conventionally known, modified with a new CA model Basis including a novel CA intrinsic resistance model, and, a novel CA layout bucketization model. | 07-02-2009 |

20090204930 | IPHYSICAL DESIGN SYSTEM AND METHOD - A design system for designing complex integrated circuits (ICs), a method of IC design and program product therefor. A layout unit receives a circuit description representing portions in a grid and glyph format. A checking unit checks grid and glyph portions of the design. An elaboration unit generates a target layout from the checked design. A data prep unit prepares the target layout for mask making. A pattern caching unit selectively replaces portions of the design with previously cached results for improved design efficiency. | 08-13-2009 |

20100185997 | TECHNOLOGY MIGRATION FOR INTEGRATED CIRCUITS WITH RADICAL DESIGN RESTRICTIONS - A method, system and program product for migrating an integrated circuit (IC) design from a source technology without radical design restrictions (RDR) to a target technology with RDR, are disclosed. The invention implements a minimum layout perturbation approach that addresses the RDR requirements. The invention also solves the problem of inserting dummy shapes where required, and extending the lengths of the critical shapes and/or the dummy shapes to meet ‘edge coverage’ requirements. | 07-22-2010 |

20100318956 | METHOD OF INTEGRATED CIRCUIT CHIP FABRICATION AND PROGRAM PRODUCT THEREFOR - A method of physical design for integrated circuit (IC) chip fabrication, physical design system and program product therefor. A design shape is fragmented into segments for Optical Proximity Correction (OPC) and a harmonic mean of the segments is determined. Electrical intent is determined for the shape and a harmonic mean is determined for the segments. Segments may be moved based on a effect on the harmonic mean from moving the segments, measured using a harmonic mean cost function. Finally segmented shapes are passed to OPC. | 12-16-2010 |

20110077916 | Method of Distributing a Random Variable Using Statistically Correct Spatial Interpolation Continuously With Spatially Inhomogeneous Statistical Correlation Versus Distance, Standard Deviation, and Mean - Methods for modeling a random variable with spatially inhomogenous statistical correlation versus distance, standard deviation, and mean by spatial interpolation with statistical corrections. The method includes assigning statistically independent random variable to a set of seed points in a coordinate frame and defining a plurality of test points at respective spatial locations in the coordinate frame. A equation for a random variable is determined for each of the test points by spatial interpolation from one or more of the random variable assigned to the seed points. The method further includes adjusting the equation of the random variable at each of the test point with respective correction factor equations. | 03-31-2011 |

20110099529 | GEOMETRY BASED ELECTRICAL HOTSPOT DETECTION IN INTEGRATED CIRCUIT LAYOUTS - A method of failure detection of an integrated circuit (IC) layout includes determining a critical path distance between a first geometric feature of the IC layout and a second geometric feature of the IC layout; and comparing the determined critical path distance to a defined minimum critical path distance between the first and second geometric features, wherein the defined minimum critical path distance corresponds to a desired electrical property of the IC layout, independent of any geometric-based ground rule minimum distance for the IC layout; identifying any determined critical path distances that are less than the defined minimum critical path distance as a design violation; and modifying the IC layout by eliminating the identified design violations. | 04-28-2011 |

20110173577 | Techniques for Pattern Process Tuning and Design Optimization for Maximizing Process-Sensitive Circuit Yields - Techniques for improving circuit design and production are provided. In one aspect, a method for virtual fabrication of a process-sensitive circuit is provided. The method comprises the following steps. Based on a physical layout diagram of the circuit, a virtual representation of the fabricated circuit is obtained that accounts for one or more variations that can occur during a circuit production process. A quality-based metric is used to project a production yield for the virtual representation of the fabricated circuit. The physical layout diagram and/or the production process are modified. The obtaining, using and modifying steps are repeated until a desired projected production yield is attained. | 07-14-2011 |

20110219344 | Spatial Correlation-Based Estimation of Yield of Integrated Circuits - Techniques for estimating yield of an integrated circuit design, such as a very-large-scale integration (VLSI) design, are provided. In one aspect, a method for determining a probability of failure of a VLSI query design includes the following steps. A Voronoi diagram is built comprising a set of shapes that represent the design. The Voronoi diagram is converted into a rectangular grid comprising 2 | 09-08-2011 |

20120167029 | PHYSICAL DESIGN SYSTEM AND METHOD - A design system for designing complex integrated circuits (ICs), a method of IC design and program product therefor. A layout unit receives a circuit description representing portions in a grid and glyph format. A checking unit checks grid and glyph portions of the design. An elaboration unit generates a target layout from the checked design. A data prep unit prepares the target layout for mask making. A pattern caching unit selectively replaces portions of the design with previously cached results for improved design efficiency. | 06-28-2012 |

20120311510 | Spatial Correlation-Based Estimation of Yield of Integrated Circuits - A method for estimating yield of a wafer having a plurality of chips printed thereon is provided which includes the following steps. The chip design is divided into a plurality of rectangular cells. A process window is determined for each of the cells. The focus and dose values on the wafer are measured and used to determine a Gaussian random component of the focus and dose values. The focus and dose values on the wafer are represented as a sum of a systematic component of the focus and dose values and the Gaussian random component. Wafer yield is estimated based on a number of the chips for which at each point (x, y) the focus and dose values, as represented as the sum of the systematic component of the focus and dose values and the Gaussian random component, belong to a corresponding one of the process windows. | 12-06-2012 |

20130042217 | STRUCTURAL MIGRATION OF INTEGRATED CIRCUIT LAYOUT - Methods and systems for migrating circuit layouts. A floorplan layout is built for a target circuit using a subset of constraints that characterize a layout structure of an original circuit. Shape-constraint-based scaling is used on the floorplan layout by scaling parts of the floorplan layout in accordance with a plurality of different scaling ratios such that portions of the floorplan layout are concurrently scaled with the plurality of different scaling ratios. Cells are placed at locations defined by the floorplan layout. The floorplan layout is checked with shape-constraint-based legalization using all of the constraints to produce a migrated layout. | 02-14-2013 |

20130185045 | ANALYZING A PATTERNING PROCESS USING A MODEL OF YIELD - Techniques are presented that include accessing results of forward simulations of circuit yield, the results including at least circuit yield results including simulated device shapes. Using the circuit yield results, high-level traits of at least the simulated device shapes are determined. Based on the determined high-level traits and using the circuit yield results, a compact model for predicted yield is constructed, the compact model including a plurality of adjustable parameters, and the constructing the compact model for predicted yield including adjusting the adjustable parameters until at least one first predetermined criterion is met. An optimization problem is constructed including at least the compact model for yield, an objective, and a plurality of constraints. Using the optimization problem, the objective is modified subject to the plurality of constraints until at least one second predetermined criterion is met. | 07-18-2013 |

20130185046 | Analyzing A Patterning Process Using A Model Of Yield - Techniques are presented that include accessing results of forward simulations of circuit yield, the results including at least circuit yield results including simulated device shapes. Using the circuit yield results, high-level traits of at least the simulated device shapes are determined. Based on the determined high-level traits and using the circuit yield results, a compact model for predicted yield is constructed, the compact model including a plurality of adjustable parameters, and the constructing the compact model for predicted yield including adjusting the adjustable parameters until at least one first predetermined criterion is met. An optimization problem is constructed including at least the compact model for yield, an objective, and a plurality of constraints. Using the optimization problem, the objective is modified subject to the plurality of constraints until at least one second predetermined criterion is met. | 07-18-2013 |