Patent application number | Description | Published |
20090165954 | ELECTRICALLY ENHANCING THE CONFINEMENT OF PLASMA - A vacuum plasma processor includes a chamber having a grounded wall and an outlet port. Plasma is excited at a first RF frequency in a chamber region spaced from the wall and outlet port. A. structure confines the plasma to the region while enabling gas to flow from the region to the outlet port. RF electric power at a second frequency connected to the confining structure causes the confining structure to be at a potential different from ground to increase the size of a sheath between the plasma and confining structure and increase the confining structure effectiveness. The region includes an electrode connected to ground by a circuit that is series resonant to the first frequency and includes capacitance of the sheath. | 07-02-2009 |
20090174983 | ELECTROSTATIC CHUCK ASSEMBLY WITH DIELECTRIC MATERIAL AND/OR CAVITY HAVING VARYING THICKNESS, PROFILE AND/OR SHAPE, METHOD OF USE AND APPARATUS INCORPORATING SAME - An electrostatic chuck assembly having a dielectric material and/or having a cavity with varying thickness, profile and/or shape is disclosed. The electrostatic chuck assembly includes a conductive support and an electrostatic chuck ceramic layer. A dielectric layer or insert is located between the conductive support and an electrostatic chuck ceramic layer. A cavity is located in a seating surface of the electrostatic chuck ceramic layer. An embedded pole pattern can be optionally incorporated in the electrostatic chuck assembly. Methods of manufacturing the electrostatic chuck assembly are disclosed as are methods to improve the uniformity of a flux field above a workpiece during a plasma processing process. | 07-09-2009 |
20100151687 | APPARATUS INCLUDING SHOWERHEAD ELECTRODE AND HEATER FOR PLASMA PROCESSING - A plasma processing apparatus includes a heater in thermal contact with a showerhead electrode, and a temperature controlled top plate in thermal contact with the heater to maintain a desired temperature of the showerhead electrode during semiconductor substrate processing. A gas distribution member supplies a process gas and radio frequency (RF) power to the showerhead electrode. | 06-17-2010 |
20100300492 | Method and Apparatus for Physical Confinement of a Liquid Meniscus over a Semiconductor Wafer - Apparatus, methods and systems for physically confining a liquid medium applied over a semiconductor wafer include a first and a second chemical head that are disposed to cover at least a portion of a top and an underside surface of the semiconductor wafer. Each of the first and the second chemical heads include an angled inlet conduit at a leading edge of the respective chemical heads to deliver liquid chemistry into a pocket of meniscus in a single phase. The pocket of meniscus is defined over the portion of the top and underside surface of the semiconductor wafer covered by the chemical heads and is configured to receive and contain the liquid chemistry applied to the surface of the semiconductor wafer as a meniscus. A step is formed at a leading edge of the first and second chemical heads along an outer periphery of the pocket of meniscus to substantially confine the meniscus of the liquid chemistry within the pocket of meniscus. The step covers at least a portion of the pocket of meniscus and the step's height is sufficient to preserve confinement characteristic of the meniscus. An inner return conduit is defined within the pocket of meniscus at a trailing edge of the respective chemical heads and is used to remove the liquid chemistry from the surface of the semiconductor wafer in a single phase after the cleaning process. | 12-02-2010 |
20110024045 | Apparatus and Method for Controlling Plasma Potential - A chamber includes a lower electrode and an upper electrode. The lower electrode is defined to transmit a radiofrequency current through the chamber and to support a semiconductor wafer in exposure to a plasma within the chamber. The upper electrode is disposed above and in a spaced apart relationship with the lower electrode. The upper electrode is electrically isolated from the chamber and is defined by a central section and one or more annular sections disposed concentrically outside the central section. Adjacent sections of the upper electrode are electrically separated from each other by a dielectric material. Multiple voltage sources are respectively connected to the upper electrode sections. Each voltage source is defined to control an electric potential of the upper electrode section to which it is connected, relative to the chamber. The electric potential of each upper electrode section influences an electric potential of the plasma within the chamber. | 02-03-2011 |
20110024046 | Apparatus and Method for Controlling Plasma Potential - An apparatus is provided for semiconductor wafer plasma processing. The apparatus includes a chamber having a lower electrode and an upper electrode disposed therein. The lower electrode is defined to transmit a radiofrequency current through the chamber to generate a plasma within the chamber. The lower electrode is also defined to support a semiconductor wafer in exposure to the plasma. The upper electrode is disposed above and in a spaced apart relationship with the lower electrode. The upper electrode is defined by a doped semiconductor material. A doping concentration within the upper electrode varies radially from a center to a periphery of the upper electrode. The electric potential of the upper electrode influences an electric potential of the plasma within the chamber. | 02-03-2011 |
20110197928 | Carrier for Reducing Entrance and/or Exit Marks Left by a Substrate-Processing Meniscus - A carrier for supporting a substrate during processing by a meniscus formed by upper and lower proximity heads is described. The carrier includes a frame having an opening sized for receiving a substrate and a plurality of support pins for supporting the substrate within the opening. The opening is slightly larger than the substrate such that a gap exists between the substrate and the opening. Means for reducing a size and frequency of entrance and/or exit marks on substrates is provided, the means aiding and encouraging liquid from the meniscus to evacuate the gap. A method for reducing the size and frequency of entrance and exit marks is also provided. | 08-18-2011 |
20120079698 | Carrier for Reducing Entrance and/or Exit Marks Left by a Substrate-Processing Meniscus - A carrier for supporting a substrate during processing by a meniscus fowled by upper and lower proximity heads is described. The carrier includes a frame having an opening sized for receiving a substrate and a plurality of support pins for supporting the substrate within the opening. The opening is slightly larger than the substrate such that a gap exists between the substrate and the opening Means for reducing a size and frequency of entrance and/or exit marks on substrates is provided, the means aiding and encouraging liquid from the meniscus to evacuate the gap. A method for reducing the size and frequency of entrance and exit marks is also provided. | 04-05-2012 |
20120240963 | METHOD AND APPARATUS FOR PHYSICAL CONFINEMENT OF A LIQUID MENISCUS OVER A SEMICONDUCTOR WAFER - Systems, methods and apparatus for making a chemical head including forming a first return chamber in the chemical head, forming a second return chamber in the chemical head, forming a plurality of first return conduits from a head surface to the first return chamber, forming a plurality of second return conduits from a head surface to the second return chamber and wherein at least one of the first return conduits and the second return conduits being formed at a first angle relative to the head surface, the first angle being greater than about 20 degrees to a meniscus plane normal. | 09-27-2012 |
20120260517 | Apparatus and Method for Reducing Substrate Pattern Collapse During Drying Operations - Apparatuses and methods for drying a surface of a substrate includes a proximity drying head having a head body that includes a process surface configured to be disposed opposite a surface of a substrate when present. The process surface includes a first region, a second region and a third region. The first region is defined at a leading edge of the head body and includes a cavity region that is recessed into the head body. The cavity region includes a plurality of inlet ports that are used to introduce a vapor fluid to the cavity region. The second region is disposed proximate to the surface of the substrate when present and is located beside the first region. The third region is disposed proximate to the surface of the substrate when present and is located beside the second region. A plurality of vacuum ports is defined at the interface of the second region and the third region. The third region includes a plurality of angled inlet ports that are directed toward the second region. A method for performing a drying operation includes applying heated isopropyl alcohol as vapor to a wafer surface in the first region and heating the underside region of the wafer corresponding to the first region. Heated Nitrogen is injected to the surface of the wafer in the third region. The deionized water and isopropyl alcohol are removed from the surface of the wafer through the vacuum ports along with the Nitrogen so as to leave the wafer surface substantially dry. | 10-18-2012 |
20130065396 | APPARATUS INCLUDING GAS DISTRIBUTION MEMBER SUPPLYING PROCESS GAS AND RADIO FREQUENCY (RF) POWER FOR PLASMA PROCESSING - A plasma processing apparatus includes a gas distribution member which supplies a process gas and radio frequency (RF) power to a showerhead electrode. The gas distribution member can include multiple gas passages which supply the same process gas or different process gases at the same or different flow rates to one or more plenums at the backside of the showerhead electrode. The gas distribution member provides a desired process gas distribution to be achieved across a semiconductor substrate processed in a gap between the showerhead electrode and a bottom electrode on which the substrate is supported. | 03-14-2013 |
20130084392 | PREVENTION OF PARTICLE ADDERS WHEN CONTACTING A LIQUID MENISCUS OVER A SUBSTRATE - A method for meniscus processing a substrate is provided. The method initiates with generating a meniscus spanning at least a length of the substrate. A pre-wetting liquid or vapor is dispensed. A substrate is moved through the dispensed pre-wetting liquid or vapor and the meniscus. The dispensed pre-wetting vapor condenses a pre-wetting liquid over a region of the substrate adjacent to a region of the substrate where the meniscus is generated. The pre-wetting liquid is deposited without substantially generating surface flow of the pre-wetting liquid on the substrate, and the pre-wetting liquid prevents the leading edge of the meniscus from contacting a dry surface region of the substrate. | 04-04-2013 |
20140041226 | Method and Apparatus for Physical Confinement of a Liquid Meniscus Over a Semiconductor Wafer - Apparatus, methods and systems for physically confining a liquid medium applied over a semiconductor wafer include a chemical head. The chemical head including multiple first return conduits formed from a first flat region in a head surface and multiple second return conduits formed from a second flat region in the head surface. The second flat region being disposed immediately adjacent to the first flat region and the second flat region being in a plane substantially parallel to and offset from the first flat region. At least one of the first return conduits and the second return conduits being formed at a first angle relative to the head surface and the first angle being greater than about 20 degrees to a meniscus plane normal. | 02-13-2014 |