Patent application number | Description | Published |
20090283775 | SEMICONDUCTOR DEVICE - Semiconductor elements deteriorate or are destroyed due to electrostatic discharge damage. The present invention provides a semiconductor device in which a protecting means is formed in each pixel. The protecting means is provided with one or a plurality of elements selected from the group consisting of resistor elements, capacitor elements, and rectifying elements. Sudden changes in the electric potential of a source electrode or a drain electrode of a transistor due to electric charge that builds up in a pixel electrode is relieved by disposing the protecting means between the pixel electrode of the light-emitting element and the source electrode or the drain electrode of the transistor. Deterioration or destruction of the semiconductor element due to electrostatic discharge damage is thus prevented. | 11-19-2009 |
20100034338 | SHIFT REGISTER AND SEMICONDUCTOR DISPLAY DEVICE - The invention provides a shift register which can operate normally while suppressing a delay of signal and a rounding of waveform. The shift register of the invention includes a plurality of stages of flip-flop circuits each of which includes a clocked inverter. The clocked inverter includes a first transistor and a second transistor which are connected in series, a first compensation circuit including a third transistor and a fourth transistor which are connected in series, and a second compensation circuit including a fifth transistor and a transmission gate. According to the first compensation circuit, a timing at which a signal outputted from the flip-flop circuit rises or falls can be controlled in synchronization with an output of two stages before. The second compensation circuit can control a clock signal input can be controlled. | 02-11-2010 |
20100321420 | LIGHT EMITTING DEVICE AND DRIVING METHOD OF THE SAME - The invention provides a light emitting device which can suppress the reduction of luminance in accordance with the light emission time and light emission at a high luminance. Moreover, the invention relates to a driving method which can suppress the reduction of luminance in accordance with the light emission time and light emission at a high luminance. The light emitting device of the invention can display a plurality of colors of which brightness and chromaticity are different by visually mixing light emission of a plurality of light emitting elements of which light emission colors are different. When a visually mixed display color is formed, a white light emission is exhibited. | 12-23-2010 |
20110068824 | SHIFT REGISTER AND SEMICONDUCTOR DISPLAY DEVICE - The invention provides a shift register which can operate normally while suppressing a delay of signal and a rounding of waveform. The shift register of the invention includes a plurality of stages of flip-flop circuits each of which includes a clocked inverter. The clocked inverter includes a first transistor and a second transistor which are connected in series, a first compensation circuit including a third transistor and a fourth transistor which are connected in series, and a second compensation circuit including a fifth transistor and a transmission gate. According to the first compensation circuit, a timing at which a signal outputted from the flip-flop circuit rises or falls can be controlled in synchronization with an output of two stages before. The second compensation circuit can control a clock signal input can be controlled. | 03-24-2011 |
20110181189 | LIGHT EMITTING DEVICE AND DRIVING METHOD THEREOF - The light emitting device has a limiter transistor which is connected to a monitoring element, and an inverter an output terminal of which is connected to a gate electrode of the limiter transistor and an input terminal of which is connected to one electrode of the limiter transistor and the monitoring element. In the case where the monitoring element is short-circuited, the limiter transistor can be turned off by the inverter to correct a defect of the monitoring element. | 07-28-2011 |
20110309368 | SEMICONDUCTOR DEVICE - Semiconductor elements deteriorate or are destroyed due to electrostatic discharge damage. The present invention provides a semiconductor device in which a protecting means is formed in each pixel. The protecting means is provided with one or a plurality of elements selected from the group consisting of resistor elements, capacitor elements, and rectifying elements. Sudden changes in the electric potential of a source electrode or a drain electrode of a transistor due to electric charge that builds up in a pixel electrode is relieved by disposing the protecting means between the pixel electrode of the light-emitting element and the source electrode or the drain electrode of the transistor. Deterioration or destruction of the semiconductor element due to electrostatic discharge damage is thus prevented. | 12-22-2011 |
20120019300 | SHIFT REGISTER AND SEMICONDUCTOR DISPLAY DEVICE - The invention provides a shift register which can operate normally while suppressing a delay of signal and a rounding of waveform. The shift register of the invention includes a plurality of stages of flip-flop circuits each of which includes a clocked inverter. The clocked inverter includes a first transistor and a second transistor which are connected in series, a first compensation circuit including a third transistor and a fourth transistor which are connected in series, and a second compensation circuit including a fifth transistor and a transmission gate. According to the first compensation circuit, a timing at which a signal outputted from the flip-flop circuit rises or falls can be controlled in synchronization with an output of two stages before. The second compensation circuit can control a clock signal input can be controlled. | 01-26-2012 |
20140110732 | SEMICONDUCTOR DEVICE - Semiconductor elements deteriorate or are destroyed due to electrostatic discharge damage. The present invention provides a semiconductor device in which a protecting means is formed in each pixel. The protecting means is provided with one or a plurality of elements selected from the group consisting of resistor elements, capacitor elements, and rectifying elements. Sudden changes in the electric potential of a source electrode or a drain electrode of a transistor due to electric charge that builds up in a pixel electrode is relieved by disposing the protecting means between the pixel electrode of the light-emitting element and the source electrode or the drain electrode of the transistor. Deterioration or destruction of the semiconductor element due to electrostatic discharge damage is thus prevented. | 04-24-2014 |
Patent application number | Description | Published |
20080273004 | Shift Register and Semiconductor Display Device - The invention provides a shift register which can operate normally while suppressing a delay of signal and a rounding of waveform. The shift register of the invention includes a plurality of stages of flip-flop circuits each of which includes a clocked inverter. The clocked inverter includes a first transistor and a second transistor which are connected in series, a first compensation circuit including a third transistor and a fourth transistor which are connected in series, and a second compensation circuit including a fifth transistor and a transmission gate. According to the first compensation circuit, a timing at which a signal outputted from the flip-flop circuit rises or falls can be controlled in synchronization with an output of two stages before. The second compensation circuit can control a clock signal input can be controlled. | 11-06-2008 |
20100224868 | Light Emitting Device - The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced. | 09-09-2010 |
20120181540 | Light Emitting Device - The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced. | 07-19-2012 |
20130087775 | Light Emitting Device - The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced. | 04-11-2013 |
20140151707 | LIGHT EMITTING DEVICE - The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced. | 06-05-2014 |
Patent application number | Description | Published |
20090033600 | Light Emitting Device and Method of Driving the Light Emitting Device - A light emitting device that achieves long life, and which is capable of performing high duty drive, by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element ( | 02-05-2009 |
20120261665 | LIGHT EMITTING DEVICE AND METHOD OF DRIVING THE LIGHT EMITTING DEVICE - A light emitting device that achieves long life, and which is capable of performing high duty drive, by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element ( | 10-18-2012 |
20130126912 | Light Emitting Device and Method of Driving the Light Emitting Device - A light emitting device that achieves long life, and which is capable of performing high duty ‘drive,’ by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element (109) is performed one row at a time by forming a reverse bias electric power source line (112) and a reverse bias TFT (108). Reverse bias application can therefore be performed in synchronous with operations for write-in of an image signal, light emission, erasure, and the like. Reverse bias application therefore becomes possible while maintaining a duty equivalent to that of a conventional driving method. | 05-23-2013 |
20140168196 | Light Emitting Device and Method of Driving the Light Emitting Device - A light emitting device that achieves long life, and which is capable of performing high duty drive, by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element ( | 06-19-2014 |