Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Armer

Dustin P. Armer, Aliso Viejo, CA US

Patent application numberDescriptionPublished
20120022633RETAINING MECHANISMS FOR PROSTHETIC VALVES - Disclosed herein are representative embodiments of methods, apparatus, and systems used to deliver a prosthetic heart valve to a deficient valve. In one embodiment, for instance, a support structure and an expandable prosthetic valve are advanced through the aortic arch of a patient using a delivery system. The support structure is delivered to a position on or adjacent to the surface of the outflow side of the aortic valve (the support structure defining a support-structure interior). The expandable prosthetic valve is delivered into the aortic valve and into the support-structure interior. The expandable prosthetic heart valve is expanded while the expandable prosthetic heart valve is in the support-structure interior and while the support structure is at the position on or adjacent to the surface of the outflow side of the aortic valve, thereby causing one or more native leaflets of the aortic valve to be frictionally secured between the support structure and the expanded prosthetic heart valve.01-26-2012
20120310328SYSTEM AND METHOD FOR TREATING VALVE INSUFFICIENCY OR VESSEL DILATATION - A medical device for treating aortic insufficiency (and associated aneurysms or defects of any other vessel associated with a valve) includes a support structure, a stent, a prosthetic valve and a deflector. Generally, the support structure is configured to cooperate with the prosthetic valve to pinch the native valve therebetween and provide an anchor for the stent which extends into the aorta and supports the deflector which is positioned to abate blood flow against the aneurysm.12-06-2012

Dustin P. Armer, Costa Mesa, CA US

Patent application numberDescriptionPublished
20150282931RETAINING MECHANISMS FOR PROSTHETIC HEART VALVES - According to one representative embodiment, a method of treating aortic insufficiency comprises delivering a support structure to a position around the leaflets of a native heart valve. The support structure comprises an annular body defining an interior and at least one projection extending radially inwardly from the annular body. An expandable prosthetic heart valve can be advanced into the native heart valve and into the interior of the annular body. The prosthetic heart valve can be expanded into contact with the leaflets of the native valve, thereby causing the leaflets of the native valve to be frictionally secured between an inner surface of the annular body and an outer surface of the prosthetic heart valve and causing the at least one projection and a portion of one of the leaflets contacted by the at least one projection to extend into an opening of the frame of the prosthetic valve.10-08-2015

Helen R. Armer, Los Altos, CA US

Patent application numberDescriptionPublished
20130268469INCREASING SIGNAL TO NOISE RATIO FOR CREATION OF GENERALIZED AND ROBUST PREDICTION MODELS - A computer system iteratively executes a decision tree-based prediction model using a set of input variables. The iterations create corresponding rankings of the input variables. The computer system generates overall variables contribution data using the rankings of the input variables and identifies key input variables based on the overall variables contribution data.10-10-2013

Helen R. Armer, Cupertino, CA US

Patent application numberDescriptionPublished
20080199282CLUSTER TOOL ARCHITECTURE FOR PROCESSING A SUBSTRATE - Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.08-21-2008
20080223293CLUSTER TOOL ARCHITECTURE FOR PROCESSING A SUBSTRATE - A cluster tool for processing a substrate includes a cassette and a processing module including a first process chamber that is configured to perform a chill process on a substrate, a second processing chamber that is configured to perform a bake process on the substrate, and an input chamber. The first processing chamber, the second processing chamber, and the input chamber are substantially adjacent to each other. The processing modules also includes a robot that is configured to receive the substrate in the input chamber and transfer and position the substrate in the first processing chamber and second processing chamber. The robot includes a robot blade, an actuator, and a heat exchanging device. The heat exchanging device includes a chilled transfer assembly. The cluster tool also includes a 6-axis articulated robot configured to transfer the substrate between the cassette and the input chamber.09-18-2008
20090064928CLUSTER TOOL ARCHITECTURE FOR PROCESSING A SUBSTRATE - Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool. In track lithography type cluster tools, since the chamber processing times tend to be rather short, and the number of processing steps required to complete a typical track system process is large, a significant portion of the time it takes to process a substrate is taken up by the processes of transferring the substrates in a cluster tool between the various processing chambers. In one embodiment of the cluster tool, the cost of ownership, is reduced by grouping substrates together and transferring and processing the substrates in groups of two or more to improve system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. In one aspect of the invention, the substrate processing sequence and cluster tool are designed so that the substrate transferring steps performed during the processing sequence are only made to chambers that will perform the next processing step in the processing sequence. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.03-12-2009
20090064929CLUSTER TOOL ARCHITECTURE FOR PROCESSING A SUBSTRATE - Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool. In track lithography type cluster tools, since the chamber processing times tend to be rather short, and the number of processing steps required to complete a typical track system process is large, a significant portion of the time it takes to process a substrate is taken up by the processes of transferring the substrates in a cluster tool between the various processing chambers. In one embodiment of the cluster tool, the cost of ownership is reduced by grouping substrates together and transferring and processing the substrates in groups of two or more to improve system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. In one aspect of the invention, the substrate processing sequence and cluster tool are designed so that the substrate transferring steps performed during the processing sequence are only made to chambers that will perform the next processing step in the processing sequence. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.03-12-2009
20090067956CLUSTER TOOL ARCHITECTURE FOR PROCESSING A SUBSTRATE - Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool. In track lithography type cluster tools, since the chamber processing times tend to be rather short, and the number of processing steps required to complete a typical track system process is large, a significant portion of the time it takes to process a substrate is taken up by the processes of transferring the substrates in a cluster tool between the various processing chambers. In one embodiment of the cluster tool, the cost of ownership, is reduced by grouping substrates together and transferring and processing the substrates in groups of two or more to improve system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. In one aspect of the invention, the substrate processing sequence and cluster tool are designed so that the substrate transferring steps performed during the processing sequence are only made to chambers that will perform the next processing step in the processing sequence. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.03-12-2009
20120180983CLUSTER TOOL ARCHITECTURE FOR PROCESSING A SUBSTRATE - The present invention generally provides a cluster tool for processing a substrate. In one embodiment, the cluster tool comprises at least one processing rack, which comprises a first plurality of substrate processing chambers that are positioned adjacent to each other and aligned in a first direction, a second plurality of substrate processing chambers that are positioned adjacent to each other and adjacent to at least one of the first plurality of substrate processing chambers, the second plurality of substrate processing chambers being positioned in a second direction relative to the first direction, a first shuttle robot movable in the first direction for moving substrates between each of the first plurality of substrate processing chambers, and a second shuttle robot movable in the second direction for moving substrates between each of the second plurality of substrate processing chambers.07-19-2012
20120320361CLUSTER TOOL ARCHITECTURE FOR PROCESSING A SUBSTRATE - Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.12-20-2012

Patent applications by Helen R. Armer, Cupertino, CA US

Jarod Armer, Aromas, CA US

Patent application numberDescriptionPublished
20120120639Underwater lights for divers - An LED underwater light, which can be hand-held or mounted on an underwater camera housing, is switchable between two light modes. A first embodiment of the dive light is a focus light, used for initial focusing with a still underwater camera. Incorporated in the focus light is a red light source to which the focus light can be switched from initially projected white light. The switch is used to switch off a series of white LEDs while switching on a series of red LEDs. In a second embodiment, the dive light is a flood/spot light, and enables a diver to quickly switch between flood and spot beams, via separate LED arrays.05-17-2012
20120133758Underwater camera control - A camera retained in a waterproof underwater housing is controlled remotely and conveniently by a diver holding a hand-held remote device. The device can be a removable handle on the underwater housing, communicating with the camera, usually a movie camera, by infrared or other wireless protocol. Key functional camera settings, which would normally require navigation through a menu tree with a series of steps and selections, are selected by a single press of a button on the hand-held device. An important example is white balance calibration, which typically must be reset for every five feet of depth change.05-31-2012
20120140433Adjustable light for underwater photography - An underwater diving light has a rotatable front filter ring for selecting light filtration as needed for underwater still or video photography conditions. The filter ring is removable and interchangeable with different rings. Another important feature is efficient cooling of the LEDs and other internal electronics of the diving light assembly. The water is in contact with a metallic front face that conducts heat directly away from a metal core circuit board carrying the LED array or arrays. In one form of the diving light water channels are provided so that the ambient water can enter the assembly to spaces behind the LCD circuit board to efficiently cool the LEDs and associated electronics. The front plate assembly can be removable, for rinsing the internal cooling cavities, for interchange with different front face assemblies, and for air travel when the LCDs must be removed from driving electronics for safety concerns.06-07-2012

Richard Armer, Liverpool GB

Patent application numberDescriptionPublished
20160113928HETEROCYCLIC COMPOUNDS AS HEDGEHOG SIGNALING PATHWAY INHIBITORS - This invention relates to novel compounds of formula (I). The compounds of the invention are hedgehog pathway antagonists. Specifically, the compounds of the invention are useful as Smoothened (SMO) inhibitors. The invention also contemplates the use of the compounds for treating conditions treatable by the inhibition of the Hedgehog pathway and SMO, for example cancer.04-28-2016

Richard Edward Armer, Cambridge GB

Patent application numberDescriptionPublished
201003300771-ACETIC ACID-INDOLE DERIVATIVES WITH PGD2 ANTAGONIST ACTIVITY - Compounds of general formula (I)12-30-2010
20110166136Calcium Ion Channel Modulators & Uses Thereof - Compounds of formula (1), salts and pro-drugs wherein:07-07-2011
20110268693Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (I) wherein R is phenyl optionally substituted with one or more halo substituents; and their pharmaceutically acceptable salts, hydrates, solvates, complexes or prodrugs are useful in orally administrable compositions for the treatment of allergic diseases such as asthma, allergic rhinitis and atopic dermatitis.11-03-2011

Richard Edward Armer, Abingdon GB

Patent application numberDescriptionPublished
20100022613Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (I)01-28-2010
20100035956Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (I) wherein R is phenyl optionally substituted with one or more halo substituents; and their pharmaceutically acceptable salts, hydrates, solvates, complexes or prodrugs are useful in orally administrable compositions for the treatment of allergic diseases such as asthma, allergic rhinitis and atopic dermatitis.02-11-2010

Richard Edward Armer, Oxon GB

Patent application numberDescriptionPublished
20090186923Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (I)07-23-2009
20090192195Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (I)07-30-2009
20100063103Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (I)03-11-2010
20100266535Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (II)10-21-2010
20110123547Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (II)05-26-2011
20110142855Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (I)06-16-2011
20140039012Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (II)02-06-2014
20150246030Compounds Having CRTH2 Antagonist Activity - Compounds of general formula (II)09-03-2015

Patent applications by Richard Edward Armer, Oxon GB

Richard Edward Armer, Cambridge Cambridgeshire GB

Patent application numberDescriptionPublished
20110245250POTASSIUM ION CHANNEL MODULATORS & USES THEREOF - Compounds of formula (I) and pharmacologically acceptable salts and pro-drugs thereof wherein:10-06-2011

Rollin A. Armer, Orinda, CA US

Patent application numberDescriptionPublished
20090114194Variable compression engine with variable inlet valve timing - An apparatus for providing two features that improve fuel economy of four stroke internal combustion engines. The first is the provision of a compression ratio which is higher than normal when the engine is operating at light load; and which varies from very high at idling, down to normal at full power. This is effected by a movable piston associated with the inlet valve and connected to the throttle. The second is the provision of variable timing as well as a variable amount of opening of the inlet valve, such that at idle, the valve opens at top center of the main piston, opens only a fraction of its full lift, and closes about 70° crankshaft past top center. As the throttle is opened, the inlet valve opens farther at each open excursion to create as little flow resistance as possible to the inlet draw. At the middle of its open excursion during each valve actuation it moves in the same direction as the crankshaft enough that as the open duration becomes greater, the valve always begins to open as the main piston starts its inlet stroke, but closes later. Finally, at full power, the inlet valve begins to open slightly before the main piston comes to top center, opens fully, and closes somewhat after the main piston has reached bottom center and has started the compression stroke.05-07-2009

Thomas Armer, Palo Alto, CA US

Patent application numberDescriptionPublished
20150265582RAPAMYCIN FOR THE TREATMENT OF LYMPHANGIOLEIOMYOMATOSIS - The present invention relates to methods and compositions for treating lymphangioleiomyomatosis in a human subject in need of such treatment. The methods comprise administering to the subject via inhalation an aerosol composition comprising rapamycin or a prodrug or derivative (including analog) thereof.09-24-2015

Thomas Armer, Mountain View, CA US

Patent application numberDescriptionPublished
20140023595INHALATION DEVICES AND RELATED METHODS FOR ADMINISTRATION OF SEDATIVE HYPNOTIC COMPOUNDS - An inhalation device for administering one or more sedatives via pulmonary inhalation for treating a sleep disturbance.01-23-2014
201401797048'-HYDROXY-DIHYDROERGOTAMINE COMPOUNDS AND COMPOSITIONS - 8′-Hydroxy-Dihydroergotamine (8′-OH DHE) medicinal compounds, compositions, and dosage forms containing such compositions are provided. Also provided herein are methods of treatment, prevention, or amelioration of migraine disorders using the compounds, compositions, dosage forms and administration techniques disclosed herein.06-26-2014
201401797058'-HYDROXY-DIHYDROERGOTAMINE COMPOUNDS AND COMPOSITIONS - 8′-Hydroxy-Dihydroergotamine (8′-OH DHE) medicinal compounds, compositions, and dosage forms containing such compositions are provided. Also provided herein are methods of treatment, prevention, or amelioration of diseases, conditions or disorders selected from amyotrophic lateral sclerosis (ALS), Parkinson's disease, stress/anxiety, nausea, emesis, aggression, pain, neuropathic pain, sleeplessness, insomnia, restless leg syndrome and depression using the compounds, compositions, dosage forms and administration techniques disclosed herein.06-26-2014
20140179706FLUOROERGOLINE DERIVATIVES AND USES THEREOF - Provided herein are novel fluoroergoline derivatives and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT06-26-2014
20140179707NOVEL ERGOLINE DERIVATIVES AND USES THEREOF - Provided herein are 8′-Hydroxy-2-CF3-dihydroergotamine (8′OH-2-CF3-DHE) compounds, compositions, and dosage forms containing such compositions. Also provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT06-26-2014
20150133456FLUOROERGOLINE DERIVATIVES AND USES THEREOF - Provided herein are novel fluoroergoline derivatives and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT05-14-2015
20150238487NOVEL ERGOLINE DERIVATIVES AND USES THEREOF - Provided herein are 8′-Hydroxy-2-CF3-dihydroergotamine (8′OH-2-CF3-DHE) compounds, compositions, and dosage forms containing such compositions. Also provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT08-27-2015
201503060968'-HYDROXY-DIHYDROERGOTAMINE COMPOUNDS AND COMPOSITIONS - 8′-Hydroxy-Dihydroergotamine (8′-OH DHE) medicinal compounds, compositions, and dosage forms containing such compositions are provided. Also provided herein are methods of treatment, prevention, or amelioration of diseases, conditions or disorders selected from amyotrophic lateral sclerosis (ALS), Parkinson's disease, stress/anxiety, nausea, emesis, aggression, pain, neuropathic pain, sleeplessness, insomnia, restless leg syndrome and depression using the compounds, compositions, dosage forms and administration techniques disclosed herein.10-29-2015

Thomas A. Armer, Los Altos, CA US

Patent application numberDescriptionPublished
20140194434NOVEL SUBSTITUTED INDOLO 4,3 FG QUINOLINES USEFUL FOR TREATING MIGRAINE - Provided herein are novel ergoline derivatives and pharmaceutical compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT07-10-2014
20140194435NOVEL SUBSTITUTED INDOLO 4,3 FG QUINOLINES USEFUL FOR TREATING MIGRAINE - Provided herein are novel ergoline derivatives and pharmaceutical compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT07-10-2014
20140323451METHODS FOR ADMINISTERING CORTICOSTEROID FORMULATIONS - Described here are methods for the treatment of respiratory conditions using nebulized corticosteroids. The methods administer a dose of corticosteroid twice a day or more with nebulization times of 5 minutes or less. The faster nebulization times improve patient compliance. The methods also employ a lower corticosteroid dose while achieving therapeutic efficacy similar to commercially available formulations. This results in improved patient safety by reducing the systemic exposure of the corticosteroid.10-30-2014
20150057287METHOD OF THERAPEUTIC ADMINISTRATION OF DHE TO ENABLE RAPID RELIEF OF MIGRAINE WHILE MINIMIZING SIDE EFFECT PROFILE - Pharmaceutical compositions containing dihydroergotamine (DHE) and methods in which DHE is administered to patients for treatment of migraine without side effects or adverse effects are disclosed. Methods for rapid treatment of migraine with DHE are disclosed comprising: dampening the peak plasma concentration (C02-26-2015
20150368275NOVEL FLUOROERGOLINE ANALOGS - Provided herein are novel fluoroergoline derivatives and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT12-24-2015
20160106669METHOD OF THERAPEUTIC ADMINISTRATION OF DHE TO ENABLE RAPID RELIEF OF MIGRAINE WHILE MINIMIZING SIDE EFFECT PROFILE - Pharmaceutical compositions containing dihydroergotamine (DHE) and methods in which DHE is administered to patients for treatment of migraine without side effects or adverse effects are disclosed. Methods for rapid treatment of migraine with DHE are disclosed comprising: dampening the peak plasma concentration (C04-21-2016

Patent applications by Thomas A. Armer, Los Altos, CA US

Thomas A. Armer, Mountain View, CA US

Patent application numberDescriptionPublished
20120245179Method Of Therapeutic Administration of DHE To Enable Rapid Relief Of Migraine While Minimizing Side Effect Profile - Pharmaceutical compositions containing dihydroergotamine (DHE) and methods in which DHE is administered to patients for treatment of migraine without side effects or adverse effects are disclosed. Methods for rapid treatment of migraine with DHE are disclosed comprising: dampening the peak plasma concentration (C09-27-2012
20120329806NOVEL FLUOROERGOLINE ANALOGS - Provided herein are novel fluoroergoline derivatives and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT12-27-2012
20130165469NOVEL NEUROMODULATORY COMPOUNDS - Provided herein are novel neuromodulatory compounds and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine and Parkinson's disease, using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT06-27-2013
20130345253NOVEL CABERGOLINE DERIVATIVES - Provided herein are novel cabergoline analogs and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, Parkinson's disease using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of antagonizing the 5-HT12-26-2013
20140066450NOVEL FLUOROERGOLINE ANALOGS - Provided herein are novel fluoroergoline derivatives and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT03-06-2014
20140073647NOVEL FLUOROERGOLINE ANALOGS - Provided herein are novel fluoroergoline derivatives and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT03-13-2014
20140073790NOVEL FLUOROERGOLINE ANALOGS - Provided herein are novel fluoroergoline derivatives and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT03-13-2014
20150099755NOVEL FLUOROERGOLINE ANALOGS - Provided herein are novel fluoroergoline derivatives and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT04-09-2015
20150148371NOVEL NEUROMODULATORY COMPOUNDS - Provided herein are novel neuromodulatory compounds and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine and Parkinson's disease, using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT05-28-2015
20150202198Novel Cabergoline Derivatives - Provided herein are novel cabergoline analogs and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, Parkinson's disease using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of antagonizing the 5-HT07-23-2015

Patent applications by Thomas A. Armer, Mountain View, CA US

Website © 2016 Advameg, Inc.