Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME

Inventors:  Hagai Karchi (Moshav Sitriya Doar-Na Emek Soreq, IL)  Rafael Meissner (Rechovot, IL)  Gil Ronen (Emek Hefer, IL)  Gil Ronen (Emek Hefer, IL)  Ezekiel Golan (Tel-Aviv, IL)  Larisa Rabinovich (Rishon-Lezion, IL)  Naama Zeliger (Moshav Mechora, IL)  Noa Savir (Givat Brenner, IL)
Assignees:  Evogene Ltd.
IPC8 Class: AC12N1582FI
USPC Class: 800278
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of introducing a polynucleotide molecule into or rearrangement of genetic material within a plant or plant part
Publication date: 2010-08-12
Patent application number: 20100205691



Sign up to receive free email alerts when patent applications with chosen keywords are published SIGN UP

NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME - Patent application init(); ?>
Patents - stay tuned to the technology

Inventors list

Agents list

Assignees list

List by place

Classification tree browser

Top 100 Inventors

Top 100 Agents

Top 100 Assignees

Usenet FAQ Index

Documents

Other FAQs

Patent application title: NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME

Inventors:  Gil Ronen  Larisa Rabinovich  Rafael Meissner  Noa Savir  Hagai Karchi  Ezekiel Golan  Naama Zeliger
Agents:  MARTIN D. MOYNIHAN d/b/a PRTSI, INC.
Assignees:
Origin: ARLINGTON, VA US
IPC8 Class: AC12N1582FI
USPC Class:
Publication date: 08/12/2010
Patent application number: 20100205691

Abstract:

Novel plant derived regulatory sequences and constructs and methods of using such sequences for directing expression of exogenous polynucleotide sequences in plants are provided

Claims:

1. An isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 136, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 wherein the isolated polynucleotide is capable of regulating expression of at least one heterologous polynucleotide sequence operably linked thereto.

2. An isolated polynucleotide consisting of the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 136, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

3. A nucleic acid construct, comprising the isolated polynucleotide of claim 1.

4. A nucleic acid construct, comprising the isolated polynucleotide of claim 2.

5. The nucleic acid construct of claim 3, further comprising at least one heterologous polynucleotide operably linked to the isolated polynucleotide.

6. The nucleic acid construct of claim 4, further comprising at least one heterologous polynucleotide operably linked to the isolated polynucleotide.

7. The nucleic acid construct of claim 5, wherein said heterologous polynucleotide is an expressed nucleic acid sequence.

8. The nucleic acid construct of claim 5, wherein said heterologous polynucleotide is a reporter gene.

9. The isolated polynucleotide of claim 1, wherein said regulating is effected in a constitutive manner.

10. The isolated polynucleotide of claim 1, wherein said regulating is effected in an inductive manner.

11. The isolated polynucleotide of claim 1, wherein said regulating is effected in a tissue specific manner.

12. The isolated polynucleotide of claim 1, wherein said regulating is effected in a developmental stage specific manner.

13. The nucleic acid contrast of claim 5, wherein said at least one heterologous polynucleotide is at least two heterologous polynucleotides each being operably linked to an end of the isolated polynucleotide such that said two heterologous polynucleotides flank the isolated polynucleotide.

14. A transgenic cell comprising the isolated polynucleotide of claim 1.

15. A transgenic cell comprising the nucleic acid construct of claim 3.

16. A transgenic non-human organism comprising the isolated polynucleotide of claim 1.

17. A transgenic non-human organism comprising the nucleic acid construct of claim 3.

18. A transgenic plant comprising the isolated polynucleotide of claim 1.

19. A transgenic plant comprising the nucleic acid construct of claim 3.

20. A method of producing a transgenic plant, comprising transforming a plant with the polynucleotide of claim 1.

21. A method of producing a transgenic plant, comprising transforming a plant with the nucleic acid construct of claim 3.

22. A method of producing a transgenic plant, comprising transforming a plant with the nucleic acid construct of claim 5.

23. A method of producing a transgenic plant, comprising transforming a plant with the nucleic acid construct of claim 7.

24. A method of expressing a polypeptide of interest in a cell comprising transforming the cell with a nucleic acid construct including a polynucleotide sequence encoding the polypeptide of interest operably linked to a regulatory nucleic acid sequence selected from the group consisting of SEQ ID NOs: 136, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 thereby expressing the polypeptide of interest in the cell.

25. A method of co-expressing two polypeptides of interest in a cell comprising transforming the cell with a nucleic acid construct including two polynucleotide sequences encoding the two polypeptides of interest operably linked to a regulatory nucleic acid sequence selected from the group consisting of SEQ ID NOS: 136, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 such that said two polynucleotide sequences flank said regulatory nucleic acid sequence, thereby expressing the two polypeptides of interest in the cell.

Description:

RELATED PATENT APPLICATIONS

[0001]This application is a continuation of pending U.S. patent application Ser. No. 10/548,548 filed Sep. 12, 2005, which is a National Phase of PCT Patent Application No. PCT/IL2004/000235 having International Filing Date of Mar. 11, 2004, which claims the benefit of U.S. Provisional Patent Application No. 60/453,843 filed Mar. 12, 2003. The contents of the above applications are all incorporated herein by reference.

FIELD AND BACKGROUND OF THE INVENTION

[0002]The present invention relates to isolated polynucleotides which are capable of regulating gene expression in an organism and more specifically, to novel nucleic acid sequences which include constitutive, inducible, tissue-specific and developmental stage-specific promoters which are capable of directing gene expression in plants.

[0003]A promoter is a nucleic acid sequence approximately 200-1500 base pairs (bp) in length which is typically located upstream of coding sequences. A promoter functions in directing transcription of an adjacent coding sequence and thus acts as a switch for gene expression in an organism. Thus, all cellular processes are ultimately governed by the activity of promoters, making such regulatory elements important research and commercial tools.

[0004]Promoters are routinely utilized for heterologous gene expression in commercial expression systems, gene therapy and a variety of research applications.

[0005]The choice of the promoter sequence determines when, where and how strongly the heterologous gene of choice is expressed. Accordingly, when a constitutive expression throughout an organism is desired, a constitutive promoter is preferably utilized. On the other hand, when triggered gene expression is desired, an inductive promoter is preferred. Likewise, when an expression is to be confined to a particular tissue, or a particular physiological or developmental stage, a tissue specific or a stage specific promoter is respectively preferred.

[0006]Constitutive promoters are active throughout the cell cycle and have been utilized to express heterologous genes in transgenic plants, such that the expression of traits encoded by the heterologous genes is effected throughout the plant at all time. Examples of known constitutive promoters often used for plant transformation include the cauliflower heat shock protein 80 (hsp80) promoter, 35S cauliflower mosaic virus promoter, nopaline synthase (nos) promoter, octopine (ocs) Agrobacterium promoter and the mannopine synthase (mas) Agrobacterium promoter.

[0007]Inducible promoters can be switched on by an inducing agent and are typically active as long as they are exposed to the inducing agent. The inducing agent can be a chemical agent, such as a metabolite, growth regulator, herbicide, or phenolic compound, or a physiological stress directly imposed upon the plant such as cold, heat, salt, toxins, or through the action of a microbial pathogen or an insecticidal pest. Accordingly, inducible promoters can be utilized to regulate expression of desired traits, such as genes that control insect pests or microbial pathogens, whereby the protein is only produced shortly upon infection or first bites of the insect and transiently so as to decrease selective pressure for resistant insects. For example, plants can be transformed to express insecticidal or fungicidal traits such as the Bacillus thuringiensis (Bt) toxins, viruses coat proteins, glucanases, chitinases or phytoalexins. In another example, plants can be transformed to tolerate herbicides by overexpressing, upon exposure to a herbicide, the acetohydroxy acid synthease enzyme, which neutralizes multiple types of herbicides [Hattori, J. et al., Mol. General. Genet. 246: 419 (1995)].

[0008]Several fruit-specific promoters have been described, including an apple-isolated Thi promoter (U.S. Pat. No. 6,392,122); a strawberry-isolated promoter (U.S. Pat. No. 6,080,914); tomato-isolated E4 and E8 promoters (U.S. Pat. No. 5,859,330); a polygalacturonase promoter (U.S. Pat. No. 4,943,674); and the 2AII tomato gene promoter [Van Haaren et al., Plant Mol. Biol. 21: 625-640 (1993)]. Such fruit specific promoters can be utilized, for example, to modify fruit ripening by regulating expression of ACC deaminase which inhibits biosynthesis of ethylene. Other gene products which may be desired to express in fruit tissue include genes encoding flavor or color traits, such as thaumatin, cyclase or sucrose phosphate synthase.

[0009]Seed specific promoters have been described in U.S. Pat. Nos. 6,403,862, 5,608,152 and 5,504,200; and in U.S. patent application Ser. Nos. 09/998,059 and 10/137,964. Such seed specific promoters can be utilized, for example, to alter the levels of saturated or unsaturated fatty acids; to increase levels of lysine- or sulfur-containing amino acids, or to modify the amount of starch contained in seeds.

[0010]Several promoters which regulate gene expression specifically during germination stage have been described, including the α-glucoronidase and the cystatin-1 barely-isolated promoters (U.S. Pat. No. 6,359,196), and the hydrolase promoter [Skriver et al., Proc. Natl. Acad. Sci. USA, 88:7266-7270 (1991)].

[0011]While reducing the present invention to practice, the present inventors have uncovered several regulatory sequences which exhibit a wide range of promoter activities in plants, as is further described hereinunder, such regulatory sequences can be used in a variety of commercial and research applications.

SUMMARY OF THE INVENTION

[0012]According to one aspect of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 211, 210 and 213, wherein the isolated polynucleotide is capable of regulating expression of at least one polynucleotide sequence operably linked thereto.

[0013]According to another aspect of the present invention there is provided a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0014]According to yet another aspect of the present invention there is provided a transgenic cell which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0015]According to still another aspect of the present invention there is provided a transgenic cell comprising the nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0016]According to yet an additional aspect of the present invention there is provided a transgenic organism comprising a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0017]According to yet an additional aspect of the present invention there is provided a transgenic organism comprising a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0018]According to still an additional aspect of the present invention there is provided a transgenic plant which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0019]According to a further aspect of the present invention there is provided a transgenic plant comprising a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0020]According to yet a further aspect of the present invention there is provided a method of producing a transgenic plant comprising transforming a plant with an isolated polynucleotide which includes a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0021]According to still a further aspect of the present invention there is provided a method of producing a transgenic plant comprising transforming a plant with a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.

[0022]According to still a further aspect of the present invention there is provided a method of expressing a polypeptide of interest in a cell comprising transforming the cell with a nucleic acid construct including a polynucleotide sequence encoding the polypeptide of interest operably linked to a regulatory nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 thereby expressing the polypeptide of interest in the cell.

[0023]According to still a further aspect of the present invention there is provided a method of co-expressing two polypeptides of interest in a cell comprising transforming the cell with a nucleic acid construct including two polynucleotide sequences encoding the two polypeptides of interest operably linked to a regulatory nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 such that said two polynucleotide sequences flank said regulatory nucleic acid sequence, thereby expressing the two polypeptides of interest in the cell.

[0024]According to further features in preferred embodiments of the invention described below, the isolated polynucleotide includes at least one promoter region.

[0025]According to still further features in the described preferred embodiments the nucleic acid sequence is selected from the group consisting of SEQ ID NOS: 1, 6, 41, 46, 51, 61, 86, 121, 136, 171, 181 and 202, and whereas the at least one promoter region is capable of directing transcription of said at least one polynucleotide sequence in a constitutive manner.

[0026]According to still further features in the described preferred embodiments the nucleic acid sequence is selected from the group consisting of SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 66, 71, 76, 81, 91, 96, 101, 116, 126, 141, 146, 151, 156, 161, 166, 176, 186, 191, 196, 201, 203, 210 and 213, and whereas the at least one promoter region is capable of directing transcription of said at least one polynucleotide sequence in an inductive manner.

[0027]According to still further features in the described preferred embodiments the nucleic acid sequence is selected from the group consisting of SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 61, 66, 71, 76, 91, 116, 126, 141, 146, 151, 156, 161, 166, 176, 186, 191, 196, 201, 203, 210 and 213, and whereas the at least one promoter region is capable of directing transcription of said at least one polynucleotide sequence in a tissue specific manner.

[0028]According to still further features in the described preferred embodiments the nucleic acid sequence is selected from the group consisting of SEQ ID NOS: 81, 96, 101, 106 and 131, and whereas the at least one promoter region is capable of directing transcription of said at least one polynucleotide sequence in a developmental stage specific manner.

[0029]According to still further features in the described preferred embodiments the nucleic acid construct further includes at least one heterologous polynucleotide operably linked to the isolated polynucleotide.

[0030]According to still further features in the described preferred embodiments the at least one heterologous polynucleotide is a reporter gene.

[0031]According to still further features in the described preferred embodiments the nucleic acid construct further includes two heterologous polynucleotides each being operably linked to an end of the isolated polynucleotide such that the two heterologous polynucleotides flank the isolated polynucleotide.

[0032]The present invention successfully addresses the shortcomings of the presently known configurations by providing a plurality of isolated polynucleotide sequences which exhibit a wide spectrum of promoter function patterns. These polynucleotides can be used to generate nucleic acid constructs, such as expression vectors suitable for transforming an organism. Such nucleic acid constructs can be used to promote expression of desired traits or expression products in transgenic organisms, such as plants, in a constitutive, induced, tissue specific, or a developmental stage specific manner.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033]The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.

[0034]In the drawings:

[0035]FIGS. 1a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 11 operably linked to a luciferase encoding sequence. FIG. 1a shows the transgenic plant under normal light. FIG. 1b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression luciferase in flower tissue.

[0036]FIGS. 2a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 21 operably linked to a luciferase encoding sequence. FIG. 2a shows the transgenic plant under normal light. FIG. 2b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in root tissue.

[0037]FIGS. 3a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 36 operably linked to a luciferase encoding sequence. FIG. 3a shows the transgenic plant under normal light. FIG. 3b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in root and flower tissue.

[0038]FIGS. 4a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 61 operably linked to a luciferase encoding sequence. FIG. 4a shows the transgenic plant under normal light. FIG. 4b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in young tissue.

[0039]FIGS. 5a-b are photographs showing an Arabidopsis thaliana seedling transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 66 operably linked to a luciferase encoding sequence. FIG. 5a shows the transgenic plant under normal light. FIG. 5b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in leaf tissue.

[0040]FIGS. 6a-b are photographs showing an Arabidopsis thaliana mature plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 66 operably linked to a luciferase encoding sequence. FIG. 6a shows the transgenic plant under normal light. FIG. 6b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in stem tissue.

[0041]FIGS. 7a-b are photographs showing an Arabidopsis thaliana plant seedlings transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 81 operably linked to a luciferase encoding sequence. FIG. 7a shows the transgenic plant under normal light. FIG. 7b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in above ground tissue.

[0042]FIGS. 8a-b are photographs showing an Arabidopsis thaliana mature plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 81 operably linked to a luciferase encoding sequence. FIG. 8a shows the transgenic plant under normal light. FIG. 8b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in flower tissue.

[0043]FIGS. 9a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 91 operably linked to a luciferase encoding sequence. FIG. 9a shows the transgenic plant under normal light. FIG. 9b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in root and flower tissue.

[0044]FIGS. 10a-b are photographs showing an Arabidopsis thaliana seedling transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 96 operably linked to a luciferase encoding sequence. FIG. 10a shows the transgenic plant under normal light. FIG. 10b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in above ground tissue.

[0045]FIGS. 11a-b are photographs showing an Arabidopsis thaliana mature plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 96 operably linked to a luciferase encoding sequence. FIG. 11a shows the transgenic plant under normal light. FIG. 11b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in above ground tissue.

[0046]FIGS. 12a-b are photographs showing seeds of an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 111 operably linked to a luciferase encoding sequence. FIG. 12a shows the seeds under normal light. FIG. 12b is an ultra-low light photograph of the same seeds in the dark, illustrating a specific expression of luciferase in seeds.

[0047]FIGS. 13a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 111 operably linked to a luciferase encoding sequence. FIG. 13a shows the transgenic plant under normal light. FIG. 13b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in roots.

[0048]FIGS. 14a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 121 operably linked to a luciferase encoding sequence. FIG. 14a shows the transgenic plant under normal light. FIG. 14b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in meristematic tissue.

[0049]FIGS. 15a-b are photographs showing an Arabidopsis thaliana seedling transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 126 operably linked to a luciferase encoding sequence. FIG. 15a shows the transgenic plant under normal light. FIG. 15b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in root meristematic tissue.

[0050]FIGS. 16a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 126 operably linked to a luciferase encoding sequence. FIG. 16a shows the transgenic plant under normal light. FIG. 16b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in flower meristematic tissue.

[0051]FIGS. 17a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 131 operably linked to a luciferase encoding sequence. FIG. 17a shows the transgenic plant under normal light. FIG. 17b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in leaf tissue.

[0052]FIGS. 18a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 136 operably linked to a luciferase encoding sequence. FIG. 18a shows the transgenic plant under normal light. FIG. 18b is an ultra-low light photograph of the same plant in the dark, illustrating a non-specific constitutive expression of luciferase.

[0053]FIGS. 19a-b are photographs showing an Arabidopsis thaliana seedling transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 156 operably linked to a luciferase encoding sequence. FIG. 19a shows the transgenic plant under normal light. FIG. 19b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in above ground tissue.

[0054]FIGS. 20a-b are photographs showing an Arabidopsis thaliana mature plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 156 operably linked to a luciferase encoding sequence. FIG. 20a shows the transgenic plant under normal light. FIG. 20b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in above ground tissue.

[0055]FIGS. 21a-b are photographs showing seeds of an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 161 operably linked to a luciferase encoding sequence. FIG. 21a shows the seeds under normal light. FIG. 21b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in seed tissue.

[0056]FIGS. 22a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 186 operably linked to a luciferase encoding sequence. FIG. 22a shows the transgenic plant under normal light. FIG. 22b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in stalk and stem tissue.

[0057]FIGS. 23a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 191 operably linked to a luciferase encoding sequence. FIG. 23a shows the transgenic plant under normal light. FIG. 23b is an ultra-low light photograph of the same plant in the dark, illustrating a weak expression of luciferase in vegetative tissue.

[0058]FIGS. 24a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 201 operably linked to a luciferase encoding sequence. FIG. 24a shows the transgenic plant under normal light. FIG. 24b is an ultra-low light photograph of the same plant in the dark, illustrating an above ground tissue specific expression of luciferase.

[0059]FIGS. 25a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 176 operably linked to a luciferase encoding sequence. FIG. 25a shows the transgenic plant under normal light. FIG. 25b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in flower tissue.

[0060]FIGS. 26a-b are photographs showing transformed Arabidopsis thaliana plants transformed with nucleic acid constructs including partial DREs operably each linked to a GUS encoding sequence. FIG. 26a shows a plant transformed with a nucleic acid construct including the nucleic acid sequence set forth in SEQ ID NO: 210 operably linked to a GUS encoding sequence. FIG. 26b shows root tips of a plant, transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 213 operably linked to a GUS encoding sequence.

[0061]FIG. 27 is a nucleic acid sequence alignment between DRE 6669 (SEQ ID NO: 61, QUERY) and a prior art sequence (SEQ ID NO: 214, SBJCT), revealing a different 5' sequence which is important for constitutive expression, as is exemplified in the Examples section hereinbelow.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0062]The present invention provides isolated polynucleotides capable of regulating the expression of operably linked heterologous polynucleotides, and more specifically, novel nucleic acid sequences which are capable of promoting gene expression in a constitutive, inductive, tissue specific and/or developmental stage specific manner. The present invention also provides nucleic acid constructs, as well transgenic organisms which carry the polynucleotides of the present invention and methods of producing thereof.

[0063]The principles and operation of the present invention may be better understood with reference to the accompanying descriptions.

[0064]Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following descriptions or illustrated in the Examples section. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.

[0065]The term "polynucleotide" or the phrase "nucleic acid sequence" are used herein interchangeably and refer to a polymer of deoxyribonucleotide (DNA) or ribonucleotide (RNA).

[0066]The phrase "heterologous polynucleotide" refers to a polynucleotide sequence which originates from a heterologous organism or to a polynucleotide sequence which is linked to a regulatory sequence of the same organism which does not normally regulate expression of the polynucleotide sequence in the organism.

[0067]PCT Publication WO 02/07989 describes a unique approach developed by the present inventors in order to uncover novel regulatory sequences in organisms such as plants. This approach combines molecular and bioinformatics techniques for high throughput isolation of DNA regulating elements (DREs), located within the non-transcribed (non-coding) regions of the genome and which include, for example, promoters, enhancers, suppressors, silencers, locus control regions and the like.

[0068]Utilizing this approach, the present inventors have uncovered several novel polynucleotide sequences which, as illustrated in the Examples section which follows, exhibit regulatory activity in plants.

[0069]Thus, according to one aspect of the present invention, there is provided isolated polynucleotides which are capable of regulating the expression of at least one polynucleotide operably linked thereto. As is further described in the Examples section which follows, these isolated polynucleotides are as set forth in SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202 and 203, or fragments (e.g., SEQ ID NOS: 210 and 213), variants or derivatives thereof.

[0070]A coding nucleic acid sequence is "operably linked" to a regulatory sequence if it is capable of exerting a regulatory effect on the coding sequence linked thereto. Preferably, the regulatory sequence is positioned 1-500 by upstream of the ATG codon of the coding nucleic acid sequence, although it will be appreciated that regulatory sequences can also exert their effect when positioned elsewhere with respect to the coding nucleic acid sequence (e.g., within an intron).

[0071]As is clearly illustrated in the Examples section which follows, the isolated polynucleotides of the present invention are capable of regulating expression of a coding nucleic acid sequence (e.g., luciferase) operably linked thereto (see FIGS. 1-25).

[0072]The isolated polynucleotides of the present invention range in length from 174 to 3, 348 nucleotides and include one or more sequence regions which are capable of recognizing and binding RNA polymerase II and other proteins (trans-acting transcription factors) involved in transcription.

[0073]Although most of the isolated polynucleotides described herein include one promoter region, some include two distinct promoter regions each positioned on a different strand of the same genomic sequence. Such bidirectional DREs are further described in the Examples section which follows (see for example, Tables 3-17).

[0074]As is further illustrated by the Examples section which follows, the isolated polynucleotides of the present invention exhibit a range of activities and tissue specificities.

[0075]Thus for example, the nucleic acid sequences set forth in SEQ ID NOS:1, 6, 41, 46, 51, 61, 86, 121, 136, 171, 181 and 202 or fragment, variants or derivatives thereof, are capable of directing transcription of coding nucleic acid sequences operably linked thereto in a constitutive manner and thus include a constitutive promoter region.

[0076]In another example, the nucleic acid sequences set forth in SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 66, 71, 76, 81, 91, 96, 101, 116, 126, 141, 146, 151, 156, 161, 166, 176, 186, 191, 196, 201 and 203, or fragments (e.g., SEQ ID NOS: 210 and 213), variants or derivatives thereof, are capable of directing transcription of coding nucleic acid sequences operably linked thereto in an inductive manner and thus include an inductive promoter region.

[0077]In yet another example, the nucleic acid sequences set forth in SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 61, 66, 71, 76, 91, 116, 126, 141, 146, 151, 156, 161, 166, 176, 186, 191, 196, 201 and 203, or fragments (e.g., SEQ ID NOS: 210 and 213), variants or derivatives thereof, are capable of directing transcription of coding nucleic acid sequences operably linked thereto in a tissue specific manner and thus include a tissue specific promoter region.

[0078]In further yet another example, the nucleic acid sequences set forth in SEQ ID NOS: 81, 96, 101, 106 and 131, or fragment, variants or derivatives thereof, are capable of directing transcription of coding nucleic acid sequences operably linked thereto in a developmental stage specific manner and thus include a developmental stage specific promoter region.

[0079]Preferably, the polynucleotide of the present invention are modified to create variations in the molecule sequences such as to enhance their promoting activities, using methods known in the art, such as PCR-based DNA modification, or standard DNA mutagenesis techniques, or by chemically synthesizing the modified polynucleotides.

[0080]Accordingly, the sequences set forth in SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202 and 203 may be truncated or deleted and still retain the capacity of directing the transcription of an operably linked DNA sequence (e.g., SEQ ID NOS: 210 and 213). The minimal length of a promoter region can be determined by systematically removing sequences from the 5' and 3'-ends of the isolated polynucleotide by standard techniques known in the art, including but not limited to removal of restriction enzyme fragments or digestion with nucleases. Consequently, any sequence fragments, portions, or regions of the disclosed polypeptide sequences of the present invention can be used as regulatory sequences. It will be appreciated that modified sequences (mutated, truncated and the like) can acquire different transcriptional properties such as the direction of different pattern of gene expression as compared to the unmodified element (e.g., SEQ ID NO: 61 as compared to SEQ ID NO: 213, see the Examples section which follows).

[0081]Optionally, the sequences set forth in SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202 and 203 may be modified, for example for expression in a range of plant systems. In another approach, novel hybrid promoters can be designed or engineered by a number of methods. Many promoters contain upstream sequences which activate, enhance or define the strength and/or specificity of the promoter, such as described, for example, by Atchison [Ann. Rev. Cell Biol. 4:127 (1988)]. T-DNA genes, for example contain "TATA" boxes defining the site of transcription initiation and other upstream elements located upstream of the transcription initiation site modulate transcription levels [Gelvin In: Transgenic Plants (Kung, S.-D. and Us, R., eds, San Diego: Academic Press, pp. 49-87, (1988)]. Another chimeric promoter combined a trimer of the octopine synthase (ocs) activator to the mannopine synthase (mas) activator plus promoter and reported an increase in expression of a reporter gene [Min Ni et al., The Plant Journal 7:661 (1995)]. The upstream regulatory sequences of the polynucleotide sequences of present invention can be used for the construction of such chimeric or hybrid promoters. Methods for construction of variant promoters include, but are not limited to, combining control elements of different promoters or duplicating portions or regions of a promoter (see for example, U.S. Pat. Nos. 5,110,732 and 5,097,025). Those of skill in the art are familiar with the specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and the screening and isolation of genes, [see for example Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, (1989); Mailga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press, (1995); Birren et al., Genome Analysis: volume 1, Analyzing DNA, (1997); volume 2, Detecting Genes, (1998); volume 3, Cloning Systems, (1999); and volume 4, Mapping Genomes, (1999), Cold Spring Harbor, N.Y].

[0082]The polynucleotides of the present invention, or fragment, variants or derivatives thereof, can be incorporated into nucleic acid constructs, preferably expression constructs (i.e., expression vectors) which can be introduced and replicate in a host cell.

[0083]Thus, according to another aspect of the present invention there is a provided a nucleic acid construct which includes at least one of the polynucleotides of the present invention, or fragments, variants or derivatives thereof.

[0084]Preferably, the nucleic acid construct of the present invention includes at least one operably linked heterologous polynucleotide. More preferably, at least one operably linked reporter gene.

[0085]The phrase "reporter gene" used herein refers to a gene encoding a selectable, screenable or detectable phenotype.

[0086]Reporter genes which may be utilized in the present invention may include, but not limited to, LUX or LUC coding for luciferase, GUS coding for β-glucoronidase, GFP coding for green-fluorescent protein, or antibiotic or herbicide tolerance genes. A general review of suitable markers is found in Wilmink and Dons, Plant Mol. Biol. Reprt. 11:165-185 (1993).

[0087]Further preferably, the nucleic acid construct of the present invention includes at least one heterologous polynucleotide encoding a desirable trait or an expression product.

[0088]A desirable trait which may be utilized in this invention may include, but not limited to, any phenotype associated with organism's morphology, physiology, growth and development, yield, produce quality, nutritional enhancement, disease or pest resistance, or stress tolerance.

[0089]Alternatively, the heterologous polynucleotide can encode any naturally occurring or man-made recombinant protein, such as pharmaceutical proteins [e.g., growth factors and antibodies Schillberg Naturwissenschaften. (2003) April; 90(4):145-55] and food additives. It will be appreciated that molecular farming is a well-proven way of producing a range of recombinant proteins, as described in details in Ma Nat Rev Genet. 2003 October; 4(10):794-805; Twyman Trends Biotechnol. 2003 December; 21(12):570-8.

[0090]An expression product which may be utilized in this invention may include, but not limited to, pharmaceutical polypeptides, industrial enzymes, oils, dyes, flavors, biofuels, or industrial biopolymers.

[0091]In cases of bidirectional DREs, the nucleic acid construct of this invention may include two heterologous polynucleotides each being operably linked to an end of the isolated polynucleotide of this invention, such that the two heterologous polynucleotides flank the isolated polynucleotide of this invention.

[0092]The nucleic acid construct can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome. Preferably, the nucleic acid construct of the present invention is a plasmid vector, more preferably a binary vector.

[0093]The phrase "binary vector" refers to an expression vector which carries a modified T-region from Ti plasmid, enable to be multiplied both in E. coli and in Agrobacterium cells, and usually comprising reporter gene(s) for plant transformation between the two boarder regions. A binary vector suitable for the present invention includes pBI2113, pBI121, pGA482, pGAH, pBIG, pBI101 (Clonetech), or a modification thereof such as pVER1 which is a modified pBI101 plasmid, where the GUS gene was replaced by the LucII gene from pGL3-Basic (Promega).

[0094]The nucleic acid construct of the present invention can be utilized to transform a host cell. Thus, according to another aspect of the present invention there is provided a transgenic cell, a transgenic organism or a transgenic plant which is transformed with an isolated polynucleotide of the present invention. Preferably the transgenic cell, the transgenic organism or the transgenic plant is transformed with the nucleic acid construct of the present invention.

[0095]As used herein, the terms "transgenic" or "transformed" are used interchangeably referring to a cell or an organism into which cloned genetic material has been transferred.

[0096]Methods of introducing nucleic acid constructs into a cell, an organism or a plant are well known in the art. Accordingly, suitable methods for introducing nucleic acid sequences into plants include, but are not limited to, bacterial infection, direct delivery of DNA (e.g., via PEG-mediated transformation, desiccation/inhibition-mediated DNA uptake, electroporation, agitation with silicon carbide fibers, and acceleration of DNA coated particles, such as described by Potrykus Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:205-225 (1991).

[0097]Methods for specifically transforming dicots primarily use Agrobacterium tumefaciens. For example, transgenic plants reported include but are not limited to cotton (U.S. Pat. Nos. 5,004,863, 5,159,135, 5,518,908; and WO 97/43430), soybean [U.S. Pat. Nos. 5,569,834, 5,416,011; McCabe et al., Bio/Technology, 6:923 (1988); and Christou et al., Plant Physiol., 87:671, (1988)]; Brassica (U.S. Pat. No. 5,463,174), and peanut [Cheng et al., Plant Cell Rep., 15: 653, (1996)].

[0098]Similar methods have been reported in the transformation of monocots. Transformation and plant regeneration using these methods have been described for a number of crops including but not limited to asparagus [Asparagus officinalis; Bytebier et al., Proc. Natl. Acad. Sci. U.S.A., 84: 5345, (1987); barley (Hordeum vulgarae; Wan and Lemaux, Plant Physiol., 104: 37, (1994)]; maize [Zea mays; Rhodes, C. A., et al., Science, 240: 204, (1988); Gordon-Kamm, et al., Plant Cell, 2: 603, (1990); Fromm, et al., Bio/Technology, 8: 833, (1990); Koziel, et al., Bio/Technology, 11: 194, (1993)]; oats [Avena sativa; Somers, et al., Bio/Technology, 10: 1589, (1992)]; orchardgrass [Dactylis glomerata; Horn, et al., Plant Cell Rep., 7: 469, (1988); rice [Oryza sativa, including indica and japonica varieties, Toriyama, et al., Bio/Technology, 6: 10, (1988); Zhang, et al., Plant Cell Rep., 7: 379, (1988); Luo and Wu, Plant Mol. Biol. Rep., 6: 165, (1988); Zhang and Wu, Theor. Appl. Genet., 76: 835, (1988); Christou, et al., Bio/Technology, 9: 957, (1991); sorghum [Sorghum bicolor; Casas, A. M., et al., Proc. Natl. Acad. Sci. U.S.A., 90: 11212, (1993)]; sugar cane [Saccharum spp.; Bower and Birch, Plant J., 2: 409, (1992)]; tall fescue [Festuca arundinacea; Wang, Z. Y. et al., Bio/Technology, 10: 691, (1992)]; turfgrass [Agrostis palustris; Zhong et al., Plant Cell Rep., 13: 1, (1993)]; wheat [Triticum aestivum; Vasil et al., Bio/Technology, 10: 667, (1992); Weeks T., et al., Plant Physiol., 102: 1077, (1993); Becker, et al., Plant, J. 5: 299, (1994)], and alfalfa [Masoud, S. A., et al., Transgen. Res., 5: 313, (1996)]. It is apparent to those of skill in the art that a number of transformation methodologies can be used and modified for production of stable transgenic plants from any number of target crops of interest.

[0099]The transformed plants can be analyzed for the expression features conferred by the polynucleotides of the present invention, using methods known in the art for the analysis of transformed plants. A variety of methods are used to assess gene expression and determine if the introduced gene(s) is integrated, functioning properly, and inherited as expected. Preferably, the promoters can are evaluated by determining the expression levels and the expression features of genes to which the promoters are operatively linked. A preliminary assessment of promoter function can be determined by a transient assay method using reporter genes, but a more definitive promoter assessment can be determined from the analysis of stable plants. Methods for plant analysis include but are not limited to Southern blots or northern blots, PCR-based approaches, biochemical analyses, phenotypic screening methods, field evaluations, and immunodiagnostic assays.

[0100]Preferably, the capacity of isolated polynucleotides of this invention to promote gene expression in plants is evaluated according to phenotypic expression of reporter genes using procedures as described in the Examples section that follows. Briefly, the expression of luciferase in transgenic Arabidopsis is determined and consistently classified by quantitatively scoring certain features of expression, such as the intensity, specificity, development stage and positioning of expression. Accordingly, a luciferase gene that is expressed in a constitutive manner would indicate a putative constitutive promoter activity of the isolated polynucleotide. Likewise, a luciferase gene that is expressed in an inductive, tissue specific or a development-stage specific manner, would respectively indicate a putative inductive, a tissue specific or a stage specific promoter activity.

[0101]Hence, the present invention provides a plurality of isolated polynucleotide sequences which exhibit a wide spectrum of promoter function patterns. These polynucleotides can be used to generate nucleic acid constructs, such as expression vectors suitable for transforming an organism. Such nucleic acid constructs can be used to promote expression of desired traits or expression products in transgenic organisms, such as plants, in a constitutive, induced, tissue specific, or a developmental stage specific manner.

[0102]Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.

Examples

[0103]Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.

[0104]Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989); "Current Protocols in Molecular Biology" Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Baltimore, Md. (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley & Sons, New York (1988); Watson et al., "Recombinant DNA", Scientific American Books, New York; Birren et al. (eds) "Genome Analysis: A Laboratory Manual Series", Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; "Cell Biology: A Laboratory Handbook", Volumes I-III Cellis, J. E., ed. (1994); "Current Protocols in Immunology" Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), "Basic and Clinical Immunology" (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), "Selected Methods in Cellular Immunology", W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; "Oligonucleotide Synthesis" Gait, M. J., ed. (1984); "Nucleic Acid Hybridization" Hames, B. D., and Higgins S. J., eds. (1985); "Transcription and Translation" Hames, B. D., and Higgins S. J., eds. (1984); "Animal Cell Culture" Freshney, R. I., ed. (1986); "Immobilized Cells and Enzymes" IRL Press, (1986); "A Practical Guide to Molecular Cloning" Perbal, B., (1984) and "Methods in Enzymology" Vol. 1-317, Academic Press; "PCR Protocols: A Guide To Methods And Applications", Academic Press, San Diego, Calif. (1990); Marshak et al., "Strategies for Protein Purification and Characterization--A Laboratory Course Manual" CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.

Identification, Isolation and Characterization of DNA Regulating Elements (DREs)

[0105]Novel DREs were identified by luciferase expression assay driven by bioinformatically identified DNA fragments from Arabidopsis thaliana genomic DNA. Positive DREs were fused upstream a reporter gene in a vector which was used to transform Arabidopsis thaliana plants. The reporter gene expression driven by these DREs was characterized.

Materials and Experimental Methods

[0106]Isolation of DREs: A high throughput method of cloning DNA regulating elements (DREs) using a single reaction tube, referred to herein as the "one-tube" method, was utilized in order to enable large scale production of DRE transformed plants. Accordingly, genomic DNA (gDNA) was extracted from leaves of Arabidopsis thaliana Col1 using DNAeasy Plant Mini Kit (Qiagen, Germany). Primers for PCR amplification of DREs were designed using PRIMER3© software and modified to contain restriction sites absent from the DRE sequence, for PCR product insertion into pVER1 binary plasmid, which is a pBI101 (clontech) modified plasmid, where the GUS reporter gene was replaced by LucII gene from pGL3-Basic (promega). Briefly, GUS gene was cut out of pBI101 using the blunt restriction enzymes Ecl136II and SmaI. The pGL-Basic plasmid [after eliminating the HindIII and BamHI sites, by digestion, fill-in using klenow fragment (Roche) and self ligating the plasmid, using T4 DNA ligase (Roche)] was cut Sad and XbaI and the LucII gene insert was inserted into pBluescript, digested with the same enzymes. The new plasmid was digested SmaI, as a result a blunt ends LucII gene was cut out. The LucII gene was inserted into The pBI plasmid instead of the GUS gene. To eliminate all possible read-through of the Nos-promoter, which regulates Kanamycin resistance gene on pBI101, a poly-A signal was added between the Nos-terminator and the LucII gene. Poly-A signal was amplified from pGL3-Basic using proof reading Taq polymerase PFU (Promega) and using primers 5'-aggtacttggagcggccgca-3' and 5'-tagagaaatgttctggcacctg-3'. The Product was inserted into HindIII site on pVerI after filling the overhang 5' ends, using Klenow fragment (Roche).

[0107]Polymerase chain reaction analyses were performed using Taq Expand Long Template PCR kit (Roche), according to the manufacturer's instructions, using as thermal cycle: 92° C./2 min→10×[94° C./10 min→55° C./30 sec→68° C./5 min]→18×[94° C./10 min→55° C./30 sec→68° C./5 min (+20 sec each cycle)]→68° C./7 min. PCR products were double-digested with restriction endonucleases according to the protocols described in Table 1.

TABLE-US-00001 TABLE 1 DRE double digestion protocols Digest Heat Digest Heat Enzyme First Buffer time inactivation Second time inactivation combination digest (Roche) (min) conditions digest Buffer (min) conditions HindIII, SalI HindIII M 90 20 min, SalI M + 60 20 min, 70° C. NaCl + 70° C. Tris HindIII, HindIII B 30 No BamHI B 60 20 min, BamHI 70° C. SalI, BamHI BamHI M 60 20 min, SalI M + 60 20 min, 80° C. NaCl + 70° C. Tris HindIII, HindIII B 30 No EcoRV B 60 20 min, EcoRV 70° C. SalI, ScaI SalI, ScaI H 60 20 min, 80° C. BamHI, SmaI SmaI A 60 20 min, BamHI A 60 20 min, (30° C.) 70° C. 80° C. SalI, PvuII PvuII M 60 20 min, SalI M + 60 20 min 80° C. NaCl + Tris HindIII, HindIII M 30 No PvuII M 60 20 min, PvuII 80° C. HindIII, StuI HindIII, B 90 20 min, StuI 80° C. BamHI, StuI StuI B 30 No BamHI B 60 20 min, 80° C.

[0108]Cloning of DREs in luciferase reporter gene expression: PCR amplified DREs were cloned into a luciferase reporter gene expression vector pVER1, derived from the binary vector pBI101 (Clontech), was double-digested using the same restriction endonucleases used to excise cloned DREs from vector, purified using PCR Purification Kit (Qiagen, Germany), treated with alkaline-phosphatase (Roche) according to the manufacturer's instructions and re-purified using PCR Purification Kit (Qiagen, Germany). Insertion of DRE into vector pVER1 was performed by adding to DRE digests: 500 ng of double digested pVer1 plasmid, 1 μl of T4 DNA ligase (40 U/μl; Roche) and 6 μl of T4 buffer (Roche). Following overnight incubation of ligation mixes at 4° C., Agrobacterium tumefaciens GV303 competent cells were transformed using 1-2 μl of ligation reaction mixture by electroporation, using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). Agrobacterium cells were grown on LB at 28° C. for 3 h and plated on LB-agar plates supplemented with the antibiotics gentamycin 50 mg/L (Sigma) and kanamycin 50 mg/L (Sigma). Plates were then incubated at 28° C. for 48 h. Cloned DREs were identified by PCR analysis of bacterial colony DNA using the vector specific, insert flanking upstream and downstream primers 5'-AGGTACTTGGAGCGGCCGCA-3' and 5'-CGAACACCACGGTAGGCTG-3', respectively and the thermal cycle: 92° C./3 min→31×[94° C./30 sec→54° C./30 sec→72° C./X min (X=length (kb) of longest PCR product expected)]→72° C./10 min. Positive Agrobacterium colonies were subsequently used for Arabidopsis plant transformation.

[0109]Plant transformation and cultivation: Arabidopsis thaliana Columbia (T0 plants) were transformed using the Floral Dip procedure described by Clough S J and Bent A F [The Plant J. 16:735-743 (1998)] and by Desfeux et al. [Plant Physiology 123:895-904 (2000)] with minor modifications. Briefly, T0 Plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hr light/dark cycle. The T0 plants were ready for transformation six days before anthesis.

[0110]Single colonies of Agrobacterium carrying plant DREs were cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C. for 48 hours under vigorous shaking and centrifuged at 4000 rpm for 5 minutes. The pellets comprising Agrobacterium cells were resuspended in a transformation medium which contained half-strength (2.15 g/L) Murashig-Skoog (Duchefa); 0.044 μM benzylamino purine (Sigma); 112 μg/L B5 Gambourg vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.

[0111]Transformation of T0 plants was effected by inverting each plant into an Agrobacterium suspension such that the above ground plant tissue was submerged for 3-5 seconds. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and kept in the dark at room temperature for eighteen hours to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques were brown and dry then seeds were harvested from plants and kept at room temperature until sowing

[0112]Generating T1 and T2 transgenic plants harboring DREs: Seeds collected from transgenic T0 plants were surface-sterilized by soaking in 70% ethanol for 1 minute, followed by soaking in 5% sodium hypochloride and 0.05% triton for 5 minutes. The surface-sterilized seeds were thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashig-Skoog (Duchefa); 2% sucrose; 0.8% plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates were incubated at 4° C. for 48 hours then transferred to a growth room at 25° C. for an additional week of incubation. Vital T1 Arabidopsis plants were transferred to a fresh culture plates for another week of incubation. Following incubation the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.

[0113]Evaluating DRE gene-promoting activity in transgenic plants: The ability of DREs to promote gene expression in plants was determined based on the expression of luciferase reporter gene. Accordingly, transgenic Arabidopsis plantlets at a development stage of 2-3 true leaves were subjected to luminescence assays using the procedure described by Messinner R. [Plant. J. 22:265 (2000)]. The imaging of luciferase was performed in a darkroom using ultra-low light detection camera (Princeton Instruments Inc., USA). Using the procedure described by Messinner R. [Plant. J. 22:265 (2000)].

[0114]Scoring promoter activity in transgenic plants: DREs promoting gene expression was characterized based luciferase expression in transgenic plants using quantitative values such as to enable consistent evaluations of a large volume of transgenic plants, as follows:

[0115]Scoring distribution and intensity of expression: The distribution of reporter genes' expression in transgenic plants was presented in a three variables functions, as follows: (i) plant ID (X axis), (ii) plant organ (Y axis), and (iii) development stage (Z axis). The intensity of expression, relevant to any of these three variables, was measured by a distribution function value (DF), referred hereinbelow as fx,y,z(Promoter). The DF received a value ranging from 0 to 5, representing no expression and the highest expression intensity, respectively.

[0116]Scoring specificity of expression: The specificity of reporter genes' expression in transgenic plants was calculated by summing two independent addends: (a) the zero value/nonzero values ratio, as described in table 2 below and which further referred to as the Binary Function B( ) and (b) the variance of the nonzero values only.

TABLE-US-00002 TABLE 2 No. of non zero No. of zero values values 0 1 2 3 4 0 0 0 0 0 1 0 0.7 1.5 2 2 0 0.6 1 3 0 0.5 4 0

[0117]The Organ Specificity expression value (SpOr) was calculated according to the following equation:

SpOr(promoter)=Vary(Avx,z(fx,y,z(promoter))|y>0)+B(- Avx,z(fx,y,z(promoter)))

Whereas Var is the variance, Av is the average and B is the Binary Function.

[0118]The development Stage Specificity expression value (SpDs) was calculated according to the following equation:

SpDS(promoter)=Varz(Avx,y(fx,y,z(promoter))|z>0)+B(- Avx,y(fx,y,z(promoter)))

Whereas Var is the variance, Av is the average and B is the Binary Function.

[0119]Scoring position effect: Similarly to the Binary Factor approach described above, position values were also classified as either zero or nonzero values. Accordingly, the reporter genes' expression in a given organ in a given development stage was measured by a Local Position Effect value (LoPoEf). The Position Effect value (PoEf) was the average of all the Local Position Effects, calculate in three steps as follows:

h x , y , z ( promoter ) = { 0 f x , y , z ( promoter ) = 0 1 f x , y , z ( promoter ) = 1 , 2 , 3 , 4 , 5. ( 1 ) LoPoEf ( promoter , organ , development_stage ) = min ( no_of _ 0 s_in ( h x , y = Y , z = Z ( promoter ) ) no_of _non _ 0 s_in ( h x , y = Y , z = Z ( promoter ) ) , no_of _non _ 0 s_in ( h x , y = Y , z = Z ( promoter ) ) no_of _ 0 s_in ( h x , y = Y , z = Z ( promoter ) ) ) ( 2 ) PoEf ( promoter ) = Av ( LoPoEf ( promoter , Y , Z ) ) . ( 3 ) ##EQU00001##

[0120]Scoring expression level: The average expression level value (ExLe) and the ExLe variance (VrExLe) were calculated per each DRE promoter x plant organ x plant development stage combination, according the following equations:

ExLe(promoter, organ, development_stage)=Avx(fx,y,z(promoter))

VrExLe(promoter, organ, development_stage)=varx(fx,y,z(promoter)).

[0121]Scoring evaluation reliability: The General Reliability value (Grel) was the number of independent plants that were used for evaluating a specific DRE promoter activity. Hence, Grel(promoter)=Countx(fx,y,z(promoter)). The Development Stage Reliability value (Rel(DS)) was the number of independent plants that were used for evaluating a specific DRE promoter activity in any given plant developing stage. Rel(promoter, development_stage)=Countx|z=development--stage(fx,y,z- (promoter)).

[0122]Creation of partial fragments from vDREs 4209 and 6669: Genomic DNA derived from Arabidopsis thaliana var Col0 was extracted and PCR-amplified using oligonucleotide primers complementary to sequences within vDRE 4209 (SEQ ID NO:36) [sense primer 5'-GTTGGTTCGTCGACTAGAGAAGGT-3' (SEQ ID NO: 208), antisense primer 5'-TTGGATCCGGGAGGCAATGATGCTTTAG-3' (SEQ ID NO: 209)], and vDRE 6669 (SEQ ID NO:61) [sense primer 5'-TTGTAAGCTTGCAGGGATACGGATGGGTAG-3' (SEQ ID NO: 211), antisense primer 5'-AAATATTGGATCCTTTGGGGTTCTC-3' (SEQ ID NO: 212)].

[0123]The above PCR amplifications resulted in a 470 by fragment, containing by 76-548 of the original vDRE 4209 (SEQ ID NO:210) and a 1569 by fragment, containing by 748-2316 of the original vDRE 6669 (SEQ ID NO:213), respectively.

[0124]PCR products were digested with HindIII and BamHI and ligated into the binary vector, pBI121 (Clontech, accession number: AF485783) upstream to the GUS gene, generating plasmids p4209short-GUS, and p6669short-GUS, respectively. Arabidopsis plants (var col0) were transformed with the binary constructs generated (p4209short-GUS and p6669short-GUS), and GUS activity was analyzed on 10 independent T1 transformed plants using standard GUS staining protocol [Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6(13): 3901-7]. Genomic DNA extraction, PCR amplification, DNA restriction, ligation and transformation of Arabidopsis plant were preformed according to the protocols described above.

Experimental Results

Characterization of DREs

[0125]Various features of the isolated DREs of the present invention are described in Tables 3-17 which follow. As is clearly evident from the Table provided data, the DREs of the present invention exhibit a wide range of gene-promoting activities including: constitutive, inductive, tissue specific, and stage specific activities.

TABLE-US-00003 TABLE 3 DRE number1 1345 1495 2176 Cluster reference2 Z18125 Z17428 ATBIBBI Cluster position2 Upstream Upstream Upstream DRE regulatory direction3 Bidirectional Unidirectional Unidirectional DRE length (bp) 1611 901 2192 DRE sequence SEQ ID NO: 1 SEQ ID NO: 6 SEQ ID NO: 11 Internal forward primer SEQ ID NO: 2 SEQ ID NO: 7 SEQ ID NO: 12 sequence4 External forward primer SEQ ID NO: 3 SEQ ID NO: 8 SEQ ID NO: 13 sequence4 Internal reverse primer SEQ ID NO: 4 SEQ ID NO: 9 SEQ ID NO: 14 sequence4 External reverse primer SEQ ID NO: 5 SEQ ID NO: 10 SEQ ID NO: 15 sequence4 Position Effect Value5 0.37 0.21 8.33 Development Stage 1.09 0.32 0.62 Specificity Value5 Organ Specificity Value5 1.56 0.38 2.60 Number of transgenic 11 10 7 plants Young roots score (No., 10, 12, 3.36 6, 2.333, 1.555 4, 0, 0 Ave., Var)6 Mature roots score (No., 7, 1.571, 3.387 7, 3, 2.285 5, 0, 0 Ave., Var)6 Young above-ground 10, 3.3, 2.21 6, 4.16, 0.13 4, 0, 0 Tissue (No., Ave., Var)6 Mature above-ground 7, 3, 2 7, 3.28, 1.06 5, 0, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 4.33, 0.88 3, 2, 2 3, 1.67, 5.56 Var)6 Flowers (No., Ave., Var)6 7, 1.42, 3.10 7, 3.14, 4.40 5, 4.2, 2.56 Description Constitutive. Constitutive. Specific to flower tissue. Strong in seeds. Strong in flower buds. Lower expression in open flowers. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00004 TABLE 4 DRE number1 2524 3560 3583 Cluster reference2 Z17778 Z17937 av558751 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Bidirectional Bidirectional Bidirectional DRE length (bp) 1975 3126 2501 DRE sequence SEQ ID NO: 16 SEQ ID NO: 21 SEQ ID NO: 26 Internal forward primer SEQ ID NO: 17 SEQ ID NO: 22 SEQ ID NO: 27 sequence4 External forward primer SEQ ID NO: 18 SEQ ID NO: 23 SEQ ID NO: 28 sequence4 Internal reverse primer SEQ ID NO: 19 SEQ ID NO: 24 SEQ ID NO: 29 sequence4 External reverse primer SEQ ID NO: 20 SEQ ID NO: 25 SEQ ID NO: 30 sequence4 Position Effect Value5 0.15 0.3 5.555 Development Stage 0.69 0.77 1.5 Specificity Value5 Organ Specificity Value5 1.16 1.14 2 Number of transgenic 8 11 6 plants Young roots score (No., 5, 0, 0 6, 3.5, 1.92 5, 0, 0 Ave., Var)6 Mature roots score (No., 5, 0, 0 7, 3.71, 1.63 4, 0, 0 Ave., Var)6 Young above-ground 5, 0.4, 0.24 6, 1.83, 2.14 5, 0, 0 Tissue (No., Ave., Var)6 Mature above-ground 5, 2, 0.8 7, 1.43, 1.10 4, 0.25, 0.19 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 0, 0 3, 0.67, 0.89 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 5, 0.4, 0.64 7, 1.86, 1.55 4, 0, 0 Description Specific to above ground Specific to root tissue. Weak in above ground tissue. Strong expression, tissue. mainly in root meristems. Weak expression in above ground tissues. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00005 TABLE 5 DRE number1 3714 4209 5095 Cluster reference2 Z25961 Z29176 AI996150 Cluster position2 Upstream Downstream Downstream DRE regulatory direction Unidirectional Bidirectional Bidirectional DRE length (bp) 513 1022 1056 DRE sequence SEQ ID NO: 31 SEQ ID NO: 36 SEQ ID NO: 41 Internal forward primer SEQ ID NO: 32 SEQ ID NO: 37 SEQ ID NO: 42 sequence4 External forward primer SEQ ID NO: 33 SEQ ID NO: 38 SEQ ID NO: 43 sequence4 Internal reverse primer SEQ ID NO: 34 SEQ ID NO: 39 SEQ ID NO: 44 sequence4 External reverse primer SEQ ID NO: 35 SEQ ID NO: 40 SEQ ID NO: 45 sequence4 Position Effect Value5 0.3625 0.40 0.6 Development Stage 0.11241 0.57 0 Specificity Value5 Organ Specificity Value5 0.377 0.40 0.85 Number of transgenic 11 18 3 plants Young roots score (No., 9, 0.611, 0.987 14, 3.46, 2.87 2, 0.5, 0.25 Ave., Var)6 Mature roots score (No., 3, 0, 0 9, 2.11, 3.65 2, 1, 1 Ave., Var)6 Young above-ground 9, 2.38, 1.20 14, 2.89, 2.36 2, 1.5, 1.25 Tissue (No., Ave., Var)6 Mature above-ground 3, 1, 2 9, 2.44, 1.80 2, 2, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 1.66, 0.22 3, 1.33, 1.56 Not available Var)6 Flowers (No., Ave., Var)6 3, 1.33, 3.55 9, 2, 3.78 2, 0, 0 Description Weak in above ground tissue Strong in roots, mainly roo Constitutive, weak. tips, and flower buds. Lower expression in veins. Very low expression in seeds. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00006 TABLE 6 DRE number1 5311 5532 5587 Cluster reference2 ATHCOL2A ATASCO Z26363 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Bidirectional Unidirectional Unidirectional DRE length (bp) 435 3348 1331 DRE sequence SEQ ID NO: 46 SEQ ID NO: 51 SEQ ID NO: 56 Internal forward primer SEQ ID NO: 47 SEQ ID NO: 52 SEQ ID NO: 57 sequence4 External forward primer SEQ ID NO: (none) SEQ ID NO: 53 SEQ ID NO: 58 sequence4 Internal reverse primer SEQ ID NO: 49 SEQ ID NO: 54 SEQ ID NO: 59 sequence4 External reverse primer SEQ ID NO: (none) SEQ ID NO: 55 SEQ ID NO: 60 sequence4 Position Effect Value5 0.36 0.25 8.33 Development Stage 1.15 1.30932 1.5 Specificity Value5 Organ Specificity Value5 0.332 1.246 2 Number of transgenic 8 6 4 plants Young roots score (No., 7, 0.36, 0.48 5, 2.2, 1.36 4, 0, 0 Ave., Var)6 Mature roots score (No., 4, 0.5, 0.75 4, 4.25, 0.187 3, 0, 0 Ave., Var)6 Young above-ground 7, 1.57, 1.74 5, 3.6, 1.84 4, 0, 0 Tissue (No., Ave., Var)6 Mature above-ground 4, 1.5, 2.25 4, 3.5, 0.25 3, 0, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 3, 0.67, 0.22 3, 1.33, 3.55 Var)6 Flowers (No. Ave., Var)6 4, 0.25, 0.18 4, 2, 4.5 3, 0, 0 Description Constitutive, weak. Constitutive, mainly in Siliques specific. vegetative tissue. High position effect. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00007 TABLE 7 DRE number1 6669 6762 7357 Cluster reference2 Z26440 Z17588 F13952 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Unidirectional Bidirectional Unidirectional DRE length (bp) 2316 379 979 DRE sequence SEQ ID NO: 61 SEQ ID NO: 66 SEQ ID NO: 71 Internal forward primer SEQ ID NO: 62 SEQ ID NO: 67 SEQ ID NO: 72 sequence4 External forward primer SEQ ID NO: 63 SEQ ID NO: 68 SEQ ID NO: 73 sequence4 Internal reverse primer SEQ ID NO: 64 SEQ ID NO: 69 SEQ ID NO: 74 sequence4 External reverse primer SEQ ID NO: 65 SEQ ID NO: 70 SEQ ID NO: 75 sequence4 Position Effect Value5 0.28 9.72 0.32 Development Stage 1.18 0.16 0.6 Specificity Value5 Organ Specificity Value5 1.32 1.42 0.64 Number of transgenic 4 11 7 plants Young roots score (No., 3, 2.67, 0.22 8, 1.25, 4.69 6, 0.5, 0.58 Ave., Var)6 Mature roots score (No., 4, 4.75, 0.19 9, 0.33, 0.89 5, 0, 0 Ave., Var)6 Young above-ground 3, 3.67, 3.56 8, 4.19, 0.87 6, 0.43, 0.47 Tissue (No., Ave., Var)6 Mature above-ground 4, 1, 3 9, 3.61, 1.10 5, 0.8, 0.16 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 4, 0.75, 0.69 3, 3.33, 1.56 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 4, 3, 4.5 9, 3.11, 2.57 5, 1.2, 1.36 Description Specific to young and Strong in above ground Weak in above ground meristematic tissue. tissue. tissue. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00008 TABLE 8 DRE number1 7617 8463 9136 Cluster reference2 Z17636 Z26728 F15462 Cluster position2 Upstream Downstream Downstream DRE regulatory direction Bidirectional Unidirectional Unidirectional DRE length (bp) 665 2834 486 DRE sequence SEQ ID NO: 76 SEQ ID NO: 81 SEQ ID NO: 86 Internal forward primer SEQ ID NO: 77 SEQ ID NO: 82 SEQ ID NO: 87 sequence4 External forward primer SEQ ID NO: 78 SEQ ID NO: 83 SEQ ID NO: 88 sequence4 Internal reverse primer SEQ ID NO: 79 SEQ ID NO: 84 SEQ ID NO: 89 sequence4 External reverse primer SEQ ID NO: 80 SEQ ID NO: 85 SEQ ID NO: 90 sequence4 Position Effect Value5 0.42 0.16 0.48 Development Stage 0.16 0.68 0.60 Specificity Value5 Organ Specificity Value5 0.41 2.02 0.53 Number of transgenic 3 12 13 plants Young roots score (No., 3, 0, 0 6, 0, 0 9, 0.778, 2.617 Ave., Var)6 Mature roots score (No., 3, 0, 0 7, 1.14, 3.55 11, 0.73, 1.107 Ave., Var)6 Young above-ground 3, 0.17, 5.56 6, 3.33, 3.32 9, 0.778, 0.84 Tissue (No., Ave., Var)6 Mature above-ground 3, 0.33, 0.22 7, 2, 2.57 11, 1.18, 2.51 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 2, 1, 1 4, 0, 0 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 3, 0.33, 0.22 7, 3.57, 3.96 11, 0.55, 0.98 Description Very weak in above ground. Strong in above ground Constitutive, weak. tissue. tissue of seedlings. Strong in flower tissue of mature plants. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00009 TABLE 9 DRE number1 10826 12582 13257 Cluster reference2 Z30896 Z33953 Z17541 Cluster position2 Upstream Downstream Upstream DRE regulatory direction Bidirectional Unidirectional Bidirectional DRE length (bp) 1840 1665 807 DRE sequence SEQ ID NO: 91 SEQ ID NO: 96 SEQ ID NO: 101 Internal forward primer SEQ ID NO: 92 SEQ ID NO: 97 SEQ ID NO: 102 sequence4 External forward primer SEQ ID NO: 93 SEQ ID NO: 98 SEQ ID NO: 103 sequence4 Internal reverse primer SEQ ID NO: 94 SEQ ID NO: 99 SEQ ID NO: 104 sequence4 External reverse primer SEQ ID NO: 95 SEQ ID NO: 100 SEQ ID NO: 105 sequence4 Position Effect Value5 0.27 0.19 0 Development Stage 0.50 0.32 1.5 Specificity Value5 Organ Specificity Value5 8.19 1.38 1.14 Number of transgenic 5 20 2 plants Young roots score (No., 3, 1.67, 2.89 18, 0.56, 1.36 2, 0, 0 Ave., Var)6 Mature roots score (No., 4, 3.38, 4.17 10, 0.5, 1.05 2, 0, 0 Ave., Var)6 Young above-ground 3, 2, 2.67 18, 2.39, 3.90 2, 0, 0 Tissue (No., Ave., Var)6 Mature above-ground 4, 3.12, 1.55 10, 3.2, 0.36 2, 2.5, 0.25 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 3, 1, 0 2, 0, 0 Var)6 Flowers (No., Ave., Var)6 4, 3.25, 3.06 10, 4.4, 1.84 2, 2, 1 Description Strong in root and flower Strong in above ground Specific to above ground tissue. tissue of seedlings. tissue of mature plants. Lower expression in mature plants. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00010 TABLE 10 DRE number1 13277 15980 16665 Cluster reference2 Z18392 BE522497 T04806 Cluster position2 Upstream Downstream Downstream DRE regulatory direction Bidirectional Unidirectional Bidirectional DRE length (bp) 3297 2183 1358 DRE sequence SEQ ID NO: 106 SEQ ID NO: 111 SEQ ID NO: 116 Internal forward primer SEQ ID NO: 107 SEQ ID NO: 112 SEQ ID NO: 117 sequence4 External forward primer SEQ ID NO: 108 SEQ ID NO: 113 SEQ ID NO: 118 sequence4 Internal reverse primer SEQ ID NO: 109 SEQ ID NO: 114 SEQ ID NO: 119 sequence4 External reverse primer SEQ ID NO: 110 SEQ ID NO: 115 SEQ ID NO: 120 sequence4 Position Effect Value5 0.22 0.38 0.33 Development Stage 1.5 1.18 4.44 Specificity Value5 Organ Specificity Value5 1 1.45 1.5 Number of transgenic 5 16 5 plants Young roots score (No., 5, 0.6, 0.24 10, 2.1, 1.49 5, 0, 0 Ave., Var)6 Mature roots score (No., 3, 0, 0 13, 2.46, 0.86 2, 0, 0 Ave., Var)6 Young above-ground 5, 0.4, 0.24 10, 12, 1.76 5, 0.6, 0.34 Tissue (No., Ave., Var)6 Mature above-ground 3, 0, 0 13, 0.46, 0.86 2, 0.5, 0.25 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 0, 0 4, 3.75, 1.69 Not available Var)6 Flowers (No., Ave., Var)6 3, 0, 0 13, 0.92, 1.76 2, 0, 0 Description Weak in seedlings. Root tissue, mainly root Above ground vegetative tips; and seeds. tissue of mature plants. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00011 TABLE 11 DRE number1 16900 17109 17809 Cluster reference2 Z25996 Z17897 Z18103 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Bidirectional Bidirectional Bidirectional DRE length (bp) 824 2927 3165 DRE sequence SEQ ID NO: 121 SEQ ID NO: 126 SEQ ID NO: 131 Internal forward primer SEQ ID NO: 122 SEQ ID NO: 127 SEQ ID NO: 132 sequence4 External forward primer SEQ ID NO: 123 SEQ ID NO: 128 SEQ ID NO: 133 sequence4 Internal reverse primer SEQ ID NO: 124 SEQ ID NO: 129 SEQ ID NO: 134 sequence4 External reverse primer SEQ ID NO: 125 SEQ ID NO: 130 SEQ ID NO: 135 sequence4 Position Effect Value5 4.17 0.26 0.21 Development Stage 0.21 0.63 0.60 Specificity Value5 Organ Specificity Value5 0.22 1.85 1.38 Number of transgenic 5 10 10 plants Young roots score (No., 4, 3.5, 0.75 6, 4, 1.25 5, 0.8, 0.56 Ave., Var)6 Mature roots score (No., 5, 3.2, 0.56 7, 3.07, 2.60 7, 1.5, 1.5 Ave., Var)6 Young above-ground 4, 4, 0 6, 0.42, 0.37 5, 4, 0.8 Tissue (No., Ave., Var)6 Mature above-ground 5, 3.8, 0.56 7, 1.05, 1.07 7, 3.07, 1.03 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 4.67, 0.22 3, 0, 0 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 5, 4, 4 7, 1.07, 2.89 7, 2.71, 2.99 Description Constitutive pattern. Strong in root, flower and Strong in leaf tissue of Strong in meristematic tissue meristematic tissue. seedlings. and seeds. Variable in mature plants. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00012 TABLE 12 DRE number1 19672 19678 19827 Cluster reference2 Z25683 BE523552 Z17577 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Unidirectional Bidirectional Bidirectional DRE length (bp) 1155 2877 578 DRE sequence SEQ ID NO: 136 SEQ ID NO: 141 SEQ ID NO: 146 Internal forward primer SEQ ID NO: 137 SEQ ID NO: 142 SEQ ID NO: 147 sequence4 External forward primer SEQ ID NO: 138 SEQ ID NO: 143 SEQ ID NO: 148 sequence4 Internal reverse primer SEQ ID NO: 139 SEQ ID NO: 144 SEQ ID NO: 149 sequence4 External reverse primer SEQ ID NO: 140 SEQ ID NO: 145 SEQ ID NO: 150 sequence4 Position Effect Value5 0.03 5.55 0.37 Development Stage 9.78 1.5 0.60 Specificity Value5 Organ Specificity Value5 3.99 2 0.64 Number of transgenic 17 5 12 plants Young roots score (No., 15, 4.33, 0.76 5, 0, 0 10, 0, 0 Ave., Var)6 Mature roots score (No., 17, 4, 1.76 4, 0, 0 5, 0.1, 0.04 Ave., Var)6 Young above-ground 15, 4.53, 0.38 5, 0, 0 10, 2.9, 2.29 Tissue (No., Ave., Var)6 Mature above-ground 17, 3.12, 2.22 4, 0.25, 0.18 5, 0.8, 1.36 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 4.33, 0.22 3, 0, 0 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 17, 4.06, 2.17 4, 0, 0 5, 0.8, 1.36 Description Strong, constitutive. Very weak. Above ground tissue. Lower expression in mature High position effect. Weak. leaf tissue. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00013 TABLE 13 DRE number1 20607 22397 22604 Cluster reference2 AI998130 ATHD12A ATHFEDAA Cluster position2 Upstream Upstream Downstream DRE regulatory direction Bidirectional Unidirectional Bidirectional DRE length (bp) 2819 1313 2080 DRE sequence SEQ ID NO: 151 SEQ ID NO: 156 SEQ ID NO: 161 Internal forward primer SEQ ID NO: 152 SEQ ID NO: 157 SEQ ID NO: 162 sequence4 External forward primer SEQ ID NO: 153 SEQ ID NO: 158 SEQ ID NO: 163 sequence4 Internal reverse primer SEQ ID NO: 154 SEQ ID NO: 159 SEQ ID NO: 164 sequence4 External reverse primer SEQ ID NO: 155 SEQ ID NO: 160 SEQ ID NO: 165 sequence4 Position Effect Value5 0.25 0.38 9.72 Development Stage 2.50 0.89 0.71 Specificity Value5 Organ Specificity Value5 0.916 1.33 1.10 Number of transgenic 5 12 17 plants Young roots score (No., 5, 0, 0 12, 1.13, 2.09 15, 0, 0 Ave., Var)6 Mature roots score (No., 3, 0, 0 12, 1.67, 4.22 13, 0, 0 Ave., Var)6 Young above-ground 5, 2.2, 2.16 12, 3.33, 0.89 15, 0.2, 0.16 Tissue (No., Ave., Var)6 Mature above-ground 3, 2, 2 12, 2.63, 2.69 13, 0, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 3, 4, 0.67 4, 0.75, 1.69 Var)6 Flowers (No., Ave., Var)6 3, 1, 2 12, 1.21, 3.06 13, 0, 0 Description Above ground tissue. Above ground tissue and Above ground tissue and seed. seed. High position effect. Very weak. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00014 TABLE 14 DRE number1 24136 24291 24728 Cluster reference2 Z34788 Z17960 AV530349 Cluster position2 Downstream Upstream Upstream DRE regulatory direction Unidirectional Bidirectional Unidirectional DRE length (bp) 174 2096 1617 DRE sequence SEQ ID NO: 166 SEQ ID NO: 171 SEQ ID NO: 176 Internal forward primer SEQ ID NO: 167 SEQ ID NO: 172 SEQ ID NO: 177 sequence4 External forward primer SEQ ID NO: none SEQ ID NO: 173 SEQ ID NO: 178 sequence4 Internal reverse primer SEQ ID NO: 169 SEQ ID NO: 174 SEQ ID NO: 179 sequence4 External reverse primer SEQ ID NO: none SEQ ID NO: 175 SEQ ID NO: 180 sequence4 Position Effect Value5 0.17 0.56 5.71 Development Stage 1.5 7.76 0.17 Specificity Value5 Organ Specificity Value5 2 6.93 1.75 Number of transgenic 5 12 9 plants Young roots score (No., 1, 0, 0 9, 1.56, 3.14 8, 0, 0 Ave., Var)6 Mature roots score (No., 2, 0, 0 8, 2.37, 1.48 8, 0.5, 1.75 Ave., Var)6 Young above-ground 1, 0, 0 9, 2.33, 3.11 8, 2.63, 0.48 Tissue (No., Ave., Var)6 Mature above-ground 2, 0.25, 0.06 8, 1.62, 2.33 8, 2.5, 1.5 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 0, 0 4, 2, 1.5 Not available Var)6 Flowers (No., Ave., Var)6 2, 0, 0 8, 1.37, 1.98 8, 3.38, 2.73 Description Above ground tissue. Constitutive. Strong in flower tissue. Very weak. Low expression in veins. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00015 TABLE 15 DRE number1 24811 4209 5095 Cluster reference2 H36200 H36237 Z29720 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Bidirectional Bidirectional Bidirectional DRE length (bp) 428 1022 1056 DRE sequence SEQ ID NO: 181 SEQ ID NO: 186 SEQ ID NO: 191 Internal forward primer SEQ ID NO: 182 SEQ ID NO: 187 SEQ ID NO: 192 sequence4 External forward primer SEQ ID NO: none SEQ ID NO: 188 SEQ ID NO: 193 sequence4 Internal reverse primer SEQ ID NO: 184 SEQ ID NO: 189 SEQ ID NO: 194 sequence4 External reverse primer SEQ ID NO: none SEQ ID NO: 190 SEQ ID NO: 195 sequence4 Position Effect Value5 0.53 0.60 0.33 Development Stage 8.11 0.28 0.61 Specificity Value5 Organ Specificity Value5 0.23 0.49 1.35 Number of transgenic 4 5 3 plants Young roots score (No., 4, 0.75, 1.69 5, 0.4, 0.34 3, 0.33, 0.22 Ave., Var)6 Mature roots score (No., 3, 1, 2 4, 1.2, 2.16 2, 1, 1 Ave., Var)6 Young above-ground 4, 1, 3 5, 2.4, 1.84 3, 1.33, 1.56 Tissue (No., Ave., Var)6 Mature above-ground 3, 1.33, 3.56 5, 2, 2.8 2, 2, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 5, 0.4, 0.24 2, 0, 0 Var)6 Flowers (No., Ave., Var)6 3, 2, 4 5, 1.6, 3.44 2, 0, 0 Description Constitutive, weak. Leaf-stalk and stem tissue. Vegetative tissue, weak. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00016 TABLE 16 DRE number1 17109 20607 24811 Cluster reference2 R29912 R90407 T22055 Cluster position2 Downstream Downstream Downstream DRE regulatory direction Bidirectional Bidirectional Bidirectional DRE length (bp) 2027 2834 428 DRE sequence SEQ ID NO: 196 SEQ ID NO: 201 SEQ ID NO: 202 Internal forward primer SEQ ID NO: 197 SEQ ID NO: 168 SEQ ID NO: 48 sequence4 External forward primer SEQ ID NO: 198 SEQ ID NO: 170 SEQ ID NO: none sequence4 Internal reverse primer SEQ ID NO: 199 SEQ ID NO: 183 SEQ ID NO: 50 sequence4 External reverse primer SEQ ID NO: 200 SEQ ID NO: 185 SEQ ID NO: none sequence4 Position Effect Value5 0.46 0.26 0.24 Development Stage 0 0.60 0.61 Specificity Value5 Organ Specificity Value5 0.49 1.16 0.51 Number of transgenic 5 5 5 plants Young roots score (No., 5, 0.6, 0.64 5, 0, 0 4, 0.75, 1.69 Ave., Var)6 Mature roots score (No., Not available 5, 0, 0 5, 0.6, 1.44 Ave., Var)6 Young above-ground 5, 2, 2 5, 2.2, 2.16 4, 1, 3 Tissue (No., Ave., Var)6 Mature above-ground Not available 5, 1.8, 2.16 5, 0.8, 2.56 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 4, 0, 0 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 Not available 5, 1.2, 1.36 5, 0.8, 2.56 Description Above ground tissue, weak Above ground tissue, Constitutive, weak mainly in leaves. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

TABLE-US-00017 TABLE 17 DRE number1 16665 Cluster reference2 Z26101 Cluster position2 Upstream DRE regulatory direction Bidirectional DRE length (bp) 1358 DRE sequence SEQ ID NO: 203 Internal forward primer SEQ ID NO: 204 sequence4 External forward primer SEQ ID NO: 206 sequence4 Internal reverse primer SEQ ID NO: 206 sequence4 External reverse primer SEQ ID NO: 207 sequence4 Position Effect Value5 0.51 Development Stage 8.82 Specificity Value5 Organ Specificity Value5 0.403 Number of transgenic 12 plants Young roots score (No., 10, 0, 0 Ave., Var)6 Mature roots score (No., 5, 0.6, 0.64 Ave., Var)6 Young above-ground 10, 1.5, 3.05 Tissue (No., Ave., Var)6 Mature above-ground 5, 2, 2.08 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 1, 0.66 Var)6 Flowers (No., Ave., Var)6 5, 1.8, 3.76 Description Above ground tissue 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.

[0126]Deletion Analysis of DREs 4209 and 6669:

[0127]The ability of partial DRE sequences to modify in vivo gene expression pattern, was tested by comparing reporter gene expression driven by unmodified DREs (SEQ ID NO:36 and 61) with that of deletion mutants thereof (SEQ ID NO:210 and 213, respectively).

[0128]GUS expression pattern in p4209short-GUS (including the DRE 4209 partial sequence set forth in SEQ ID NO:210) transformed plants was similar to that driven by the full length promoter sequence, DRE 4209 (SEQ ID NO:36). As is shown in FIG. 26a, expression was strong in roots, mainly root tips, as well as in flower buds. Interestingly, p4209short-GUS transformed plants exhibited lower reporter gene expression in veins, while leaves exhibited higher expression. Note, expression in seeds was not examined.

[0129]GUS expression pattern in the p6669short-GUS (comprising the DRE 6669 partial sequence set forth in SEQ ID NO:213) transformed plants was restricted to the root tips (FIG. 26b) while expression in other young or meristematic tissues, as was obtained by the full length DRE 6669 promoter (SEQ ID NO:61), was lost.

[0130]These results demonstrate that the 5' nucleic acid sequence of SEQ ID NO: 61 (e.g., nucleotide coordinates 1-747), is important for constitutive gene expression. Indeed, a DNA sequence (SEQ ID NO: 214, see FIG. 27 WO 02/16655) which does not include the 5' first 400 nucleotides of SEQ ID NO: 61 has been implicated in stress regulated gene expression.

[0131]These results indicate that the promoters of the present invention may be modified by partial deletions, to generate inductive or tissue specific expression pattern as demonstrated for DRE 6669 (SEQ ID NO:61).

[0132]As is clearly illustrated by Tables 3-17 and FIGS. 1-26, the DREs isolated according to the teachings of the present invention exhibit a wide range of activities as well as a wide range of tissue and developmental stage specificities. The DREs of the present invention were classified according to function as determined using the Arabidopsis assay described hereinabove.

[0133]The luciferase gene was expressed in a constitutive manner in Arabidopsis when functionally linked to SEQ ID NOS: 1, 6, 41, 46, 51, 61, 86, 121, 136, 171, 181 and 202 (illustrated in FIG. 18), thus the promoters of these DREs are putatively classified herein as constitutive promoters.

[0134]The luciferase gene was expressed in an inductive manner in Arabidopsis when functionally linked to SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 66, 71, 76, 81, 91, 96, 101, 116, 126, 141, 146, 151, 156, 161, 166, 176 and 203, thus the promoters of these DREs are putatively classified herein as inductive promoters.

[0135]The luciferase gene was expressed in a young or meristematic, tissue-specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 61, 121, 126, 213 (illustrated in FIGS. 4, 14, 15, 16 and 26b), thus the promoters of these DREs are putatively classified herein as young or meristematic, tissue-specific promoters.

[0136]The luciferase gene was expressed in root tissue specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 21, 36, 91, 111, and 126 (illustrated in FIGS. 2, 3, 9, and 13), thus the promoters of these DREs are putatively classified herein as root tissue-specific promoters

[0137]The luciferase gene was expressed in an above ground tissue-specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 16, 26, 31, 66, 71, 76, 81, 96, 106, 101, 116, 131, 146, 151, 156, 161, 166, 196, 201 and 203 (illustrate in FIGS. 10, 11, 17, 19 and 20), thus the promoters of these DREs are putatively classified herein as above ground tissue-specific promoters.

[0138]The luciferase gene was expressed in a stem tissue specific manner in Arabidopsis when functionally linked to SEQ ID NO: 186 (illustrated in FIG. 22), thus the promoter(s) of this DRE are putatively classified herein as stem tissue specific promoter(s).

[0139]The luciferase gene was expressed in a flower tissue specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 11, 36, 81, 91, 126, 176 and 210 (illustrated in FIGS. 1, 3, 9 and 26a), thus the promoters of these DREs are putatively classified herein as flower tissue-specific promoters.

[0140]The luciferase gene was expressed in a fruit (silique) tissue specific manner in Arabidopsis when functionally linked to SEQ ID NO: 56, thus the promoter(s) of this DRE are putatively classified herein as fruit (silique) tissue specific promoter(s).

[0141]The luciferase gene was expressed in a seed tissue specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 1, 156, and 161 (illustrated in FIGS. 12 and 21), thus the promoters of these DREs are putatively classified herein as seed tissue specific promoters.

[0142]The luciferase gene was expressed in a developmental stage specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 81, 96, 101, 106, and 131 (illustrated comparatively in FIGS. 5-6, 7-8, 10-11 and 15-16), thus the promoters of these DREs are putatively classified herein as developmental stage specific promoters.

[0143]The GUS gene was expressed in an inductive manner in Arabidopsis when functionally linked to SEQ ID NOS: 210 and 213 (illustrated in FIG. 26b), thus the promoters of these partial DREs sequences are putatively classified herein as inductive promoters.

[0144]The GUS gene was expressed in a root, as well as in a flower bud tissue specific manner in Arabidopsis when functionally linked to SEQ ID NO: 210 (illustrated in FIG. 26a), thus the promoter of this partial DRE sequence is putatively classified herein as a root as well as a flower tissue-specific promoter.

[0145]The GUS gene was expressed in a root-tip tissue specific manner in Arabidopsis when functionally linked to SEQ ID NO: 213 (illustrated in FIG. 26b), thus this promoter is putatively classified herein as a root tissue-specific promoter.

[0146]Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents, patent applications and sequences identified by their accession numbers mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent, patent application or sequence identified by their accession number was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

Sequence CWU 1

21411611DNAArabidopsis thaliana 1aagcttatag cgtatacgtg tgtatatttt tagtgaggaa cagctggatt ttgtggaaag 60caaaataaaa gaagaagttt gtgttgtctt tgtttttcat gtgcgtcggc ttaaatttag 120gccgttgtaa attattgaaa aagtggattt tgttgtgacc gtggaaactt tagttaatta 180atttggctaa ttatagagtc tgcttttgtt tggataatca atttgtcatc tttttcttta 240atggtttttg gctggtaaat actcatacta tccaagttta atctaaaaat atacctcttt 300cttgttaatc gtaattttac aatcctaatt ttatccagat acggatgaac tatatttgaa 360aaaaaggaac taaagtgaag ttaagaaaac aaaagagaga tcgagtgttg ttttttcttg 420gatacgttta ttaaaagatg ttcttaatga ggtcaaagga gactatctga gtttttactg 480ctaaacttaa aactaaaaaa aaaatcgatt agtaatattg atgtatcaac gaaatgtata 540tggttaaata ttaagtgaaa agaaaaagaa gagagatcga cgcggtttgg gataatgcca 600ttggcccatt ggacacgtgt ttgtaggagg aatagtttgg agtttgaaca ctacggacca 660aagtcaaaga gattcgaagt atgaagatgt tgttgaggaa gctgattcga agtaactttt 720accgacacgc tttagccatt tgttatgctt tctttgggaa aagaagatcc gcgtccatgt 780ctcattgtta acagtttatt gtcattttca atgacatggt tacactcatt gcacacacac 840acaaaccacg taattttgta tttttttaat taaatcccat ccttattttt tgcaataaca 900aattaccatt gttacttttt aatgatatca cataaaataa tcgatgccac tcgatagccc 960tttagactaa caatatgttt gttgaagtat gccacaatgt ttgaagtgag ccggctcaat 1020gctctcatgg tggtttagta gtttaacttg agaacttaca acagttttct ccttctccac 1080actatttgta tccaagaagg ggcattacaa tatagaattg cataatacga tttaaacttt 1140taccaaaaaa aaaaaagaaa aaaaaagaaa gaattgcgta atacagaatt tatctttaag 1200ggaatacaaa tataatttgg tttcagaatc atctcaatag gctttccttt aaccaaactt 1260gggttttatt gatgtgcttg ctttaatggg cctaaagccc atacaacagc atcactatcc 1320acgccgttgt ctattcttat tattcacccc acccggtaca ccgaccaaac cttggccaac 1380acgtccataa tatttcatcc tccctcctaa tttactttaa tatcctcaac tttcctaatc 1440gttcagggaa tattctcata taccctagac atatgcgtct tttccaatct aaaatgttga 1500gagtatattt ttatttatat atatatgagt gacccctgcg agagacaacg gccactgaac 1560actatcgatc taatcttttc agctctctcc atcgtcgtcg tatctgtcga c 1611224DNAArtificial sequenceSingle strand DNA oligonucleotide 2ccgttttgta aagcttatac gtgt 24322DNAArtificial sequenceSingle strand DNA oligonucleotide 3gtgtcttgat aaagttagcc ac 22423DNAArtificial sequenceSingle strand DNA oligonucleotide 4gatcacgaga gtcgacagat acg 23522DNAArtificial sequenceSingle strand DNA oligonucleotide 5caattgagat gctacacata cc 226901DNAArabidopsis thaliana 6aagcttctat aagtaaaaag tgatccatcg ttcataagct ctactatagc aattgacggg 60acaggactca taagtaacaa caaagtacac ttcgaaacaa atttcacatg taatacttgt 120ttttttttcc cgtttaaatt cacatgtaat aatttaattc acgtaaatac taaagtgatt 180cacccatcac gaagtatttt ttgaattaaa tacatcaact aatcgagttt ttgataggga 240cttttgcttt tttgaatatt gcttatcaaa tcaaaatttt caaattcttg tccatatacg 300cctatcaaat atcttctttt aaagaaagtc tcctaaagag ttgaaaactt gaaatatata 360cttttctaaa atataatttt atttgggcgt tacgttctag aaaatggaac ccgtctacta 420aaatgggccg ctcgtgaact cgtggcagtc aaacactggt cggcgcataa aagcatatcc 480aaatacgctg cgtttcatgc ttacccgacc cgtcttaaat atttaaagaa tattccagat 540tagcgcgtga gatgcagttg ccatgtctcg cctcaggaat gacgacattt gccaaaataa 600cagagctaca acggtaaata aggaaaatga ttaagggcaa tttggtcttt taggttaaga 660aaagtattga atcagatctg actttttggc caagaaaaac tctcagccac tagatcattc 720cgacccctcc tccacgttct tctctctttt aaataacctc ttcacggaac ccttctcact 780cacctatctc actctaaaat ctctctctgc caatctcatc ttcaacctct ctctaactct 840cgttttcgat tctacaatgg gttagtctct cgcttttact aatctctcgt cccgtggatc 900c 901722DNAArtificial sequenceSingle strand DNA oligonucleotide 7tcatacgcgt caagaggtat ca 22821DNAArtificial sequenceSingle strand DNA oligonucleotide 8tggagaacaa ctctagcaac c 21923DNAArtificial sequenceSingle strand DNA oligonucleotide 9acgtaaaata ggatccacgg gac 231022DNAArtificial sequenceSingle strand DNA oligonucleotide 10gatcattggg aatgttgaaa gg 22112192DNAArabidopsis thaliana 11aagcttaaaa agtcggtgaa tgaatgggtc agctctctcc actttcatta tctctctatg 60ctctatctct ccaatcataa aacttgctat tccaattaaa cttatacact atccattagt 120attttatgta gtattcttat taagatattt taacgtggtc catcattcta cttaataagt 180ttttctcttc ttttaaattt attggcagca gtttgagaaa acgattagat tgattaagaa 240tgcaacgaat gtcaaatccc aaaccattat cttataccag ttatattatg agtgcttcat 300atttatatat taacttgcca aagttttgaa gattatacta tgaaggctac tcaaagggac 360attgattcct agaagatgat tttatgatgt taagccgttg actttggtaa ctaaatcatt 420tgacctttga tgtttctgcc ccctttagca aatagaaact taataagaaa attttcattg 480aaatttagca tcccaaagaa aggtgtagaa aagttatagt gtaatgtgat tggtgaggtg 540catgttcgac actcttcaaa tgttgattga aacttttttt tgtgtgcaaa gttgattgaa 600actttaatat tttttcatta atcgcttaaa gtgtagtagt gtcaaaatat tgagatgtca 660agtatagaac atactatcat tttcaaaaca attgtgcaat ttcagtataa tcagtattta 720aatcattaat aacctcatgt gtaattaact ctattatatt atcgatttta aaacacaagc 780cccaagacaa tgtccctcat tctatctcat caaatgctca actttttttt tttagtaaga 840acattaattg ggtgcattaa tgaaggtcac agaaaagaag ggttatagag ggtaaattaa 900aggtgattgc acacaaaagt atgtctttca gtttttcaca gaggaagctc atgacactca 960ccaaagcagc acgaatgaag ttcaagttct taattaggct tcacatactc tacatcatct 1020cctcaaaatt tatatcattt catatgttcg atcttgtttt catgtgactc tctcctcttc 1080tctaccgtga gtctcttcaa tttcctaacc ctttgttaac gatcatatat accttgtttc 1140tcgccgtact atttcatccc aaattttact tttaccactt gcgataatat atcatgaagt 1200ctcttcttct ccttgccttt ttcctctctt tcttctttgg ctctctcttg gctaggcatt 1260taccaacatc ctcccatcca agtatgtatc tatgcacatc tttcttactc cagctctttc 1320actatcttca agatctctaa cttgttcatg tctgcgtgca tgtgcaggtc atcatcatgt 1380aggaatgacc ggggcattga agcgtcagag gaggaggccg gacacggtgc aggtggctgg 1440gtctaggttg ccagattgct cacacgcgtg tggctcgtgt tctccatgcc gtcttgtgat 1500ggttagcttt gtgtgtgcat ccgtcgaaga ggctgagact tgtccaatgg cttataaatg 1560catgtgcaac aataagtcct accctgtccc ttgatcagcc tcttctacac ttattctatg 1620cattcaaccg ttttgttttc cttttgcttc tccgggacat gaccatgtgt acgtatacaa 1680tgcatcttta attagtttct ttcttattat taataggaat cttaaacaca gtttgatccg 1740agattaatta atcagaaaat atatggatat caaaaaatga aagccactca cctatttggg 1800ctctctcgct gtattatggt ccatgaggcc gtatttaaga cagcaacaac aaaagttgta 1860gacagaatta tatttaaaag gcaacaacaa aagtacgtat acgttgttac caccaaactt 1920tggaggctcg ctaataataa ccacactacc catttgttac acacccttta ttttcaacca 1980tatcatctca ccttcgttaa atgttcccac aattagctca gtattttact atatacatac 2040acacacattc cctccacagg atcaaacaaa cacacgagct ttctcctcta caacaaaata 2100aaataaaatt aatggcttct tcacttatca cctccgcagt cattgtcgtg gttttaagcc 2160tagtgcttgg atctgtagag caagtgagtg ga 21921224DNAArtificial sequenceSingle strand DNA oligonucleotide 12atgcacatcg tcgacagtat ggtc 241322DNAArtificial sequenceSingle strand DNA oligonucleotide 13gactcaagac accaaaacag ac 221423DNAArtificial sequenceSingle strand DNA oligonucleotide 14ggaacgtgac gggatccact cac 231521DNAArtificial sequenceSingle strand DNA oligonucleotide 15tggggcttaa ctaagatgtt g 21161975DNAArabidopsis thaliana 16aagctttact ttgtttgaaa aaatatcaaa ttgtttataa gtacagaaaa ctaaacccta 60agaatggtag ggaacccaaa caacaaaatc tgaaaccccc aatttagatt ttgtaaaatt 120tgaagttttg cctctgtaaa tcaaaacccc aattcaattt aatcaaaaac cctataagtc 180acttcaggaa attaattgca ttgcttccat cgtcaatata cctctgctga ttgttggcaa 240aattagaagt ttcagaaaag gtggactgca acttattaga gctaaaactc tgtttgaaag 300ttaacagttg gtgaaagaga agaattgggt tcctgcgaaa agaagaagat gatgagcgtg 360tttctcaaac aaggataatg ttgccattat tacaaaaaat acaaacaata tacgttactt 420ttttgtggag tgttagtttc ttaaatataa tatttttgta gattataagc ccaaatttct 480ctaaaattta catacttcta tctaataata gagttacata cttctatcta aaaagtataa 540tagagtcaca tacttctatc taatatgtaa caatataaca taacacgtaa tttgttttat 600tatgaaataa aaatcatgta attataaaat aaaaatacat gtgataaaat tgtctagtga 660ttaatcaatg gttcctacac aatgttctaa atattttagt aaattttact agctaataga 720tggaaactta tcgcatgtta caggagtagt tcatcgtggc cttagtaagt tattgataaa 780gttgtccatt ttatgtgttg ttgtcaaatt gtttttgttt tttgtatttt tttttgaata 840agttgttatc aaattataat gtctaatact actatagaaa tttatcactt ttatcctctc 900tttttgttat gtctttttcc tttcaaaatt gcataccatt ttgtattctt ttctcaccaa 960acttattcaa actaaatttc caaacatatt atagagaact atcaaaatac aaatagttac 1020ataaacaaca taagtacaaa caaaatcacg agaaaaagtg aaattatatt acaaaatgct 1080atattttttt ctcacactct atattaatgt caaatatgag taatttcaat caaaagccat 1140ttttcttttg cataattcat gtttattttt ttattttttt catcttgcat aattcatgtt 1200taaaaggata tatacatggg tctactacat tcacctgaca ttacgtttta tgtgtttgtc 1260ttctgaaaat aatcatcaaa atatttcagg acttgtttac gttttcagga gaaaaaaaat 1320aactgtaccc ttttcaatat agaaataaca tttgtagaaa tcgtggattt tccttaataa 1380acaatccaaa acacgaccac cgttgtctcc tcgactcggt aacacccgat cgccgacttg 1440aaaattagaa gaaaaatgaa aagaataata aaaaaaaaaa aggaatgatt attgaagctg 1500tcatatatgt cgaccctatc acagtcaatc caatagccta tattcgccaa ctgatatatc 1560caacggctca caaattttca caaacttttc aaaaaagtat aaataaaaga ggctgtctga 1620cagccatgtc acgttatact ttttccgtat gatcgaaatg attcgtcttt gtcgaattta 1680attatttcca aaattgatga ctctaaagaa aaaaaaatag tttttcagat aaacccgcct 1740atataaatag ttcaacactc ggtttatttc ttctcccctc tttgaattgc ctcgtcgtct 1800tcagcttcat cggccgttgc atttcccggc gataagagag agaaagagga gaaagagtga 1860gccagatctt catcgtcgtg gttcttgttt cttcctcgat ctctcgatct tctgcttttg 1920cttttccgat taaggtaatt aaaacctccg atctacttgt tcttgtgttg gatcc 19751722DNAArtificial sequenceSingle strand DNA oligonucleotide 17acaatgaaga gctgaggtga gc 221821DNAArtificial sequenceSingle strand DNA oligonucleotide 18ggatcgattt caaatacaac g 211922DNAArtificial sequenceSingle strand DNA oligonucleotide 19cgtaatcggg atccaacaca ag 222021DNAArtificial sequenceSingle strand DNA oligonucleotide 20tcaaagcgaa cagctaaaat c 21213126DNAArabidopsis thaliana 21aaaagtcaga aactctcata cctccccaac ttgaatttct tttgccccct cctcctttac 60tatcttggcg agaaaaccct cttccatgca ttccatttcg actgttgctt tgtcctaaaa 120tattaagatt gagataagtg ttttattcct ggcataagaa tcaatacagg aagagattca 180atcaggatta tcattacagt ttcaacttca caaagcactt caccaggagc aactttatca 240ccttctttct tcagccacct ggcaatgtta ccctgaagtt tcaacagata tctttagtag 300aatgataaaa caataaacca tgttaatttt cgtaagaggt attcagaggt acatgcctca 360gtcattgttg gcgaaagaga aggcattcca atctcttgat gaggaggaag atctgaaaca 420tattttaaaa agttatcagt aaaacaaacc atgtatgctg catatacaca gtgacagaaa 480tatgatggcc gcaaaaggca caaaaaccaa gtcagatgct cacaaaaaaa agtacaattc 540aagtgaaaat atatgttaga acaagcggga agttacaata aagaactaaa tacctgaact 600ggatgaaaat cctctcactg atcgcatctg ggagctaaaa gcaagaaaag aagcttacag 660ttaggataga agtattcata caggaaggta gcaagttgta ttctcatcgg taaatggatt 720acatacctta taaattcttt aaatagtttt ggtcctgcca ttgggctgct tagttttgtg 780ctcgttgttg aaataccact aagcattgtt acctatataa tgcagctaat gacattacga 840ccaaaaaaac acagacgatt acgtgacaaa gcaaagacga gaaaggaaac tgaacagcag 900ggacttacat tgccagtacc acattttgaa attctctcta cagaggaata attcaggcgg 960gccttgaaga tatctgaaga ccaaataaaa atagaaaaat aaatgcttaa gcgagaagca 1020taatatatac tcaaaacata ccaactttca attaattaaa gttggaacgt tgttatgttc 1080ttcatgttga aaacgatgtg aaagtcaaac ttggactatt catcccagag tactgtgtgg 1140tgcttgttac cgtatcaaat aaaagaaacc accacacatt tctacataaa atgaacttaa 1200ggatagcaat gaagaggaca ctaagaaagc tgactggatt accttctctt ccaacgagag 1260aggggtgggt actgttggag aaacagcgga ctgccacagc atggtcacgc cgcagtaaag 1320cggaaacatg tttcaactgg tcagataaca caacaatcgt caaaatagtg tttacaaaga 1380gcaacataca attactctgc tgtaaaagta gagtcttctt gtactaataa aatgaatagc 1440taataccaca attgaatcat aaagcgaagc tactacatta atcacaattc agattacaag 1500gaggttacta aagctctcaa tagcaaaatg cagaattgcc catgatcaaa ttaaaaatac 1560caaattcatg attagattaa gtcaaacccg gaaaacgaac ctcagttcag aaaaaaatga 1620ttggcagagc aaaacacata agaacgaatg cataaactca gttttacaag atcaaaaatg 1680gtagtcaaac cacagaaaaa aatgaaaaat agagaaagag aaaccttttt ggaatgattg 1740atgatacgag aagccattgt tgtgcaatcg gagctgcgtc agccgatccg aattcgcaac 1800tgcaaataac aaaaaaaatg gtgggaatgt ttgttagggg gtttctcctt tttccctcgg 1860caactatatc agagatcgag atcgatgaat ttgacttgta ctcaatccaa ttttgaaaca 1920gtaaatatgt ggatggaaga taggattcga tctagaactc accaagagtc agaagaacgg 1980taaatcgcag tatagagagt gaaggatcac ttggaagaaa gctgggattt gatgatgatg 2040atgaagatag ttttgtgttt aggtttttca gaaatggcaa aatgctgcct tacatgtacc 2100agattgtatc gtaccaacac caattctacc ataaccgata taaaagtatt taaaccgact 2160aattaagctt cacaaatttc ggtttgtact ttattatatt gggccctatt attattctct 2220gagcttttgc gtctcaccaa aagacagaga tcatcaggtg cgttagtgat tacgtaggca 2280tctaatgaac ggcagggatt agtcaaactt attaatgggc ctaatctttg gcccatcgtt 2340ttccctcgat tcctgtcaca caaaaaactc ctagctcttc ctctacctac acaagctaaa 2400tacatatttt ttgcttatcc taagcatcat gattatgttt tgccctctcc agctttttct 2460tcaatggcaa cagattctaa gaaagtctct tgaggctaaa atcaaagcat tttttgttga 2520agatagatag caacttgctg cttcttcata ctagctagtt accttcttct tactcaatgt 2580gttttgcttc gtttcaagga ttcttcatat cacttgtgga acaattacat gattaaacat 2640tcaacataga gagatagatg tgttaataag taaagacatt ttcagataaa acgttcttat 2700cagtcacttt attcttctaa tatcctcgtt gtaatcggga aaatgctttg taacgtcaaa 2760aagcaataaa agttgcagga gaaagaaagc tttggaaaag aaaataaaat aaatgaagaa 2820tattttcttt gctagtcaca aaataaatga agaatttatg ttcctaattt cccactagat 2880atttgtttat ttatttttgc caaaatcaag ttaagacaat gagctaagtg ttggaaaacc 2940ttgtccgagc caaaagagta aaaagaaagg gaataaaggg gtaaaaccgg aaatccgaaa 3000aagaaaagga gaagatttcc aaaggagaaa accctaaaga cggagtatat aaacaaggta 3060acgcgttttc tctcagcctc tttcggatat tccaccagtc tctcgcaatc ttcgctcttc 3120tctttg 31262225DNAArtificial sequenceSingle strand DNA oligonucleotide 22taattaacaa gtcgacaaaa gtcag 252321DNAArtificial sequenceSingle strand DNA oligonucleotide 23agagactaac ctagccgtaa c 212424DNAArtificial sequenceSingle strand DNA oligonucleotide 24gagagaggga tccaagagaa gagc 242522DNAArtificial sequenceSingle strand DNA oligonucleotide 25cttcatcttc aactgtgata gc 22262501DNAArabidopsis thaliana 26ggtacgttat attcggggta ttttggcctg agaaatttgg agatagtaag aatggttgca 60tcatgagagg aacaaatata acgtcccttg gcggctgctt gttcgtataa gaagatatga 120gcgttgcata agtcgtccaa atgcacatac tgtccttgtc ttatgatcga gtaatgcgcc 180tcgttcccta aaacattata atatattcaa cgttttagat ttaacatttt cacatttcca 240acaaaagaag aagcacacac acgtacgagt gataggagag agcgcggtga taaggctagg 300cggcatagac gttgtgatga atggaccgac caccaatgtt ggaataatac taatgaaatc 360taatcctttc tcttcggcga aatcccacgc tgctttctcc gctaacgttt ttgacacgaa 420atacatctgc cacacaaata tatatgaact ttaaattact tcaaaaaacc gtaacttgag 480tttaattaat atgtatattc ttacccatcc tgtcatcttt ttggacatga taaactcaag 540atcactccaa tcattttcat catagacatt cttctgatgt tcttctacat taacggttcc 600ggcagatgaa gtaaatacga atcttcgtac ggtctttgcc ttaacacatg ctttcattat 660ccccaacatt ccattcactg tcggctttat cacttcgttc tgattcgcaa atacaaaagt 720caagttaagc taggttgacg caaaaaccaa aagaagtttc ctaatataga gaaactcacc 780tcaggatctt ttgattcaaa atccatgggt gttgccacgt ggaaaacacc gtcacatccg 840tttatggcat catcgtagct tccttcctca gataaatcag ccttccataa agtgagtagc 900gtcttggcgt ttggcaaatc aagaagatgt tgtactttct tcaaattacc ttgacaatcc 960aaaaaaaccc gtaaataaac gttatattaa tatacataat cttaggagaa atgagtttgt 1020aagaacatat agatatgtac cgggatctcg aacggtggca cgaacaaagt aaccacgttc 1080tagtaatcgc atcactagcc atgaaccgat gaaacccgaa gcgccggtta cacacacggt 1140ctctttctga ctaaccattt ttgtggttat atgatagatt gtgctttggg aaagattcaa 1200ctatgtatgt tcggtacaaa tctttgtgat gtgaagacat tataaataag acactagaga 1260ttatgaatcg ttattgaaga aaacagataa taagaacgag aagctgccgg tcacgtgagt 1320accaaccgga gaagcacgtg gggaacgttg gttgacgaag gactaaagag atgtgtggta 1380cgtaacaatc tggtaagttg attttattat ttccttaggt gtgtattttg ttgttgtacc 1440ggtgggtgaa atacgttgac ttcgatttgt ttggtgagac gtgtgggtga cttcagttca 1500gtttgttttt gtttttgttc cccacccact tttacgaaat aaatcaaaat ttgtctaaac 1560aaattaacat tttgatagaa tatatacaga aatacatttt acttaagtaa tattttaatt 1620ttaattgaaa tctaaaaatc agacacctaa aataattata aatcttggaa aagcttaaat 1680gaaaaatatg tttatatttt agatttatga attaggagtt tcttattaca aaattgtaaa 1740attataaaac atattaattt ataaatatga cttctagatt tattgcaatc taaatattat 1800aagcatttac ataaaataca taaactaaaa ctttaaaaga tgtaattatc caattgtgtc 1860ccatgtcagc tttttcatta ttatttcacg aattattata aaaataattg atatgttaaa 1920atattgtttt caaaaattta tttatttcca gttttcgcaa agaaaataaa ataaaattag 1980aaggacagtg aatcacttaa tctcataaag taagaaataa cacgtggtgg ttacctcgtc 2040cacgtggatt ctaaaacaca gaatcaatat aactcttgta ttttcaattt gttgtatcgt 2100aagacgtcag agaagaggtc agcttaattt tgactctcct ccaaacagag agacaaagta 2160agccaagcgt ctttggtgta gtccaccacc acgtttgagc tcgacgcaga gagagaagaa 2220tacttcaaag ctctccttct tcttcttcaa ccactagaaa tcttcgttct ctattcaatt 2280gcattgcgtt agcaaaattc tggtgaattg atttgatcag atcttcgctt gatttcgatt 2340ttaaaaatcg aagaattttg tatcgcatgg agatgatttt ggaggagaaa gatgcatcag 2400attggattta cagaggcgaa ggtggtgcca atctcgttct tgcttacgct ggatcttctc 2460cactttttgt tagtctcttc ttcttcgatc tctcttcctt t 25012722DNAArtificial sequenceSingle strand DNA oligonucleotide 27aaaggaagag aggtcgacga ag

222825DNAArtificial sequenceSingle strand DNA oligonucleotide 28ataccatcgg ttaaaccatc tcaag 252925DNAArtificial sequenceSingle strand DNA oligonucleotide 29ggtacgttgg atccggggta ttttg 253023DNAArtificial sequenceSingle strand DNA oligonucleotide 30tcttcataga agaagagagc cac 2331513DNAArabidopsis thaliana 31gtctctctga ttctttcgta tggttggttg caggcaacgg tgggatttac tttgtttggg 60aaggagacac tagtggaaat tgacatcaat gaacttgttc ctgagattca atcttaaata 120gtttgttcac tagaatgtga attttttggt ttgaaatata aatccatgat cacttcacat 180gttttggaag ttttggtgtg tttgttctgt taaattcgcc aaacgattgc aacgacgacg 240ttctatcttc atttgaaaga tgagagcctt tactggttaa atgggcctaa tttgtgaaaa 300ggcccaacaa acaagagccg tcagatcaga atgaagcaaa caggcacgaa ccgttagatt 360aagattcaca aagaaaaccc tagaggttcc cttatcctca ggccaaatcg tgaactataa 420aacggctgat accaaaaccc taatttcttt acgtcaaact ctctctatac acagagttaa 480attgagtttg tgtctcgtaa cttatcctgt gag 5133223DNAArtificial sequenceSingle strand DNA oligonucleotide 32gtctctctga agctttcgta tgg 233322DNAArtificial sequenceSingle strand DNA oligonucleotide 33tatccgaagc tataatcaca ca 223424DNAArtificial sequenceSingle strand DNA oligonucleotide 34ctcacaggat aagtcgacga gaca 243523DNAArtificial sequenceSingle strand DNA oligonucleotide 35caagagaaag cagatagtga gta 23361022DNAArabidopsis thaliana 36tagagaaggt ccggagaatg gaagaaagca gatctatctc cggcgcttct ccattgtttt 60ttttttgctg ctctgaagct tagaagctaa aagaagccgc gaagaattgt gaagaagaag 120gaaagtttcc attattgcct tttattttat tttatttaat aatttaaggg tttttgattt 180taaaatgaat aataataata aatacaaaaa agaaaggaca gaaggaagga gtgatgtgtg 240gtagagagag acagttcacc gtcggcgagt ccagctggcg gtggtgggag cccaccgtgt 300caccttaatc atcgctgcgc tgccctgtct tttttccatt attaattttt agcaagaaga 360agactgggct ttctaaatta gttattaatg ggctttgggc tttcgtggtt agggttgtgt 420aggggcttaa tcgtcatttc ggagatagaa taaaccctaa tctccatgga tgggctctcc 480gatgtttgtc tttttgattt ttgaaatttg attttcaaaa ataaactaaa gcatcattgc 540ctcccattat cgtcacgcac gcagatcaat gattctctca ctctgcttct cattcacgct 600tcttctttga attcactttt ctattccttt ctttttctcc gtccgagaga gtatagagag 660acccatttct tcgatccatc cgctgagaaa aaaaaggtac cgtcgtattg ttctctcatg 720tttctgggtt tctttttgtt tcgaaatata ttcttctcgt ttgcagtgtg attttgaggg 780tttccttgtc taaaaaatgc agtttttaat taatggattt acaatagaaa tgtagttaga 840ttcttcgaca ccatcttcgt tttcgattgg atctacatgt tatgctctct ctttttcctt 900ggaatactat gtcagattga gtaatggttg tccttgtatt gaattacaga agaaaaccaa 960gcagtagtag aatggatcat tcagcgaaaa ccacacagaa ccgtgttttg tcagtgaaga 1020tg 10223724DNAArtificial sequenceSingle strand DNA oligonucleotide 37gttggttcgt cgactagaga aggt 243821DNAArtificial sequenceSingle strand DNA oligonucleotide 38gcaatgaaga tgatgatgtg c 213924DNAArtificial sequenceSingle strand DNA oligonucleotide 39cttactcggg atccacatct tcac 244021DNAArtificial sequenceSingle strand DNA oligonucleotide 40aactcctgtt gctaaaacgg a 21411056DNAArabidopsis thaliana 41gtcgaccctc ttttggattt atatttctct tcagatcagt tatttgaggt tcttgtgacc 60ttgccaataa tattccgcca cctggaccgt aatcttgtat tactctcaat tcaagaaata 120tacatacact ccaattttta tctttttttt tttctccgaa taggaaatcg atactctttt 180tatgcccgtc gttacataat aatcgtttgc ctttacacgg ataaaaatcg aataaaatcg 240aataagtaca gaaatagtta agattcgttc aagatactgt ttctttaaga aaaaacaaat 300tataacgtta ggctacaata ttaaaagcat attagcatgt agaaaagatg tataaaacca 360tcaagagtta atatgtagca ccgtggacca taatattaat tagtttataa gtttttttct 420tgaattgcaa acgtcttgta tatcactaat ttactataca tattgtcata atgttgaact 480ccaggacaga aaacataaga caaacgcatc attttcaatt aaaaatagtg gcaacaggct 540tataaagata caaagatggt gttttgataa gagaaagaaa aattatgagg ttcgtatcat 600ttctaatttt taatttttaa gagctgccga gattattgat cagattagct aatgtctaaa 660tttgacggta gagagtttac cacgtcaact acacaagagg acctttggat ccggaaagag 720gtttcgttag tctgggtctc aagtttctca accatagact tatatgctaa tccagtgaac 780ccatgattat gaaaacctat taaaattttc ctttttagaa tttagagcca aagatgcgtc 840tgaaagttac actcaaagag aaagattttg tgaggacgta gttccctgcg ttttcttaag 900gctgaggtta agtactggga tttttaagag attgtgaagt ctacatcatc agtcgagaga 960cactgcaatc tcatcgtcat cattgcacaa caggtggcca agtggatgtg taggcaccaa 1020attgacccag taaacctttc ggtctggtct aagctt 10564223DNAArtificial sequenceSingle strand DNA oligonucleotide 42cccttatctc tcagtcgacc ctc 234321DNAArtificial sequenceSingle strand DNA oligonucleotide 43gaagagagga tatgtgtgaa g 214425DNAArtificial sequenceSingle strand DNA oligonucleotide 44ttcaaaataa gcttctagac cagac 254520DNAArtificial sequenceSingle strand DNA oligonucleotide 45aagagatttt caaagtgtgg 2046435DNAArabidopsis thaliana 46aagcttatta cttaccatgt atgttccaat aagaaaagtt tccatctttg cttaaaagca 60aaaaactaaa ataccaaaag attcaaaaaa aaaccaaaac agtaaaagta aatagcaatc 120tctgagaatc ttatccacgt cagctcacgg gtcctacaga gaaagctaca ataggaagag 180atgttttcac ttacagaaga tttacttggt ctagatttgt tctcctttgt gaaggttatg 240agaaaaaaac ttttttgatg attcatgacc ttgttcaaaa ctcagacagc cacaagatga 300tccaactact tttaacaacc actaactctg cgccacgtgt atatctccaa agattctatc 360tttcccctct caccacctag atatagtctc attagccttc cctcctttct aattacaatc 420tctccttttg tcgac 4354721DNAArtificial sequenceSingle strand DNA oligonucleotide 47gcaatgattg tcgacaaaag g 214823DNAArtificial sequenceSingle strand DNA oligonucleotide 48ccggagaggg atcctacgaa agt 234925DNAArtificial sequenceSingle strand DNA oligonucleotide 49ttggtcacaa gcttattact tacca 255019DNAArtificial sequenceSingle strand DNA oligonucleotide 50gggaggagga tccagccac 19513333DNAArabidopsis thaliana 51aagcttgcca agtacggctg cttcaatgct tcatccactg tcaaattaaa acatattgtt 60agtatatttc acattccatt tatagcatca caaagtagta aaacaacgtg ataagcacct 120gtgatgcgct ttgaaggatc gaaaactagc atcttttcag caagatctag agccattggg 180gaaatgtttg gaaacttttc tctgaatgat tgtttttgaa catgtgggag ttgttttacg 240tacttccgcg cattatcgct tctcaagaag tcgagatccg agtcatctgg tgaccctaag 300agctaaaaac aacccaaaac aaaacagaga aatgcttcca acaaccaaca cacacacaca 360cacaaaccaa aatgatagat tttggattaa ggttttaatt tgcttacctc agtaataagt 420ttcagctgct gaacgtaatc tttaccaggg aaaagcgtct ctcttctaag tatctccatg 480aaaatgcaac caacagacca aatgtcaata gctcctgtgt attcagagct gttgagaagc 540aattcaggtg cacggtacca tctcgtcaca acatactcag tcattatctc tgtctcattc 600gacgttcttg ctagcccaaa atcacagatt ttcaggtcac agttcgtatt cagaaccaag 660ttgctcggtt tcagatcgcg gtgaagaaca tttgcagagt gtatgtactt aaggcctctc 720aaaatttggt aaaggaagta ctggagacaa caaaaaagta tatcaaacaa tgctaaatgt 780taggaaacat tatgtaaaag ctctaattag gaatgtgtcc actgatcatc acctgacaat 840ggtcatcagt tagagtttga gtggatctaa tgatctggtg caaatctgta tccatcaact 900cataaacaat atatacatct tcgaaccttt ctttctctgg tagctcaatt atatctttaa 960ttttgataac ctgtgtagca atatgaacgt aataagccaa ctatatgagt gttcatcaaa 1020gtgaagaaga agagattaca ttgtcatgat ccatgtggga aaggagcttg atctctcgga 1080gagttctttt agcatcaact ctgttgtcaa acgcgtttgc tatcttcttt atagcaacct 1140cttcatttgt ctctgagttt gtagcacagc tgtaatcata aaaaaggatt tgagattaag 1200attgtattca agaatggtat gtttttttat tgaaagtgat aaagacttac cagacaatac 1260cataagcacc tcggccgatg ggttcaatag gagggatgta ttttgaagat agctcgaaaa 1320tgttaccgag tacattgtac ataacatatc taccatcata tgtcaagatc cctccatctt 1380cccttttctc catctcttct ttggaagaag aactcggatc aagacaggtt ttaagattaa 1440aaaaggaagc aagttttaaa agactgtttc tcaagtagct gttgttgccg ttaaaaaggc 1500aaagcagtga gtaagaggag agaaaatggt ggcacctttt gcttttggtg ggccaaatga 1560agacaaactt ttttatttga tccgttgaac ttcgaaattt gaatgagaat tattattaca 1620aggttaaaac ttgacttctg catcattaaa gaaaaattca aaagaaacaa aagagaagta 1680tactatagaa aaagctatct cattgtggat caataggtcc ctaggaacca atagtaagta 1740aaaagcaaag tggtaaacat acaaaagcga gattattctc aagtctcatt tcaatgtcaa 1800aactctctct tgtgtgctaa gtaaacagaa cctgtgtgaa agtaaaacac ctctgaactc 1860attttcacta tctcacaaac ctgcattatc gatccaattc tcccatctta tatcttctta 1920catattaagg atcagagaag gtgatcaaac ctgataatta tgtagatgta gctgaagcta 1980agatataagg ctcaggaacc acaaaaacat atcactgaat atttcaaatt agcttcagca 2040ttttatgagt caaaatacta agaaacaatg caaattctct catgaaaagg ctctcacatt 2100gcttttgcat tctccgcaat tatgatccaa accttaacca aaaacaacta ccctataaga 2160gtataagacc atgtctgcag aaatcagtag taacacaaga atttcatgag atattaaaga 2220agaagaaaag taggccacac aatagaattg aggaatcaag aaaacagata catacacttg 2280ggaaggacca gcacagcaga cgtctgttac tactaactaa ctcagacttg tcattgaact 2340atattatata cggctcactt gttttgctgc agtaactggc ttatcttctt ttctggcttg 2400cgttaataac atgagtagag agaaaacacg acttccgtcg agtagattcc tatcaaacaa 2460caccggttct cgaatctttc gacaagccaa gcaaaagtag gtgggcatga aaatttgttc 2520cccatgaaac agaggacatt cgttgttacc tattctaata accgattcaa aattccgaat 2580cgcagactta ataaatgtgg acaattaacc aaaccgtgca ttgctaggtc taaaccgcat 2640tggtttatga cccaccaatc aaggagcgat gggtgagaaa cctaataaca ctgctgctgt 2700gactttatca tatccttagt ccaattggga tcttcgtctg cgtgagacgc gttcacacct 2760gcgacagatg aaatcacgga aataccactg cccaacgtgt tcgcaataaa agtcctctga 2820tgcctaattt cgtcaattta ctgaagaaaa ttcaacatca acgccctttt tgataatttc 2880cccaaagtta gtgggccctc cacacgaagc atgtatcctc caattgcata ttgccaatta 2940tttcctaata atattgaagg attattcttt tcccatctat ataccaccaa ccctaagatc 3000cgaacgtcca ttttaaagcc gtgcgtttaa tcatgatcgt caattatatt ggcaaatttg 3060accacacgat atccgtcatc taacggcatc tacagatcta ccagaacgtt ctcattcatg 3120actctatata tttcgcattt cttctcctca acgctctcat aaaaagtagt actcgtgtct 3180tactcgtgcc agccactcgc atttctccag attttattat ccttcctcga aacaaggtat 3240gacggaaact ctctctctcc ctctctgatc cgtcgttgct gcttccattt tcatcttgac 3300tcgatcggat cattgttatg cttggctgga tcc 33335223DNAArtificial sequenceSingle strand DNA oligonucleotide 52gatctcatgg aagcttgcca agt 235321DNAArtificial sequenceSingle strand DNA oligonucleotide 53aaaacagctt catacgagtg g 215424DNAArtificial sequenceSingle strand DNA oligonucleotide 54cattaagcac ggatccagcc aagc 245521DNAArtificial sequenceSingle strand DNA oligonucleotide 55tcactattcc ccacagctta g 21561331DNAArabidopsis thaliana 56gtcgacttgg tacgacttgt aatatgaaat aataatgtac aaagaagttc tacgcttaag 60ggaactgttt tgttttgagc tttgtattag gacgtctagt gtacaacaac gaacgtcgtg 120tataagcgat cgttgactct gcacatgtaa ctctttcctg aataaaaaat ctttaagtct 180ttaatttcta catcttttag gattatataa acgttactat ataaataaaa aagaaaaaaa 240aatcagttca ctaacatgcg agactttggg ctaaatatag tgattccaaa gaaaatgagt 300tataatatta attaatataa agctcatttt ctttggaata tcgttataag aatattttaa 360cttggatata actgggctta cgccatttgc atctcgagga ttttttgttt ttgtttttgt 420ttttttaata cattctcgca cttacacact aaaaatcata atgatcttct taattcttta 480gcggaaccac caattaatct ttttattaag aactttatta cttatttcac ttatttgtgc 540atacgtgcat tattttggca gtaacaaata tcgcgttata tatactgaaa tccggacgca 600ttaataatag ggatatgatt atatgaacca ctatctagct ttggtagaaa cccaattata 660atcaaataat ttaccattat tgaataaatt aggctatata agttcattaa tagatgctat 720aggtttttct tacaaggcac acatttgatt gttattttct ttcatataca ctgaatgtac 780atgtgtacac ttggcataca tggcaagatt atgtgttaca atatagactg tgccattgcc 840atgcaatgtg actcctgtgg ccatttctat cacaatgtgt caatcttgga gtatccgttg 900tttatcctct aatttactga ttaatttatg aacatgtata attatttata tcatatgatc 960tcgtaagata tcttagcatt ttccaccata tgttattagt aaatcatcta gatggattga 1020tgtaaatagg aaagttaaat taacacacca aaaaagtaac tgattaaaag catacaactt 1080aatattcaga ttatggtaac taaatcagtc tcatgcaaac tccaaaaaat tatacgagtc 1140acaactcttg atttttttcc ggttaaacaa aatacatatt ttcatttgta tgcaaccaga 1200ataaaacact aactatctcc tttaaatacc attttcccta cgagtctacg acgctctcta 1260aacttcttat acaaaacaaa acacacccaa atatgcataa gcttttgttt tctcttctct 1320ccgtcggatc c 13315724DNAArtificial sequenceSingle strand DNA oligonucleotide 57tctaaaggtc gacttggtac gact 245822DNAArtificial sequenceSingle strand DNA oligonucleotide 58ttaggtcttg atcaaaaagc gt 225923DNAArtificial sequenceSingle strand DNA oligonucleotide 59agaaatgaga gggatccgac gga 236021DNAArtificial sequenceSingle strand DNA oligonucleotide 60gcggacagtt actagtcgtg g 21612316DNAArabidopsis thaliana 61aagctttaag ctccaagccc acatctatgc acttcaacat atctttttct agatgagttg 60gtaaaagtag aaaaagatat gatgatttta aatttgtttc tatttatatg tgttcatcga 120aacttcattt tttttagttt taatagagag tttatatgac ttttaaaaat tgatttaaaa 180ctgtgtcaaa aattaaaagg acaataaaaa atttgcatac aaccgaaaat acttatattt 240agacaagaaa aaataatact tgtgatgctg attttatttt attatatatc atgaatcatg 300atcatccaat tttccggata agccaaagtc aaaatgatgg gttcccccta atcttttatg 360ctgagaaata gatgtatatt cttagatagt aatataaaat tgggttaaag aatgatgatt 420cgattatagc ctcaactaga agatacgtgt agtgcaggtg tgtagttaac tggtggtagt 480ggcagacaac cagattagga gttaaataaa gcctttagat ttgagagatt gaaatattcg 540attggaacct ttctagattt ttacagccat ctaaaattag atgcagatca cctactacca 600ttcaaaaatg aacaaaataa tttcatttac attttcctag cataagatat aataataaaa 660tagtgctcat tttaattact ttttctaaat attttcgtta ttttaaattt tgcttgtcta 720tactctacag ctcatttaat aacggaaaca aaaataattg cagggatacg gatgggtagc 780tttcaaaact tacatcatct tctgtttctt gagatcaact atttttggag ctttgtctca 840atcgtaccaa aggataatgg tcctacctcc ttttgcattc ttaactttat cttctctact 900tatttctttt ttgggatttt tgggggtatt attttatctt ttgtagatat acacattgat 960ttactacaaa cgtatactac tatccatctt caactcttcg gaatatgatt tcgaaaaaac 1020tatgaagatt aacgggtatc ttaaacatgt taagatacac cggacaattt tcatttagaa 1080gaattgatat gcaattaaca ataaatagtt gatgatcttt tagttttgaa gatgtgcgtt 1140aagacttaag cgtgtggtaa caaggtggga ctcgggcaac gcaaagcctt gtagagtcca 1200cttgctcaac ttgtctttct tttatctctt ttccaagtct caagattcaa tgaactccgt 1260gtaacacaaa cacgcccata gatgagctca tttttggtat ttccaatatt gccactccat 1320gataatatca tctagggatg gggttcattt attttgaaat ctcaacaaat ctcgtcgatt 1380ctaacacaca tgattgattt gtttacttac ttgaaagttg gcaactatct gggattaaaa 1440tttatctttt tctactgcta gctagaagca tctatatatg ttagcctaat acgtggaaga 1500tgtcattgct aataatggct aaagatgtgt attaattttt cttctttttt ccttgaattt 1560ttgttctttg acataaacta tgctgtcaaa atgtgtagaa tctttttaca taaatcattc 1620cctgttacac actaaaaggt tcacaacgga cgattgtatt ggacttccag atcataaacc 1680atgcaaaact gaaaaccaca agaataatta gttctaactt tagaacgttc gtacgtgttt 1740catgttcaaa aagcgtcaat tataaaagtt gggaaattac ttttgagttt tgacatttct 1800aaggacagtc aaatatgaca acattgggat gcaacttacc ttgtattaac ttattttgtt 1860ataaaaccat atattacata ttttaaaggg ttgataaata atcaaatata ccaaaacata 1920gcttttcaat atatttgtaa aacacgtttg gtctactagc taattatgag aacatttgtt 1980caatgcatga ttatctagta tctactagtg gattatgaaa attagatatt ttcattgcat 2040gattatcttc catatatagt gataacatca aaagaatcta caccaattat tgcatttttt 2100cattatataa taagcactaa actgtaaaat tatattcagc cacccaaacc atgacaaatc 2160accttaaagg cttaaacaca taacagccat tacgagtcac aggtaagggt ataatagtaa 2220agaatcaatc tatataatat acgacccacc ctttctcatt ctttctggag agtaacatcg 2280agacaaagaa gaaaaactaa aaaagagaac cccaaa 23166222DNAArtificial sequenceSingle strand DNA oligonucleotide 62tagtttggtc agatgggaaa cg 226321DNAArtificial sequenceSingle strand DNA oligonucleotide 63tataccagtg gagacgaaag c 216425DNAArtificial sequenceSingle strand DNA oligonucleotide 64aaatattgga tcctttgggg ttctc 256521DNAArtificial sequenceSingle strand DNA oligonucleotide 65taaactaccc gtcgttctct g 2166379DNAArabidopsis thaliana 66ttcatatgta tcaagacctg taatattgag tttttacaac acaagttata aataaaatac 60aaacacttta tgagaaaaaa gactattaaa gtgtagatta tggactaaat cttttaaaaa 120aaagatagta ggttcttcaa agtgtatcct actaaattac aagggtttga acgcaaatat 180ttctttgaaa atctcataat ccagaaagaa ccaacgagag aatgccacat catccatccg 240taatcgtatc ctcacaaaca aaatcttctt ctgcttcttc tcctgcttgc cagaatccaa 300aaccaaacct tcagatcata aatccaaaac cactcatttt tctattactg aaatttttct 360tagagaagaa gaagaagaa 3796723DNAArtificial sequenceSingle strand DNA oligonucleotide 67gtcgggaatt attaagctta ctt 236820DNAArtificial sequenceSingle strand DNA oligonucleotide 68actgacgtac tccttagcac 206924DNAArtificial sequenceSingle strand DNA oligonucleotide 69ggccattttg cgtcgacttc ttct 247022DNAArtificial sequenceSingle strand DNA oligonucleotide 70gaattatgga ctcttattgg ct

2271979DNAArabidopsis thaliana 71ggatccgaaa cgaagacgat acagtagagt aagagtagcg agcaaaaatg caaacgcatg 60gtgtttgtga ttgaaccaac aagttgagga aattattgaa cccaaaaaaa gacatatcaa 120agatttgcta tatatatgtt attttaagcc gcctttacta aatatgtggg gtttaaatgt 180cacgtgaaat gtctacgagt cacatttgtt catgaagtaa attccacgtg gacatctctg 240actatataac tgggagttat agttgactgt taaaattggc ttcaaaattt agcaacaaga 300ggaaatcaac actcagcaat ttactctcat tggatcaaat gaacgcacat taatatgacg 360taacgatgat gacaattctg tttaatagta tcttattgtt tacagataca gaaaaataaa 420ttaagtgggc ctttcaataa ttaataggtt ggtgaaatgt taccttctct tgatattttt 480ttaattttca tttattatga gtatgttgcg ttatgaaaca actcgcatta atttggttat 540agattggaga aagaagaagt catggtcaaa actcaaaaat gtaaaaggaa acaagacgtg 600tatgacgacg tgattgataa tctgaggaga tacctttggg ccttataaga tgggccgaaa 660aagtaatagt attagcctct attcggcccg attaatttca ggggaaattt tggtaataaa 720gtggaaacga cgtcgtgaca aaactactgt gtagactgag aaataaagaa gcccttgatt 780ttgcccattg cagtcatctc tctcgaatct ctctctataa tccgatctga gaaatttcgc 840cggagctagg ttttgttgtt taccgatcaa tcctttaatc aatggcaatg gctgttttcc 900gtcgcgaagg gaggcgtctc ctcccttcaa tcgccgctcg cccaatcgct gctatccgat 960ctcctctctc ttcggatcc 9797222DNAArtificial sequenceSingle strand DNA oligonucleotide 72acactgcttt ccactcaatc ac 227322DNAArtificial sequenceSingle strand DNA oligonucleotide 73taggaaattc aacgaaacga gc 227423DNAArtificial sequenceSingle strand DNA oligonucleotide 74gatctcacgg atccgaagag aga 237522DNAArtificial sequenceSingle strand DNA oligonucleotide 75tgaagaatca gagaagaacc gg 2276665DNAArabidopsis thaliana 76aagctttact ggaacataca tgtaccttac catcaccctc acttacaacg gtgcaacatt 60cacgattgat tttttgaaac aagttaccac aaaacttaga ttcaattcga ttcttttctt 120ctttccaaaa tgttataatt agcttcattc tttaaacgat ttcttgtgta aatctttgtt 180ctttttgaca caacacacaa aattctcaga gcagaatatc agatatagtt cacagcaaca 240taggtgttgt tcgttctttg ggttgttata tattgcaatc tggatgcagt ttattatgat 300gtatcagtag agaagagaga aaaagattgt gttggaggga aagagatgaa atatgacacg 360tggagggcgt cgattggtgg agtatggata gaagcatatc caagttagat ggcttgtgtt 420ggttcgaaca gattttttat ccaccacata tttatgtttg atccaaaagc caacacaagc 480aaagaaatta aaagtgttct tgttgctgta gaacacaaac agaacaaaca aaaaatcaat 540tgaagagtct ctcagtcgtt aggggaagca aatagagaaa tggctagctt tactgcctcc 600gcttccaccg tctccgccgc tcgtccggct ctccttctca agcctaccgt cgccatctcg 660gatcc 6657724DNAArtificial sequenceSingle strand DNA oligonucleotide 77gacaagtaca agctttactg gaac 247821DNAArtificial sequenceSingle strand DNA oligonucleotide 78acttcttgtt gattcaccac c 217923DNAArtificial sequenceSingle strand DNA oligonucleotide 79ccaagaacag gatccgagat ggc 238021DNAArtificial sequenceSingle strand DNA oligonucleotide 80gtggcttatg tccgtcaata g 21812834DNAArabidopsis thaliana 81ttgaaagtgg gcatttgagt gtgtataaaa aattggtttg gtgagttgaa taatgtaaga 60atcttttgta tttttctaat taaactgttt atgatcatta ggagaacaat atatggggat 120gtgttggaat catgaatcgt aggttaaatc ctacaagagg aaaagcttca ggagacagag 180aagatgaaga gaagagaaga aaggaagaag aagaagaagt cgtgacaaag aaagtcagct 240aatagacata tctccgctat ttaaagtcga gtctaagcct ttatacactt aaaggttgag 300ggttcgaacc cttgttatgt ctttttgccc taaaagaaaa aaactttctc atgaaattcc 360gtgagatgat tcttccattc taagcatttg gttctgttag attgataaag aagtctccta 420cagtaccaag gcaatgtgcc atccatctac aatttgtata actatatctt ttggtaacat 480gttcccatca agtgggaatc taattcccct gttattcttt tcacgttcta agcatttttc 540aagctgttta ccattttgaa acttagtaac gatcaaaaag aataagggat ttcgtcacgt 600aaattaaata gaatctgtat acaggtcatt taaaaaaata ttttagtaag atacacaggc 660acagctcaac gtctgatctt ggtttgtcat aaacagcaga gaattctacc acaaggaagc 720tctggtacta tctttctcat taagcatccg cgactacaat attccccaat ttattaaata 780aacttttcca tgatgcaaaa gtacctttta ttaaacacta cgaataaata aataaaggtg 840aaacacccat ttcaaagaaa tggtaacgtg tctttttcat taggcgagac tagccaatct 900aagcaaacag agtcgtcttt atatctaaac gaacattttg tgaaagaaag agagactaag 960gtgaatccat ggcgtccaag attgtctcag ccatagtatt tgtgtttaac ctcattgcct 1020ttggtttagc cgttgctgct gaacaaagaa gaagcactgt gagtcacatc tccacagcga 1080tatctaattt gaacaagatg ataattatgt gatctatctt aatattttgg agttaaatat 1140tttttggtgg ggcaggcaag ggttgtgcag gacactgagg tgcaatataa ctactgtgtg 1200tatgactcgg acagagctac agggtatgga gttggagcct ttttgttctc agtggctagt 1260caaatcctta tcatgctcgt tagccgttgc ttctgttgtg gaaagcctct caagcctggc 1320ggttcacgcg ctcttgccct cattctcttc attgttagct ggtttgttat tataactcaa 1380ttagtacatc acatatatat ccctagctta agctagctta gacatatctg gcgtttttat 1440ttcgttcaaa gatgattcaa aactcacaat caaacattta caatagatct tagtttatag 1500aactagaatt atcattaatc tatcatggta tcaaaatcgc agtaaatctt attatcagct 1560tacacatttt cattctcttt tcaatgcaca gttaataatt caaatctaac atgcgtctct 1620taatccgtta tgaagctaaa cgtgcttatt aaacaaccga cattgtgcta atatttttac 1680aacttgaatg ttgttttgtt ggcgaaaaaa aggatgttct tcttgatagc ggagatatgt 1740ctattagctg gatcggtaga gaatgcatac cacacaaagt acaggacaat gttcatggac 1800aatcctcctg attgtcaaac tctacgtaaa ggcgtctttg cagcaggcgc ctcattcgtc 1860ttcttcaacg ccattgtctc tcagttctac tatttcttct atttctctgc tgctgaggcc 1920tctctttcac cttactagag gttcttaacc aacaaataag ttttattttt tttctctcta 1980aatgtgctat ttgatatgct aatatcatat tttgaggtgg gttttctatg tacaactatg 2040atgaaatgtt acaactatga caaaattatt tgaaagtgat ggtacacatg agatttgtag 2100atttatttgt atggttatta gatcgagttg aaatgttgtt ttaaaaagag tggatgtaat 2160ttgacgattt tgtgacatat gacataatgc tcttattcat tgaataaggt ttgagctatt 2220ctcgtgaatg cgtaaattca aattcgtata atgcatactt ttgacagagt aacaattgtt 2280tattactgga gaaacttatc caaacatgag aacgtccata acaactagta gcaagcaact 2340agctctatct atctccttct cccatgccaa agggtatgga atcccatcaa caccaatcag 2400caatcaccat ccctttattg caactgttcc atttgttaac ccaaaaaaat agtttaaaga 2460cattaaaata aaatatctaa ggagaaggaa atctaattct caaattctca ttggatatta 2520aacgacgacg tggcagatac ttagttcaag ataatgctat ccacacatct tcggtgacct 2580ctgtggggac caatcttcct ttgtccgaat atctcatttg ctagtacata aacgcacata 2640ctctctttcg caaaatatcc actacgatag ttttcttcag caatcacact ctctctttgt 2700tcgagtacca acaatggccc ttcaagctgc ttctttggtc tcctctgctt tctctgttcg 2760caaagatgcg aagttgaatg cttcttcatc atctttcaag gactcgagtc tttttggtgc 2820ctccattacc gacc 28348224DNAArtificial sequenceSingle strand DNA oligonucleotide 82gttgtttaaa gctttgaaag tggg 248321DNAArtificial sequenceSingle strand DNA oligonucleotide 83tattatttct caccagcggt c 218424DNAArtificial sequenceSingle strand DNA oligonucleotide 84tcggattgga tccggtcggt aatg 248521DNAArtificial sequenceSingle strand DNA oligonucleotide 85ctttaaggaa gtctctgcac g 2186484DNAArabidopsis thaliana 86aagcttctta ttgaatgata acacacatat gtgatgagaa taaaaaagaa aagaatacag 60aatttatgtg acatatatct tattcacaac catagtattg atccattgat taacatatca 120aggaaagtaa ttataaagtt aaaggaaaaa aaaaaaaaaa aaaaagctaa acaaaaaaca 180aaaaaggaag agacaactaa gcgcgtgtag ttcacaaacc agaagccgag agtcggttaa 240gaaaccgtct taagctgttc ttggacacgc tgaagcaaat ttaatcgtgt ataaaactat 300ccttcttcca ccttctcatt atattcattt ccatctttct aatttatctt tccatttccg 360agccgttgag aattttttct gagagataat ttaacaaatt tcttcttctt cttctgtttc 420tgaaccacca aatctgcctt tctcaattag ctatgggcgt cgctgttcta aatccccagg 480attg 4848725DNAArtificial sequenceSingle strand DNA oligonucleotide 87tcaaatttgt aagcttatct atcgc 258822DNAArtificial sequenceSingle strand DNA oligonucleotide 88agtgatatgg tcagcacaga ac 228924DNAArtificial sequenceSingle strand DNA oligonucleotide 89gaatggatct gtcgaccaat cctg 249022DNAArtificial sequenceSingle strand DNA oligonucleotide 90aaccagatct gaagtctcct tg 22911840DNAArabidopsis thaliana 91aagctttcaa gttcatttcc caaagctgtt tttatgatat tttgtcttgt gtattctcag 60ttctccggtt ccatatttct acccgatata ccttctgata ctattgatat ggagagaacg 120aagagacgag gttcgatgtg cagagaagta caaggagata tgggcagagt atcttagact 180tgtcccctgg agaatacttc cttatgttta ttagatgtgc caagagccaa gtcatgaatc 240ctttcagatt catcctcttg tgtcttattt tttcataatc ttgttttatt ttagcaatgc 300tcgagtgaaa ctttgtagta cacgtttgag aataacttca gtccttatta ttattttagc 360attgatatca gcattttcgg attttatttt ttgggttgtt taaaaaccag agattttaca 420aaagacattt gtttgatgta aaatgtcatg ataaagtaat attgtactta tgtaaaactg 480agaaaaatac taatagagga acagagtggt gttgataaat gataatgctg atggatatgt 540ttataggaga aaatggaaaa ttatcacaaa aatagaaatt gacgattacg aagtttctag 600atgtaccatc ttaatcgact tggagacaat ttaaatggac catacacatc cgtgtttcta 660tttacatgtc aatatacata tattctttgt ctttttagta tatttccttc ttttccccta 720ttttcttttt aaatattgta tgttctatat cagtttcttt cttaagatat tatggcatat 780cgtaacagtt gtttccattt ataatcatat tttattttta gtatgtcata gagtttttta 840aaatttattt atttgtcaac gaggttttat taaaaaatta tatacacata ttaaaaaaat 900gttgaaaata cgtgtaaaaa tctcataatt tgttataata ataagatgtt tcattttata 960atcacttgaa cctaaaagat aagaaacaat aaaaccattg aagatcctaa aagacacctt 1020taaaacttca aaatgtatac aacaacaata gcaacaaaaa agttctagac tacatacata 1080ctgtgtcggt agaaagcaaa agactttgat agtttttgat tattcatgcg tttgaagagt 1140cgcagctgtt ttccggttat atgtctctat ctaaatctaa gatcttaatt ttctatgttc 1200ggagatatca aagtcgcact ttttctgtga atctagaaac acataacatt tccaataaga 1260atattctatt gagattcgta gtcaactatt aagtgtttat tacgattaaa aaactactat 1320aatcaatgat taatgtaatt tattatctta cgatctcaat tatacaattc gtctgacggt 1380ttgggccgtc gtaaggccga agtcatgctt ttccttaaat aacactacga gttaccaaat 1440tacccctcag ctaatttgct gagaatccac gctattaagg ggtagaatta agattagcca 1500acattgccaa ttagagatcc aacggctgaa aaagctattt cttggggaac atgcaaagat 1560ctgaccctta attaatattt tcaccaacca atagactctc atccgcagct ataaaaccaa 1620cccttttcct ctactggtcc accactcgtc tgccttcttc cgcatctctt ttcatttctc 1680tctgatttct cgatctctcc gtccaactat gtctgccttc acaagcaaat tcgccggtaa 1740gatctcgatc tctatctctc ttaagttctt tattcatgtt tagattcgtg tattggattc 1800gattcgttat cccgtgtttt gattcttatt agcgtgttta 18409222DNAArtificial sequenceSingle strand DNA oligonucleotide 92acttatctct tccaaacaac tg 229322DNAArtificial sequenceSingle strand DNA oligonucleotide 93caccataaga gaacaacaac ag 229425DNAArtificial sequenceSingle strand DNA oligonucleotide 94actagatcta gtcgactaaa cacgc 259521DNAArtificial sequenceSingle strand DNA oligonucleotide 95gagtaatttc tcctagaacg g 21961665DNAArabidopsis thaliana 96aagcttatat aaaaaattta aagtttaaaa attataaaat atgtcaacaa tattttagta 60cttaaaatta ttatgcgaaa tatttagatc aatggactac tcatctaata tatttgcacc 120taattttaaa gtataaattc aaccaataat tagaaaatga tagcttatac tcaaattcaa 180caaattatat ataaatgtat agatactaca atatcattaa caaaagtcac cttaaataaa 240tacacatatc ttttatgttc tctattgttt tgcgtacgct aacacaattt ctcatatgca 300aaaggatgaa tgagtaacaa attacctcat aagaacaatc atctttgctt acatactaat 360acaataatca ctcaatcaac caataacatc aatcacatag gtttacatac aataatcact 420caatcaactt cataagaaga atcatgttta cttaattcat caattatccc caaaaacact 480actattaagt ataaactata acatatttgt agtgatgggt caacattttt atcatattta 540aactcgggtt tcctcaaatc gagaaatagt gaacatgtaa tattaatttt aaatcgcaat 600tacagaaatt aattgaattt ggtcaaatgg acagaatttt ataaattggg tggaactaga 660aaaaaaaaaa aaaagagtat agggtgaatt gagtacatga aagtacatgg taatcctagt 720taaacgcata atacatgtgg gttcatttgt atttttttgt aacttacgag taaactggct 780acaacaaaaa aaaattagaa gatttttttg ttttgtagaa aaccctaatt ttagttatag 840ttgtataact ttgataaaat tataaaattg tattacgaaa aaagtaataa gatattcaaa 900aaagcctaga ataacgtata tgactatgag catgaaactg caagtcaaat gctgacagac 960aaccataaac aaaagaaatt aaatagagat acctttaaaa taagtaaaat ttcatttata 1020aaaaatctac tttcttgtga atctgtcacg ttcaataatt tgaagaccac tcaacataca 1080aggtaaataa tgaaaaataa aatctaccaa aatttcaatt attattatct tccaaaaaaa 1140caaaattata cagatgatga tggtgatatg gaacttcgat tggctaatat tcactgtgtc 1200tctaaaaacc atccacttat caagataaga tggaccctac actcatccaa tctaaaccag 1260tatctcaaga ttcttatcta attacatcat tctctaccgt tagatgaaat tgaccattaa 1320ccctaccata actccataca ccgcgagata ctggattaac caaatcgaga tcatcgtagc 1380cgtccgatca acaagtacca tctcttgaaa tactcgaaat cctcataagt ccgtccctct 1440ttgctctcac tatcaaaact ctgaatttcg atttcaatgg agtcacgcgt gctgttacgc 1500gccaccgcga atgtcgttgg aattccgaaa ttgagacgac caatcggagc gatccaccgt 1560caattcagca ctgcatcgtc ttcctcgttc tcggttaaac caatcggagg aatcggagag 1620ggagcgaatc tgatctccgg tcgtcagctt cgtccaattc ttctt 16659722DNAArtificial sequenceSingle strand DNA oligonucleotide 97cgactaattg aacagctttc tg 229822DNAArtificial sequenceSingle strand DNA oligonucleotide 98ctaatcttcc atgcactaaa ct 229923DNAArtificial sequenceSingle strand DNA oligonucleotide 99ccgacgagtc gacaagaaga att 2310022DNAArtificial sequenceSingle strand DNA oligonucleotide 100cataagaatc tgctaaagtg cg 22101807DNAArabidopsis thaliana 101aagcttttag ttttctagat aagatcttag ctttggtcac gtaaaaaaaa ttaaaagtga 60attggttaac aatataggag tactttgtat ccaaaggtca ttgcaataaa taaacactta 120agtactctgt agtcacacat ctctaggagc ttaatattgg ataatcgctt gtagacttgt 180attaaaatat ttagtaggtc aaatccctat cttctacagt ttctactctc gtccgtacag 240actacagaca ctatgctata gttttgtgtt gaattctaca aagtacaaat tcttctttcg 300gtgccaataa caaataaaca caattctcaa attacatttg tctaaatttt tatttgattc 360ggtataaatg taacgctatg ttgggaatca tatgataaat ccagattaag acttcttatt 420taatttattt ttgtatatat aaaatataat atccaaccat aaagtttttt taccgatcga 480tgataatgtg aatccaaata ttttaacagg atgataaata attgatgtgg cttttataac 540cgcagcaatt ctggcgtgac tctctccgca gcatttattt ttctctctat aaattaaaaa 600cattacttac tctttctctc ttccacttaa ctcatatcaa ccttcgccgg aaataatggc 660tttcccgcga tttctttctc tcctcgccgt cgtcactctc tctcttttcc tcaccaccac 720tgatgcttcc tctcgctctc tatccactcc acctaaaacg aacgtactcg acgtcgtttc 780atctctccag caaacacaaa ctatcct 80710222DNAArtificial sequenceSingle strand DNA oligonucleotide 102aaagttgcac cagtaatcag cc 2210321DNAArtificial sequenceSingle strand DNA oligonucleotide 103cactcaagtt ttgagcatgt g 2110423DNAArtificial sequenceSingle strand DNA oligonucleotide 104aagaaggggg aaggatccgt tct 2310522DNAArtificial sequenceSingle strand DNA oligonucleotide 105tcttgtagct tcctccacaa ct 221063297DNAArabidopsis thaliana 106gtcgactcca agattcccgg acgttggtcc aagggtatca ctctacaaaa taattataaa 60aaatgacgag gcatttcatt ttctaatcaa tgtattttct gataaaggat gtcatataaa 120cttggtatct cataaataaa gtatctaaac ttcaaaacga acaactacta ttacttgatg 180aaaataacaa cactattata attaatggtt agttgagaaa caatacataa aaaatttgat 240ggaactatga gagccagcca gttactatcc ttctcacctt ccaatgggtt gcggcaagaa 300ccttcacaac ctcctttata tttgcgatgt gtatctagtc ttttgcaatg gtctcaaaac 360actttgggtt tcataagttt aactataatg gtgtccctga tattttcggt ctaatatctc 420ttaaaaaaga aaaatactta tgattcattt caattaatca aggttcaaga agatatataa 480acactagccc tgacacatga aacttcgatg ccgaaaagct ctaagatcaa agccgaatct 540ttttaaaaca tacacgtgat ttttgtgtct cccaagacca tcttaaccgg tccatgtttt 600catgttttag ttagaaatct agattaagtc attaaactaa tccgtatcag taattaccag 660cttgcatctc agaagtccat tattatttac atatcatcat cacatgctag acacaatcaa 720taccttatgt caatatctaa aataagtcta taatcattaa tacttgtatt tataccaata 780gtatatcgtt tattaaatat tattcatact ttatacataa atattccact aggttctgaa 840cttgtagtac tactattaat aactccgtca aataactact caaaagaacc tctttatctc 900tctcgtttta tgatctctct cgtctatcat tcaaagaaac aaaaagaatg agaaagaaag 960taagtagtag tggtgacgaa ggaaacaatg agtacaagaa aggtttgtgg acagtagaag 1020aagacaaaat cctcatggat tatgtcaaag ctcatggcaa aggtcactgg aatcgtattg 1080ccaaaaagac tggtctcttt cctctctatc tctctctcta atcgtattga cataatttat 1140gaattctttg tcacatgatt ttcttttacg aatggtttaa agttaaggtt ctatatatta 1200tatatgttat tttagattta acttttaatc tatgttaata gagtccatat atcgcaaaag 1260caacttgaat caggatattt atctagggtc acctttttgt tgtttttatt tttatgaatt 1320aaggtcctca gttaaataat tgtatatgtg tgttaggttt aaagagatgt ggaaagagtt 1380gtagattgag gtggatgaat tatctcagcc ctaatgtgaa aagaggcaat ttcaccgagc 1440aagaagagga tcttatcatt aggctccaca agttgcttgg taataggtat aacttcattt 1500gctcaaaatt agtttctcta ctcaattaat cataaaaaca gctatttcta tccattttgt 1560atcaagttaa ataatcataa atattcgtga ttgtcttcac aaacttgctt ggtaacacat 1620gtttttattc tcaaaatttc aatacattat atttcacatg ataattatat tgtttatctg 1680tgtgtttaat taggtggtct ttaattgcta aaagagtgcc gggtcgaacg gataatcaag 1740tgaagaacta ttggaacacg catcttagta agaaactcgg aatcaaagat cagaaaacca 1800aacagagcaa tggtgatatt gtttatcaaa tcaatctccc gaatcctacc gaaacatcag 1860aagaaacgaa aatctcgaat attgtcgata acaataatat cctcggagat gaaattcaag 1920aagatcatca aggaagtaac tacttgagtt cactttgggt tcatgaggat gagtttgagc 1980ttagcacact caccaacatg

atggacttta tagatggaca ctgtttttga tgtgttttct 2040gcttttgtta ttttagtatt cgtttatgtt ttgttatttt caaagctgat caaacactaa 2100tacatcaaca gtcttagatt aaaagttgtt gatgtggtag tgtatgattg gctaagtcta 2160ttaattaggt gaactttctt gggttaactc taatgtatat gcttaaaaac tctatatgca 2220tcgattaatg ttttaaatgt ttcttcaatt tcttcctaag caaaattttg gattttcttt 2280tgtgaattgt tcatataatc ttattaaatg ttggttcaag atataagcta aaattaaaag 2340agtcgaacga taacggtagg ttagaaggag tatagtttat ttttattttt attttacttt 2400gagacgtacg tcccttaatt aatcttcaaa tttgaaaaga agaaatttcc aattaagtgg 2460atactactac gtaccttttt gtcaactaaa tttcgattgt agttaaaacg atgctaatgt 2520gtatgtaaac gagaaattag acagaaacct tgattgccct ggcgagttta cttgaaacga 2580acaaaattaa tactagtcag acaatataat gggtcaaatt gtcacacttc cctaaaaaat 2640tctataaatt gctatgacaa agctgtcccc cttcttaata gtttaattta tgttctgtgt 2700ctttggtttt taatatgttc tttgaaagct tgtcccccac tccttccttg attataattg 2760ctcagacagt tatatacaat gcatgaaact atagtagtat atatattcta attctaaagg 2820aaggttttcg attatcgaca tggggacatg ttggtcatgt ataagtataa tggaaatgaa 2880gaggttagta tcaatcttaa tgtatactat agtagccata tctctaatca agacaaacgg 2940ttttaacatt tttaatatag atagtacaac gcaacattca atgaaaatag caaaataaca 3000tttccatttc tcaaattttc gtttgacaaa taaataaaat ttatacgatt ttgttattct 3060ctcgtgttgt aaatcaaagc aacttcagca aaacgatatc tgtgaaagta aacatgattt 3120atttatttat tttataactg gataatgaag gaaaagaagc tcatcgcaag taaatgtata 3180ccattacaag tagcaattaa ataagagtaa aacatttata tatgaagatg ctgatcatga 3240tgatgacgac gatgatgatg tttgtgatgg tggtggtagc gatggtgatg gggatcc 329710724DNAArtificial sequenceSingle strand DNA oligonucleotide 107ggaaatcgtc gactccaaga ttcc 2410822DNAArtificial sequenceSingle strand DNA oligonucleotide 108gtgaatgtgt cactagcaaa cc 2210924DNAArtificial sequenceSingle strand DNA oligonucleotide 109gaactaacgg atccccatca ccat 2411022DNAArtificial sequenceSingle strand DNA oligonucleotide 110tcccaagaga gtcaaagtgt cc 221112183DNAArabidopsis thaliana 111ggcctggtga atcttctgaa gttattaagg agctgatgca aatggagttg tttagttttt 60ggatgaaatg ttactctttc gtgtcttcaa aatacatgac tcttcaaacc tttcaagaag 120ttttagtttt cccctacttg ttttctcaac tctttttatg atatcccaaa tacactgttc 180tgatttaaca actatcgttt ctgttttaaa cttttgggaa cgttttcatt tgtaaaactt 240aaacagtgtt cctcatggac acacaaacgc tttcactatg tttgaatccg tattttccat 300tttctcttaa tcagactcgt ttttattggt tctcgctatg tttcgcggtt ttgtggaatt 360tttccatgca cgtaattcct cttaagattt tgaccttgtg agagtatgat cacacatcac 420tatgcatatg tacataacgg cttatcttga ttaccacata ttatatctgc ttaatcctta 480ttcctcttgc aggtaattta agagcaagct gaacggtcaa cacttacgcc caacaaaaat 540ctatggggta ccaaatattt gaatgccacc tatctgcttt ttcttttata tatactgaaa 600agtgaaaagg gatgaatcta tgaattggta gctttataac taaagaacga attaagcaaa 660agttgttttc ttgtttaact tagctaggca tctacctgaa tccaaaagag caacttgttt 720tgttttgtac taataagtat caacaagtct tgacctgcac atgtcaagtt tttgacttga 780tttagagcag cttgtttctt gtgtgtcctt ggagttctct actgtttcta tagctttgaa 840tgagctttcc atttgaccac atctcaaaaa atttggtaat gtgccttaga ataacaccga 900gtttggtaac acagctggaa ttggtgtttt gctgtggcat catgggagct ctgaaatgtc 960ttcccagtta aaggtgagta taactgtttg cattgtgaag atttgtatta actatagaac 1020attgaattga tggtgttaag ttcttacaca agcgtgcttc tcggtttgaa ctgtttcttt 1080tgtatgttga atcagagctt agtttatagg aaccagagta tctacttagt cattctctaa 1140tgctaagtgc taaggttcta cctagttgcc ctctaggccc ttatgttatt gataacttat 1200gaagctattt gaacacttga ttcttaggag acctaagttg gtacagccag atagagtgta 1260tgttcttgtt ctctatgtga caggatcaag ctgccacaca tagttcaagg gtatgctctg 1320tgtgggtttg ctcagattga ggacaaatct atacaaggaa gtagagtctt tgacattttg 1380atgttgtatg ataagaagaa gaaaggagag taataaagaa agagaaaagg gaaacagaaa 1440cacgtgggag aacatcccaa agaggaagca cacgcggatc ttcatgcaaa gctccccgat 1500tctcccatgt ggtccctttc tccctttgtc cccctcctct ttcttctttt ctcattttac 1560tccttttttt accattatac aacgaatctt ttttatcata attttttggt tttggtttat 1620tttccaataa caccttcttg gttacttccc attctcactt tttcatataa gaaactcact 1680ttgggaaact tatgtttgag aatgacaagt ctttttagag aaagtgatgt aacaaatcta 1740aagtgattat ataataacct tgcacaatgt ttttgatttt ttgtaagatt cgaatattag 1800gtttattatt cgtagggaat aaacttactt tcaaaagcgt tcataagtta atactttcat 1860atatgatcat aagtacggac actattgttt tttgtttgtt tgtgtttatt ctaaaagaaa 1920gtagctttta attgaaatgt cctcagaggc acagtttaaa gttcgagtgt aacagtttct 1980aaggcaaaat aagctctctt tctactattt ctctttctct ttctactatt tctctcctgt 2040ggagaaactc aggagataga gagagagaga gagaagagaa gagagcatgt atgtttggtt 2100ttataatctc tctactcata ccaaagattt gtctcagacc caccacttgg acagagagaa 2160cccaagctcc tttctctctt ttt 218311224DNAArtificial sequenceSingle strand DNA oligonucleotide 112cagtactttt taagcttggc ctgg 2411322DNAArtificial sequenceSingle strand DNA oligonucleotide 113ccttgtgtat ttcaagacat gg 2211424DNAArtificial sequenceSingle strand DNA oligonucleotide 114ggagtaggtc gacaaaaaga gaga 2411522DNAArtificial sequenceSingle strand DNA oligonucleotide 115ataggctctt caatgtttcc tc 221161358DNAArabidopsis thaliana 116ggatccacaa gcgaagccat tttgcggctg ctggattctc caaacgttga attcgaagag 60gagaggatag gagaagagat gaatcgtttt ttgttggttg tctcttacac tttttgagct 120ccaagtggga gtttatgatt ctctcatcgg taaacgcttc ggaccaagga actaaaaaag 180aagcgttggt tttgaaggta agtggtgaga gggaaggaca cgtggacgaa tagttacgga 240agaagggaga gtctacttgt gaggttgagt tttgtcggat gtatatccgc ttgggacaat 300gagatggact ttgctggcct ctgattggct cattgagatt tctattcata ttttcatggt 360ttgggagtgt ggatattgag tgtcttattt tctttactta tttgacaagt atttttatgt 420tgctctcttg aagatcgtat ttgcggtttc agccatgtaa aagattcttt tccgatgacg 480acacttttac taggcatatt cgtcgggtag ccggtttaat ccggtctaga ttttgtataa 540tttttggttc agctaggtct ggtttgatat ttttctactt atttcttaaa aactggcttt 600aatcttttaa ggtaaactca ggatttttct ttgaaaacga aatttgaaat atcagactca 660taacaattgt aacaacaaat gtaaaagtta aaacactcta aaatgtactc aaaattttga 720tcatcatcat cactattttt tttataataa atggatgtaa aaacttatca tgtttcaata 780tttaaaactt tttttttttt caatatttaa aacttacata aaatatataa ttaaaagaaa 840gtttatgaat tagaatatta agttatatgt aattaaatgg agcaatacat gtagcctact 900agtattgttg ttgcatgagt tgcatcatat tcgaagatat acaatatgtt tttttgatat 960aagagtaccg cttcattctc tttttttttt ttgtcatttc ccaagtgtaa tattgttatt 1020aatacatggg ctatactaaa agccccacga aaagtttact gaactatttg aggcccaaca 1080agagcctatc ggattaacgc ctactgcaga agaaaatctg tctgcactcc acccaagaaa 1140acgcagacta attaatgaaa tcaacgaaac ggataggtcg ggtctaaggt tgaccatgaa 1200ccgcaacctg aaccaggagc aaagtggtca agttttgcca tccggtccga gtcccttgga 1260ggaataatac cagaacagaa aaaaacagaa aagtcgacaa taaacaaaag agacaaattt 1320gatttgattg gttccagaaa ttcgcagaga aaaagctt 135811724DNAArtificial sequenceSingle strand DNA oligonucleotide 117gagacaaaaa gctttttctc tgcg 2411821DNAArtificial sequenceSingle strand DNA oligonucleotide 118tcgcagaagt tgttgtaagt g 2111923DNAArtificial sequenceSingle strand DNA oligonucleotide 119gtgaatggag gatccacaag cga 2312021DNAArtificial sequenceSingle strand DNA oligonucleotide 120ttacatactg agggaagctc g 21121824DNAArabidopsis thaliana 121aagatgaagc tcatatacat acataaagat aattatatat gaagatttgt gaaagattct 60aaaatgatga aatatgattt ttgtatgaac ttatgaatag taaccacagc taaattagta 120agatatgtat attaagcaag aacggcttat cagagttttg ttccaaagct gatcaatcta 180ctcgtgctta agtgtatatt tgtggtaatg tgttaagagt tcctattaat taccataagt 240aaatcacaaa cataaataaa atgaaaataa ttatgggctt taaggtctgg aggactactg 300aaatttggga gaagtagttg gaaaaagaat attagtcgat aggtaggaaa ttgatattgc 360ttgtggaatg gaggaaaaaa ttgaacgaaa aagaagtttc tagaattcta atcacataac 420ataaataggg tgaatatttg ggaaaagtaa aacaataggg gtcggtttga tattactaga 480agataagaaa caaaaaggaa aataagaata aaggaaaaaa aaagagctct cttttccaac 540aagaaacgta gagagatata attagagaaa atctgtgctc tttcagatcc cattatcaca 600aatccatctc tctctctctc tcagagaaga aaccaaagaa gaagaaaaag ctctcaactt 660tcttcgattt ctcagggaac tctttcgtta atctcaaact caatcatgtc taccccagct 720gaatcttcag actcgtaagt acccagatct ctgattttgg ttttccgatc gggatttttt 780tcggatcttc ttaaagtctg ggtttttcga ttttggggat tagg 82412224DNAArtificial sequenceSingle strand DNA oligonucleotide 122ctagcgagat caagcttaag ctca 2412321DNAArtificial sequenceSingle strand DNA oligonucleotide 123gatgagaatg gtatcaccac g 2112424DNAArtificial sequenceSingle strand DNA oligonucleotide 124gatcaaccag gatcctaatc ccca 2412521DNAArtificial sequenceSingle strand DNA oligonucleotide 125gtgtaaaagc ttcgagagac g 211262027DNAArabidopsis thaliana 126ctacagtact cactcaattt cgttaatctc atagccgagc aaatagctta ccgtttcgtt 60gatcttgacg ccggctttgg gaacccaggc gaatttgttc tgatgcttcg gtggtccttg 120ccgtgagccc attttcgatg agctgtgaat ttagatcgga aaaaaacaga ggaagcgatt 180ttatctggaa gtcgaagaag aggacatgta caagcgagcg gcgcgaaaag aagtcggagc 240acccaattag gttatgttat ggaatatgtg ttcatgacgg cccaatccat aaactttaaa 300agcccatcta tttcagctac atttgtgata cttgttgcct tgttgggttt atcctttcca 360aattttggga ggtgtaaatt gttataagta gaaaataata atttaacgtc aatgttccat 420attgtttaat actgtaaata aagtgtgaga tctacctatc atattttata ggttcacgtt 480ccatttgtaa tgttttaaag gtttcttttt ttaaaagacg atgtttagtg gaattttcac 540gatgcatgca atgatcaaac gcaacgtgct tcgacgacct tcccacgacg tataaaatca 600aagtccaatg atttttattg ttattagata aacaaaatga atttgttcat aataattgtt 660ttttagtgaa atttcgtgaa atgcataatc attttcatca tataataaaa taattattaa 720tagttatcat ccgtggtttc ttttatcatc aatgtactaa tccgtatatt gatgataaaa 780aaaaaatcgt atagtatatt cataagtgta aggaatgtca aaacttaaaa taagttttga 840gattcagctt cccacaatgc cacatgcgaa tgttccttcc atacatagta aagtagatcg 900aggacagttt ttaatttatt attcccgtta gtaaaaagcc taattacatt ctctaattaa 960cacctttatt gatgttacac tccggtcaaa aagtattcaa ttattgttcg gtttttgtat 1020ccccccatct tttaattctc acgaacgact ttttttgttt gttaaaaacg ctcacacacg 1080aattgaggta cattgatggt aatgtaacta atttaagtaa gaaacaatgg taagcagaaa 1140tgaattaaat tgctagctga aagatctatc cttcgcaagg ttatgtagac cggccaaaaa 1200aaaagaggtt agctagacct actattctaa actgttcaat ttcctctaag tctaaaactg 1260attataagta taacaaaaaa aaaaaaacct aaacgaacaa gaaacaaaac tttttaactt 1320attaaaaagc cttaaatcaa aacaaaattc acaattatat aattaataat aaatgatcaa 1380aactgaggtt ttgtgatttt tgttggtcag aaatttaata ttgaccacta aaatttgaga 1440aacaaattta ttttgaatct tttgaccttt taattaacca aaataagtta gtttctaaaa 1500ttcaaatgtc ttgacaacaa ttttattttt ctgttgacaa caagttataa aaccaaaagt 1560gtaactgaaa tatataaatc catattagtt cgtaggtata tctgataatt taatttaata 1620actaaacaag aatatcaaaa agtatggata ttcttcaaaa gtatctgttt aaaaagattg 1680acaattattt tattttattt gtggtgataa atatctaaaa tataatctct agacaatatt 1740ataagcttct atttttatgg gaaattaatt aacaaatgtt ttctaaacca ataagacaaa 1800ttattaatag cctagaaaac ggacaattaa gagacaaaat agtaaagtct tcacttcctc 1860accataacaa ggttaaaaat tcttttgacc tggtgaacga cttataatcc accacgtgtc 1920aaaactcaca caaagccctc tcacgtgcca actaatataa aagccaaagc gacggtcttc 1980agagtctccc atcacctccg atctcaaatc tcacaatctt ttctctc 202712725DNAArtificial sequenceSingle strand DNA oligonucleotide 127atcaagggtc gacctacagt actca 2512822DNAArtificial sequenceSingle strand DNA oligonucleotide 128tctcaaactg aacctatgaa ga 2212925DNAArtificial sequenceSingle strand DNA oligonucleotide 129cagagagaag aggatccgga gagaa 2513022DNAArtificial sequenceSingle strand DNA oligonucleotide 130caacagagaa tgacaaagaa ga 221313154DNAArabidopsis thaliana 131aagcttctct ctttatgaca aattttgagc atttaacata gaataaaatg gaaacgcaaa 60acaaaagagg tatcttaaaa ctgatccaat gaagcagcaa aaaaaaaaaa aaaaaaaagc 120agaaacagcc gtatacgttt ggagataata cagatattcg aattgtccaa aacacaatat 180atcaaacaag caaaagcaaa cacattgaga tacatacacg taaccaccga gaagctcttt 240tgaaccaagg agagtctatt atgcgaattg gcgcgttgta ccttataaca gatattgggt 300attgaaggtg aacttccggc ggggatttaa aatctggtgg tggatagcga cggcggacgg 360cggcggctgc ggccaagcga tgtggaagcg gccgagcgga taagtgagag aaagcggact 420aaatttagga attaatttta ttaaaaataa aaataaaaat caaatgagga ggaggaaaaa 480caagaaaatg agaggaccga tcatgtccag gtgtcatgat catgttggct aatggctagt 540ggtggtatca accataacgg catcgttagg taaaaaagga aactaggctc gagtcggtgg 600gctctagtag cgagagtggt tcgagttggc gatgcttgga gaatttgtta aaaagccgag 660gcgcttgtag attaaaaatt gttggcccaa taataagtat gggcttttat ataggtgata 720aatggcccaa ctgttttttt aaaaaggctc gaatcttcct catttgaaat ttctaaggaa 780tttgattttc caaaactttt gttgaataca tttgaattta aatttgtagg aactttgagg 840agcaatttgt cttggcaaat tttgttttga aatgtaaatt ttaattgata tatccaaaat 900ttggtgtcta atctttttat ccatgatgtt atttcaaaac tttaaaaact attgattcat 960actagtattg atggtattgt acttgtgaat tgttcagaac tcttttgtca aaaaaagaaa 1020aaagagaaca aaatgtttca aaattaaata atccaagaga ggtggaagtg gggactgtaa 1080cgcaacggga atattgggag tgggcatgca attattgcac tcatgaaaaa taaaactaaa 1140aatgatttta ctatttggct gaaggtgaca agtgtttggg tggcttggtc ggtttttgta 1200tacgtaagtt tatgccacgt gtcctcttat ccatggattg gacggcttgg aatcgtggaa 1260tattttattc tcataccaaa gtccaaatat attacaacct cccccttttt ttcccttcac 1320aaaaagctaa aagccattgc ttaaaaaacc aagaaatact aaaaggattt ggaaaagtag 1380caatcctgat tttgattgat agtactataa tggaacacca gtagttgaaa ttagatacat 1440aggttgaatg gaattgtaac ataggtttat tttattccct tttttttttg tgaatacatg 1500acaaaatggt attgaattgt aaatgaactt ttcagaattg tgtgaatggc caaaaaaatt 1560gcaaaatata aaagactatt ctaatatcga cagaatttac taatcaagat caaactcata 1620ccaaaataaa tataggccgt tcaataaata atttcattat ggatgtgagt ttaacttcat 1680tatggagcat gtacatggtt tgggacacgg gaaaggcgat aacataactt ctgcactata 1740caccgtttaa agagggaatt taccagggaa atttggtgca tggtcagatc aaatttggtc 1800catatgagag cttggacggt aataaaagaa ggcaagcgat agaacataac gaaatttggt 1860aatgggacta gaagaaaaca gcacgtgggt aggacatagt gttacaccca aaaagacaac 1920aaagcaacga agcaaccata attgtttagt cctttttttc tttcttttgg cttaaacgtt 1980gtctttcctt tttggcaaat agtggattgc tgccgaatat tacactatcc aatcttcttc 2040tttaacctca ttaaaaccca ctattcatca tgcatttatt ttacacattc atggtgaaac 2100tacttggtat atatatgcaa atgaatatgc atgtggatgg tacatggcgt ttgattttgc 2160atataggcaa tttattgatc aatacttggt gtagttggta cattaaagtt gcattataga 2220caaacaaaat tcggctgtca tgcttgattg atctatagat gatttcataa taaaaaaata 2280ttgtcatgga taaaaatagt gaagatgata acaaaaagaa cagaacacaa agaagaatct 2340catttctttt ttgattaata aaaggatata aagtcattag tttttttatt cgtctcactc 2400gacactaata ataactaaaa ttgttggaga attaaaagta agaaagcaat gctataaaat 2460aaagtaattg ttgggaatgg agcatgtaaa attatcactc ataactaaaa ttagcaatgt 2520tataaagtat ttaagtaaga aaatgttgta gataatttgt taaatgaggt gtccctatgt 2580cttttaggtg cggtgagtcc atgtgcttat cctgacagcg gtccaactta accggcggtt 2640catctcgacc acatattcaa ctgctttttt aatatgattt tctgtatttt cttacctgtc 2700ataatctaca tttaaacgtt aaaaaatgtc cacaatttta tttattttat tagggtacaa 2760taacgacatt tgattagagt aaagaaaata gttgcaaagc gggatttgaa actctgtcca 2820catactttaa ttatcattaa tcaataacaa gcattatcag tattcagcag cagcaaagat 2880gataacgtta attatactat catgcaatta agttaactaa ttaactatca tcttgtttat 2940gttttaattt tgtttccatc atcttccaac cttgagtttc ggtcactata aaaagccacc 3000actctctctg cttctctgca acacataacc cactcacaga aaaacctaga aagctctaga 3060gagaaagaga gagagagatg gaaggtaaag aagaagatgt tagagtcgga gctaacaagt 3120ttccggagag gcaaccgatc ggaacttcgg ctca 315413221DNAArtificial sequenceSingle strand DNA oligonucleotide 132catgtaatga agaaccgtgt c 2113322DNAArtificial sequenceSingle strand DNA oligonucleotide 133gtattattac accatcagct cc 2213423DNAArtificial sequenceSingle strand DNA oligonucleotide 134gctctttgtc gaccttgtca ctc 2313521DNAArtificial sequenceSingle strand DNA oligonucleotide 135tacgctacct agctaacaca g 211361155DNAArabidopsis thaliana 136aagcttctgc tttttatcca tgaggatatg aagctgacag taattggtga gtgccatggc 60cttagatttg catccactac cacaagcaac acaattacca gccttaacgc catcgttgtt 120gttattatca ttatctccgc taccttcaat ttcatcccca gtttgtcctt caaccttacg 180tctcttgttt tggtgataat tctcatcttt gaaaggacta acaccatagt tccagctata 240atatctatgt tgtgccttga gatcctccat tagagcccag taatggtctc tgtagcatct 300agagagctgc ttcaggttgt gcgatctgcg tcggagaagc tccgggcgag tgaggtgatt 360ggaatttccc aggatctgat cctccaccgc catcgaaatc ggtgaattcg atgacgtcga 420cgggttatta gggtttcgaa attgggattc ctccaataca ccggatttcg agggggttga 480agcaatgatc ggagatggat gcctaggagg tttggaagaa gaagggtttt gcttggaagc 540tgacgccatt gttactgttg gaaaacaagg gagagagaaa gagagtggcg aagagtggct 600agaggaaaga caaggacgag acaggaaact ctggcaaaat tgacatttat agaaaggcct 660tacttaaaag cccaatgggc cataacatga accgaaaacc catgaaaaaa atcgaagtag 720accgattggt ttaaatcagg ttctgctggt gtgcggctgt cggtggaagg ctccacttca 780gtaaagtagg gcccacaaca cgaaccaggc tgtcttgtct aaccgacaca tacattacac 840caaacgcaat cttcaccgtt gattgttctc taatccaacg gttgatagag actgctgatc 900cgtcacccgc tttagtttag tgtttcttct tcctcctctc tttcccaaga atctcttcct 960tattttctcg gcaacgaagc aaaaagggta atttttgtcg gttgaattca caagctagtt 1020ttctcgatct ctctctggat ctatagctga tctgcattgc gggtaagcat tttttccaca 1080agtacttatg cctaattttg

gtaacgattt agctaaatct tgactagaga attttgtttc 1140gttgcttggt tattg 115513722DNAArtificial sequenceSingle strand DNA oligonucleotide 137gatgatggct gattacagtc ct 2213821DNAArtificial sequenceSingle strand DNA oligonucleotide 138ctacaagctg caaacatcaa c 2113924DNAArtificial sequenceSingle strand DNA oligonucleotide 139gagatcacgg atccaataac caag 2414021DNAArtificial sequenceSingle strand DNA oligonucleotide 140tgaaagctgg agattgttgt c 211412877DNAArabidopsis thaliana 141gtcgacagga gccagagatt tattcactta tttgttttcc ttgtattttt agtacacaac 60atgagaggtc ataaatagac tgagtagacc cattgtgtga gttgatcaac ccctcaatga 120atacttcttc ccagagaaag cttgaaactt gggctcgtct ttcttctctt gttcctcttt 180ctttgtctct tttgcagctc caacctgaaa aaaaaaatta agagatgaac aatcatatgc 240atttgtctct caattccatt acagtttttg ttttgtcaat tatcaataaa ctctgaatgc 300gtactttcgg agcagcttct tttggagcac ggtttccgtt agccccaaat acaagctttc 360cctgagctcg tgtagctttc tctgagctac ttgctacaga tgactgtcca ttaccattag 420cgacaacagg ttgtttgcct tttgagctag aggctggcgc tggctcatag gcaagaggtc 480tcccatctaa ccgtcttcca gatccggtga aagggttgaa ctttggttca ggttcatcca 540caacctcctc agctgtgaaa tttggaaaga aaagaacaca tgagaatcta acaacttgaa 600gctgatagta agtccatctg atgatttcat gtccatggat agataccttt tgccggaccc 660ttagctgcag aaggtgctgt gggacgttca ggctccttgt aatcgagggg aggtgcgaaa 720tcaacctcac agtctgtttc tatgatgctg attgcgttag caggctttgt ttcaactata 780tctatgaagt acttcttatt gttgtatgga accataatgc tatccccact agttaggcat 840gaataatttc tcaaagcagt ctccaagctg caacgttcac tcaattatca gtaaagaata 900ttgggaacaa gataaaaaga gtgacatcaa acaactacga gccagaaaac gggaagaact 960tagatataat aatacattct ctaagcaata aacaacatga tgtgggaaag tatatgaggg 1020ctcaaataca agagggtaga aataagtcgg actcacatgg ctttcgggtt ggatatatcc 1080aggaagtctg ttgtgtgggg ctgtagttta acgtaagttc cctttggaag agtgacattt 1140ctaactctca caatgtctcc ttcttgcagc agcagattct gcatcatctg gattatatca 1200aagaagcaaa caatcagtct ggtaagtcca catgatccag agtacttcga ttcacaaaca 1260aagaggaaac tgattcttac ccaatatggc atgtaaatca tgccttcttc tgcaatgaac 1320tcaaggactc cacagtgtgt aacacgttca attccagcat tacgaagctc aaacagcatc 1380ggatagtcaa tatgcaaaga ggctgtaaag tccccaatat tagcgatttg atatgtttct 1440aagttaaaca aatattagac caaatccaaa agagaaaacc agtaggagca tacctagacg 1500atcaagggct gatggtggca ttataactga aatagaatta acacaaatta aaacctcagg 1560cttgaacaat acagatggaa acaaacattg gtgtctagat agaagactta ctcttgtcac 1620cactttcaag ttgtggctgc agggaagaga aaaggaaata gaaattagat actagatctc 1680agctttctta tagaacttac ttagtagaac atgacaacga ctaagattct aacattacaa 1740aagagcactc tcagattcac ttatcaggga attaaactaa aagtagagag atgaaatcaa 1800accttgtcga taaaagatgc cggataacac cggtaactct gctcaaaggt tgttccatga 1860taatggtatc catcgaaaaa ctgcatcgag tttaaattcc aaaggtttag acaaacaaac 1920caagggtgcg agatataaaa gctagagtga agactaacgg ttaaaaagga aagctttgaa 1980tacacttacc atagttattg gtggtagtag actaacagag taagttaaca aatggcaacc 2040tacagaaaaa gaaacctcac acaagtcaat tacaagagat ccaaatcata aaagagaaaa 2100agagggcact ctttaattta agggtttcaa taatcaattg tggccaacaa ttccgaccgg 2160aaggaacatc aaagttagtg actttaacag ataactaaac aagctattat caaaaaccta 2220agacctcaat ttcgaatctc agcagaagaa tagaaaccta caaaatcgaa gaaccatcta 2280caacttgcaa aatcccacct tttgaaacaa acccaagtaa gatccttgga aacctattcc 2340taaacaattc accggaaatc cccagaacag aagattccga tcaaaagttg agagtgggat 2400cgatacaaac aataccaaag ctaaaaactt tacaaaatta aaagctcgtc ttgagattat 2460cagagaagaa taagaactca gaaaccaccg attgagctgc ccgaccaata aaattacctt 2520taggaagtaa ttgattccag acacaaccca agtaaagatg caaactttga ggacctgtga 2580taacgttgct tgtatatata tatacccata cggtgcgtat tgattcatgt ctttgtaaaa 2640cagtttgggc ttcacaaaaa acggtactag cccattgggc ctcgaatagt gaggaatcat 2700gaccacttta tattgacgtg tgcgttacca acttaccata ctgggaaact ctcaattctg 2760agcagatatc tacccaatca cggattgagg agagaagcaa gaagaagaaa tggagattac 2820actgaacagt ggcttcaaaa tgccgatcat cggcttagga gtttggagaa tggatcc 287714222DNAArtificial sequenceSingle strand DNA oligonucleotide 142aacaagccgc gtcgacagga gc 2214322DNAArtificial sequenceSingle strand DNA oligonucleotide 143actcactcac atgcaaagaa ac 2214425DNAArtificial sequenceSingle strand DNA oligonucleotide 144gctcttctgg atccattctc caaac 2514522DNAArtificial sequenceSingle strand DNA oligonucleotide 145agagatcaca gatgtgttga gg 22146578DNAArabidopsis thaliana 146aagcttaagc cttgacgaag tcatgaggcg agacgtcttt cacagtttta ccagttgcca 60tggctcaagt tatcaaaaga ctaatcactg atcttcgtct gggattttgc ccaacgcagc 120tgaatctctc tccgcaaaga ctagggtttt tattctccaa taacaaaact tatatatacg 180gccacgatat ttcgattagg gttttctccc catatccggg tcaaaaaatc caacccgttc 240tcagcccaca ctaatgggcc taattcttca tacggcctta ctatctaacc agtatgaata 300atgttctttg atacgataat gcgcctacta cggccttatt atatcagttg actagtatta 360tgtcctaaac gacaccgttc ttaattagta acattaaatg acgtcgtttt ataatcgctt 420aaccactggc tattagttcg catctcaagt cgtctctgcc atttttggct ttttaatcaa 480accctagaga gattgagaga gcgaagagaa gccatcatca gccatggcga tgaagaatct 540actgtcccta gctcgccgat ctcagaggcg ttggatcc 57814723DNAArtificial sequenceSingle strand DNA oligonucleotide 147cttgagatga gaagcttaag cct 2314821DNAArtificial sequenceSingle strand DNA oligonucleotide 148ctcagtagcg actcgtagac c 2114924DNAArtificial sequenceSingle strand DNA oligonucleotide 149tggcttgagt gaggatccaa cgcc 2415021DNAArtificial sequenceSingle strand DNA oligonucleotide 150ggtctcgtga aaaccaaaac a 211512819DNAArabidopsis thaliana 151acttgcgtca ctctcatgat ttcatttatt cttgtataat ataaaggtag cggtagtgtg 60caaatatcaa ataagtagtt taattagtac caatcatttt attcattatt ttttttagta 120gaatatttgg atgttgaaaa tataaattta attttgtatt tgttgatgtt ataaatttat 180tgattgtata aacattctta gtcatcagtt tcgttaagtc catatctaaa cacttcatat 240ctgctaaata gtcaatagat tataaaattg gatcaggaaa aagtaaatcg gagctataaa 300aaaatagtgt gcaacgaaaa gacaattaat tagttaaaaa tacatacaaa tctaaacaaa 360ttcaaaattt caatagtgga aaacaccaat caaatggata atgctgtcga agattatcta 420caaagcatca ataaaagtaa ataattaata ttatcttaca tgctattata aaagattatg 480agattaggag tataattgtc aagcaactga gcaagagggt aaggtttggt tattatatat 540gtggagccct atacgaagtt atgtagaaac aaagaaatat caagttgctt caaatcatat 600cctagcaaga caaccctaca agacaagcaa tttgatgaat ttgtctctcc tttttattcg 660agtgaaagtc attatcttct tatcttttta ctcgaatgtg aatatgcaaa atatcttttg 720atatttaaga gcttacctag tgagtcatta ctactacgaa aatcatatat caatcttatc 780ataaaacttt taagataaaa aaaaaaaaga aaaaactttt gagagattgg cttttaaaga 840cttaagttac gattataaac actagtagtt caagtctttt tggttttggt ttgtgttatg 900ttttagattt aaaatttcaa atgaacctac gtccttaacc aactcaatca aaattctagt 960taaaaaaaat aatcaccatt ttgttagcat tcagcttagg attcgaacca tgggtagctc 1020aaggtatttt aaactctaga ggaataaaat ggatgttagt gaaatttgtc agcatcatag 1080acaagatcaa gttggcacaa cttgaagggt cctgacaaaa tatcttaagt tgcctccata 1140aatgtttaat ggataagact tggccccaca gagttaaacc agagagacac agagagagac 1200ttttgacacc tcacccatgg ctgcgttaac acatgtttag gattcctttc tttatatagc 1260caacaatatc atcaaaactt tttcttcaaa caccacttgc agtttttctt attctcctgt 1320cttgtctaaa gaaaaaagag agaggaagaa atggagactt ttgaggaaag ctctgatttg 1380gatgttatac agaaacatct atttgaagac ttgatgatcc ctgatggttt cattgaagat 1440tttgtctttg atgatactgc ttttgtctcc ggactctggt ctctagaacc ctttaaccca 1500gttccgaaac tggaacctag ttcacctgtt cttgatccag attcctatgt ccaagagatt 1560ctgcaaatgg aagcagaatc atcatcatca tcatcaacaa caacgtcacc tgaggttgag 1620actgtctcaa accggaaaaa aacaaagagg tttgaagaaa cgagacatta cagaggcgtg 1680agaaggaggc catgggggaa atttgcagca gagattcgag atccggcaaa gaaaggatcc 1740aggatttggt taggcacttt tgagagtgat attgatgctg caagggctta cgactatgca 1800gcttttaagc tcaggggaag aaaagctgtt ctcaactttc ctttggatgc cggaaagtat 1860gatgctccgg tcaattcatg ccgaaaaagg aggagaaccg atgtaccaca gcctcaagga 1920acaacaacaa gtacttcatc atcgtcatca aactaatggg ggaatagtga tgtttaatta 1980gtatatatag gttaatatct taagtatgtg aagcatcatg tatagagcca agaacctgtt 2040agactagtgt actgaaaaga actcttgcaa aatatgtact aaagagttcc tgtaacaatg 2100gaacttctgc gttttctctt gtcttaaaga gcttaaggtt ctagaaacaa agttcttgtc 2160ctttcggttt attcagagta cactatttgg gaagacaaga ggacctaaat ctatcgacta 2220catttattta ttaatctact gtgatactta aaatcgaatt tctacctgaa agaccttaac 2280ataagcctta aagtttctcc aatgacacaa acagtaccgt acagtggctt cagtattcac 2340tattcgatat cactgaggta ttaattagtt cacatgtcca gaaagcgtga atcagtgaat 2400tgagtagaaa gatgaacaag ttgcaagagg gaccaagttt aaagaatata gcagccagag 2460ttttgtctca tggttgggta caagtcagca ttcatttttt aaatatgaca aagaattgga 2520tggaccacac gcaacagctc aagaggggag agatgcacaa gttgcaatat ggaaaagtaa 2580acagaggaag atatgtatta acatctcaac ctcatcgttg agatggatgt tgattattat 2640tattaggaat aactaaaacc aaagaattct tataagttat aacaatgaaa ttacttcatg 2700gttttttgat aaagatatct cctatgcata tatatctagt atacatttgg aacagttgat 2760gaatatcaac tgacctgttt cttagataga agagatcttc atgttatcga tcttttctt 281915224DNAArtificial sequenceSingle strand DNA oligonucleotide 152atcgacatgg aagcttaaga aaag 2415321DNAArtificial sequenceSingle strand DNA oligonucleotide 153ggtgacggaa gtgacaaata c 2115423DNAArtificial sequenceSingle strand DNA oligonucleotide 154gtacgatgac ggatccactt gcg 2315521DNAArtificial sequenceSingle strand DNA oligonucleotide 155gggttaaagt ggaggaagaa g 211561313DNAArabidopsis thaliana 156ttgtatgacg ccttttattc atattcttgt tatctccgtt atgtcatgtg tgtgaatcac 60ttatataatt ttcgtaagat tttctgaata tgttggagtc tttgctaact gtttgaatcg 120agatcagtta acacttatta agaacaaaaa tgtggtttct tgtgagaaaa atggtttaat 180aaaaatccgt gattgataga agaaaaagat caaaataaat ggttggtgac gggtgatctt 240aaaaatgttg aaattaaggt gtgtcgtcgt tatacgcggt aaatagatag atagaaaaat 300agaagtccaa tgcaagagac ttaacttaat catcccaatt aattgattgc attaacttgt 360acttgtattt tccgtccgcc acctaatttg attaataata taataaagat tacaattgaa 420aacataaaca agagaaaatc cgcacgaatc taccaaagtg catcacgttt gggtatccat 480acacgtgacc accagtccac cacaacacaa tgtctgtaga tattttaatg tttcacatga 540tagaagaagc caaacgtaag aactctcttt tccactttta gccctttccc cgcctaccac 600tgcttacgac ttgtgtaagt ggcaaactag taataataga gacgaaactt aaatataaaa 660aagttgaatc caaccaagtt ggtgttaatc aaatggttaa gttataatgg tgaaagattt 720gccatgtgta ttgtattaag agttaagacc aaggtttggt tcccatcact tacgattctt 780tcttttcata tgattctaaa gttagttatt ataaacatct taatttacta cacaatattc 840ggtaatttct acatatttta gagattagtt tgagtttcaa tccatacttt actagtgatt 900ataaattaat atacgtactt ttcgactata aagtgaaact aagtaaatta gaacgtgata 960ttaaaaagtt aatgttcact gttatatttt tttcacaagt aaaaaatggg ttatttgcgg 1020taaataaaaa taccagatat tttgaattga ttaaaaaggt tgaaataaga gaggagggga 1080aagaaaagaa ggtgggggcc cagtatgaaa gggaaaggtg tcatcaaatc atctctctct 1140ctctctctct accttcgacc cacgggccgt gtccatttaa agccctgtct cttgccattc 1200cccatctgac caccagaaga agagccacac actcacaaat taaaaagaga gagagagaga 1260gagagacaga gagagagaga gattctgcgg aggagcttct tcttcgtagg gtg 131315723DNAArtificial sequenceSingle strand DNA oligonucleotide 157cagtggttaa gcttgtatga cgc 2315822DNAArtificial sequenceSingle strand DNA oligonucleotide 158gcaacatatc gttttgtaga cg 2215924DNAArtificial sequenceSingle strand DNA oligonucleotide 159cgttaataac gtcgaccacc ctac 2416021DNAArtificial sequenceSingle strand DNA oligonucleotide 160gtgatagatg tcactttgct c 211612080DNAArabidopsis thaliana 161catcgttcct tgctggcttc ttctctcgaa gtcacgatgg ctcttatttt tttattattt 60aagtaatagt ttacttattg aattattttt ggttaattta agaggtatat taataaatgt 120gggacctaca aattccaatt ctatcggttc tttagtgact gagacgtcgc tatatgtgaa 180aaggatattt tagttgtcac agaattgcgt ctatttctta ttttttcatc tttttgcaat 240ttgccgattc tacgagaaca tcatttgttt attggatatg ctttttttaa agaatcaaga 300gaatacgaaa acaacttgta ctcaagaatg tttactataa ttctctagtg gatctttata 360agagctggag attagtttgg attttatctt aaagtatcca gttatcaaaa aatgagattg 420ttaggacttt ttttacccga gagtatttag ttacaaaaaa gaaagttagt ttaatattag 480ataaactata attgcaacta acggtcagta gaaagctata taagttatat aacgaatctg 540aatatgactt agttatcttg ttggattgtc tagatatgtt tttgcctttt acggaaagat 600tcgatttgga acaacttctg aattaacctg aaaaacgtaa ttaaacattg acttgttggt 660tgtttgtaga atggttggtt tatactttcc gaatgtggct atgtgaaatc acattttgat 720tatatgtata aagttgagat ataattttaa aatttgcaaa aaattattag ttttgttaaa 780ataataggag atgcaaacta aataaattct cttcttaact aaaaaagcaa tagatttgtt 840acattgaatg atggatagat ttgtgagttg tgactttgct taagctaccc caacagataa 900cggatatatc atatagatgt tgagtaagaa agaaaaaaaa acatttacga ttgcattctc 960gtaatgggct ttatgatttt aaggcccaat agatgaagta aggctaatgc acaactttaa 1020gaaacgtaat tctagcaagt gtttatcgac tgcgttgtag gtttcttgtg ttcgtggcac 1080tatggattag gttttaatat ggtttctaat ttcgttgatt tcagtggcat aagtccagtt 1140gttgcttgtg gcaaactgtt tcatgtacaa aaacacttac atcattacta aattatgtca 1200tgggtttggt ttcgttaaca ataagtcaat ctccttgatg agttttatct atatgattat 1260ctatttgtct atttgcaaca tgtagtagat tgaaatgggg ctgcaaaata tgctcttgca 1320attcctagtt agatctagct tttgataata cgattatcta atttgtcatt tcgatatgat 1380agatagattg tttttaaaag agatctcaac cacttttctt taactaaaat aaaaaattta 1440gtcacttttt attaaaaata actaaaaagt tttaaaccta tcaggacact tccatcaaca 1500gtatttaaaa gagatattta ttattaaaat aatacaaagt ggtgaaaaga agagagaagt 1560gagaatcgtc tctgttttca gaaactctga aaaatgttta tggccacgtg tttttccaga 1620aatgattgat tttattcttt ttattaaaat ttaatacttt atctaaattc aattaaaata 1680agcaatattt tattcatgag aaactctttt ttgagaatca accgatgtag atggtctcat 1740actctacttt gttgattgtg tttaagtttc tgaggatttt tctactttcc gacgttatgc 1800caagaggctg gtcttcacta gaaaactact tccacccaat tcaagcaagt atgacctctt 1860ctcccaacaa tttattcatg tactgaaagg ccattagaag ttgactgaag tgtgaaggtg 1920gagattatgt attcacttgt tgatttggta tacattctat gtaaggttca attatttacg 1980ttatataatt ataatggagt aatttacagt aattgggtta aaatggtttg attcggtcag 2040gttgatacgg tttggaagtt aaacccggcc tagatatgat 208016223DNAArtificial sequenceSingle strand DNA oligonucleotide 162tgatgccgta ataagcttca tcg 2316321DNAArtificial sequenceSingle strand DNA oligonucleotide 163gacaatgaac cagtactatg c 2116425DNAArtificial sequenceSingle strand DNA oligonucleotide 164gactggttgt cgacatcata tctag 2516522DNAArtificial sequenceSingle strand DNA oligonucleotide 165cgtggagaaa gattaaaagg tg 22166174DNAArabidopsis thaliana 166aagctttgtc atttctgaat accgcaaagt cttacgggtt agtttattca tttacaagct 60atttcatcac gtatggctta ttcaaacgaa aaggaacaat agctttatat aaaaaaaaat 120ggtcctaata tgaaatatct cactatctcc tctaaatttc atcaatacgt cgac 17416724DNAArtificial sequenceSingle strand DNA oligonucleotide 167tgactacgta agctttgtca tttc 2416823DNAArtificial sequenceSingle strand DNA oligonucleotide 168atcgacatgg aagcttaaga aaa 2316924DNAArtificial sequenceSingle strand DNA oligonucleotide 169gtaactagta atgtcgacgt attg 2417021DNAArtificial sequenceSingle strand DNA oligonucleotide 170ggtgacggaa gtgacaaata c 211712096DNAArabidopsis thaliana 171aagcttaaga aatcaacaat attaacctgt aactataaga atgtttagtg aagagactaa 60ctcgcaagca gaggaccaaa taccaacttc aaatctctca agacaaaact tcataaactc 120ttcagcaaac ggtctcttat acactaaaca acaaaacaaa cacaaataaa ctataaatac 180aaaaaaggta gcaaagttaa taaaagaata atgaaacgtt accaagattt ggcccacaag 240aagcatcagg agagcggttc ttgggtttct tacgcaactc ttttttgtgg actctgtgaa 300gaagaagacc acttagactc aagaccaaga gtttcttttt ctccgtctta ggttctagac 360taagtttatc aagaatcgaa ctcagttctg tctgatctga aactgtatca cctcttgagt 420actcatcgtc gctgtcgtcc gcagcaagca agctcttctt gatcttttct tcagccattg 480tattgaatga gattgatcaa actcatatgg tgcatatata tatatactag gtgagtcatt 540taaggtggtg actaatggcg atttggcttc acgagatcaa aaccatttat ttggcgtttt 600tcttcaagcg gctctttgga tactcacaaa tcttttttgt acttatcctt aatttctctc 660tttttttttt tttttttttt ttttcctgta tccaacttgg tagtgtgaat cgacttacag 720cgaccaatca gaaaattcca cctgtcagca gttgttatac atggacaaaa gtcgatacat 780caattaatcg acgctgattt gtcgagttat atttcccgtt taccattttg ttttcttgtt 840atgatttggg gaatctctca cgaattctat caaaagaaat agcactaaag gctcggagga 900agcctgatga aacatggaag attgtgctct attttcttct gacaattttt acataagtaa 960aacgcatttg tttactattt ttttcatata aaacatgaaa aacttatatt tgaattaatc 1020gaaattaaaa ttattaacag aaatatctaa gtttatatga accttttaac aaaaaaaaaa 1080gtttataaga acataaaaat cataatagtt tagcaacatt taaattattt tcaaaaatta 1140gtaacttaga ttaaaataaa tattagatca cctcataatc ttgagtttga aactccaaag 1200tccaaagagc atccaaaaat ccgacgcaaa caccacattt tgataagaat tatagaacta 1260gtgatttgca ttttaaatgt tgatacatat agaataagca taatcaaaca atgattactg 1320aaaaatatgg tccattaata tcgtataaaa atggttgatg gacattgaaa ccctagtgga 1380gaatttgtca cataagtaag gcccaaagtt tttgacccac aaacatatcc attaagttat 1440agtttagcga aaccccttta acaaaaaaga aaattttcaa ctagtgaatt gtttctagag 1500agttctgtac aaccatccaa atttcaaaca tggtataaaa gatgttattg acaaaataaa

1560aatggaaaca gtgaaacgta tagtcggaaa atggaataaa atctagatgc catatattat 1620tcttacttgt tctaaagtct ttaataaaaa tagtcggtat tacttggaca aggagcaaaa 1680caatatggaa aaaactcttc tattctgcaa aaggcgtgca gcgcatcgtt ttggcttctt 1740gcatcagagc tgactgttct catccaacgg ctgttattaa aacaatccaa cggttttggc 1800taaatccgtg acgtctttat atatcgaacc agaccaccaa cccatttcct cagctactac 1860tgttgaagcg attctcacta aaaccctcga acacatcgcc tttatctctt tctctagatc 1920tactcgctat ggctactatc accgttgtta aggctagaca gatcttcgac agtcgtggta 1980atcccaccgt tgaggttagt ttctccgatc acttttgtat ttcccagtca ctttccggct 2040ttgtacagta ttcgtgacgg atctgtttgt ttgatgacta tccgatgcta aaacca 209617221DNAArtificial sequenceSingle strand DNA oligonucleotide 172ttggatcacc tagcttcatc a 2117321DNAArtificial sequenceSingle strand DNA oligonucleotide 173cagctgctgt aaccttaata c 2117424DNAArtificial sequenceSingle strand DNA oligonucleotide 174tagccttgtc gacggtgata gtag 2417522DNAArtificial sequenceSingle strand DNA oligonucleotide 175ctatttctcg tttaccagtt gt 221761617DNAArabidopsis thaliana 176gtgtcgtgct atgtgtgtgt gctcgtttct tttgtctttg agcttaaaag ttaaaactct 60agtctatatg gacctgaata aaaatatttc caccaccttg aggttttggt gtttgcggtt 120atggacggtt tattgaatgt aatattttcg taccaaatcg gtttactaga tttgagacgg 180atcatatggc tcttcttgga aaaagagacg gtttaaatcg gtttatcttt agctctgctt 240tttttcttcc cggaatttgc ggaccaattt tgattgtgtt ggttcagata tagaaaccta 300gtatattgta gcaattactc tccaaaaata gcattagatc catccaagac aattggagaa 360acagagagga gagaaagaga acttgtgttt atatacgttt atcaaaacta aatttatgtt 420ggttaatagt tataccatga tggagtaaaa tcagatattg tatacaatag ctttagtatt 480caatctaact actataagtc tacatcttca atacatgtag tcacatgaaa actcagccac 540aaccgcaaat aaaagggaga tcaaattagt tggctgtatt aatggtaatg gatccaccta 600ctttacacta caactatatc attggaaagc catttataat atacattcca tatagctaga 660gccatatcca ctacgtaacc gaatctaaaa tttctaaacc cttctctttc tttctgcatg 720ctgattaaaa ccgacgctgc agaagttcga tcagttatat gagtgcatta aatagaatcg 780attttagaaa aagaagaaga aagaatcgat ttaacttaaa gtcaagctgt ttgcttaggc 840tagaccggat ctgatcttca tgtataggtc tcaaggatca tgcgatcgat gtatataaat 900atgttttggg gttgggacca aattaaagta gtatatagtg gtatttctct tggctcccca 960attaatttta tcggttgggt tgtctgtctt tttatgctca tttacctaac tatcacggca 1020tctccatagg aattaatact tttgtgtaac tatatatgtg taagtgtcta tactgaatat 1080aatccggtaa tatgtgaata tatgcacgtg aatttaattt aaatatatgt gtcccgcctc 1140ttgcaaaaat agttatgata ataagatgac taaaatttaa gaatgtataa aaccaacaaa 1200aatatgttta agaatgtaag ttttgtgtat cacatcccat gttttaaggt tgttaggaat 1260ctcacatgca cattgaaaag agactaacac taattaatgt acgagagttg attgatgcta 1320tgtttaatct ctttgtatac aaatacatat cgtttgacat agaaatacaa atacatatcg 1380tttgacattg tactctttga aaagagacta acactaatat gttagtaaga ctaatttata 1440tttagctaca ttgtactcaa ggtcctatat ccaaagtttt atctgcattt attgcacact 1500tacattacgt atgtgtgtgt atacataaca gcctatatat atggtcttgt aacacagctc 1560agggattcac cataaacaaa aagaatttga accaacaaag caaaacatga aaggcac 161717724DNAArtificial sequenceSingle strand DNA oligonucleotide 177agatgtggtt aagcttgtgt cgtg 2417821DNAArtificial sequenceSingle strand DNA oligonucleotide 178ctagtagcaa gacctttttg g 2117925DNAArtificial sequenceSingle strand DNA oligonucleotide 179acaagcaagt tagtcgacgt gcctt 2518021DNAArtificial sequenceSingle strand DNA oligonucleotide 180aggaaagatc actagagaag c 21181428DNAArabidopsis thaliana 181ggatcctagc cacacgcact aatctcgcca ttgcagaaag agaaatgtag agagatagaa 60gcggcttgag ctttgagctt accctaaaca agaacgtgca cgaacatatg ctctttagat 120tcttttccca ttttgcccta aagttaactg acgtggcatg tgactttttc tctgagatca 180tggttacatc atctgacacg tgtaataacc caactccacg agattaacca acggtatgag 240aaaatcgatt tcgattttaa attgggatta ttattatttt cagctttctc tggaagcaac 300aatggcgatt gctctctcgt cgtcgtcgac gatcacgtcc attactctgc agccgaagct 360gaagacgatt catggattag ggacagtact tcctggttat tcggtcaaat ctcactttcg 420taggatcc 42818223DNAArtificial sequenceSingle strand DNA oligonucleotide 182ccggagaggg atcctacgaa agt 2318323DNAArtificial sequenceSingle strand DNA oligonucleotide 183gtacgatgac ggatccactt gcg 2318419DNAArtificial sequenceSingle strand DNA oligonucleotide 184gggaggagga tccagccac 1918521DNAArtificial sequenceSingle strand DNA oligonucleotide 185gggttaaagt ggaggaagaa g 211861022DNAArabidopsis thaliana 186catcttcact gacaaaacac ggttctgtgt ggttttcgct gaatgatcca ttctactact 60gcttggtttt cttctgtaat tcaatacaag gacaaccatt actcaatctg acatagtatt 120ccaaggaaaa agagagagca taacatgtag atccaatcga aaacgaagat ggtgtcgaag 180aatctaacta catttctatt gtaaatccat taattaaaaa ctgcattttt tagacaagga 240aaccctcaaa atcacactgc aaacgagaag aatatatttc gaaacaaaaa gaaacccaga 300aacatgagag aacaatacga cggtaccttt tttttctcag cggatggatc gaagaaatgg 360gtctctctat actctctcgg acggagaaaa agaaaggaat agaaaagtga attcaaagaa 420gaagcgtgaa tgagaagcag agtgagagaa tcattgatct gcgtgcgtga cgataatggg 480aggcaatgat gctttagttt atttttgaaa atcaaatttc aaaaatcaaa aagacaaaca 540tcggagagcc catccatgga gattagggtt tattctatct ccgaaatgac gattaagccc 600ctacacaacc ctaaccacga aagcccaaag cccattaata actaatttag aaagcccagt 660cttcttcttg ctaaaaatta ataatggaaa aaagacaggg cagcgcagcg atgattaagg 720tgacacggtg ggctcccacc accgccagct ggactcgccg acggtgaact gtctctctct 780accacacatc actccttcct tctgtccttt cttttttgta tttattatta ttattcattt 840taaaatcaaa aacccttaaa ttattaaata aaataaaata aaaggcaata atggaaactt 900tccttcttct tcacaattct tcgcggcttc ttttagcttc taagcttcag agcagcaaaa 960aaaaaacaat ggagaagcgc cggagataga tctgctttct tccattctcc ggaccttctc 1020ta 102218723DNAArtificial sequenceSingle strand DNA oligonucleotide 187gttggttcgt cgactagaga agg 2318821DNAArtificial sequenceSingle strand DNA oligonucleotide 188gcaatgaaga tgatgatgtg c 2118924DNAArtificial sequenceSingle strand DNA oligonucleotide 189cttactcggg atccacatct tcac 2419021DNAArtificial sequenceSingle strand DNA oligonucleotide 190aactcctgtt gctaaaacgg a 211911056DNAArabidopsis thaliana 191aagcttagac cagaccgaaa ggtttactgg gtcaatttgg tgcctacaca tccacttggc 60cacctgttgt gcaatgatga cgatgagatt gcagtgtctc tcgactgatg atgtagactt 120cacaatctct taaaaatccc agtacttaac ctcagcctta agaaaacgca gggaactacg 180tcctcacaaa atctttctct ttgagtgtaa ctttcagacg catctttggc tctaaattct 240aaaaaggaaa attttaatag gttttcataa tcatgggttc actggattag catataagtc 300tatggttgag aaacttgaga cccagactaa cgaaacctct ttccggatcc aaaggtcctc 360ttgtgtagtt gacgtggtaa actctctacc gtcaaattta gacattagct aatctgatca 420ataatctcgg cagctcttaa aaattaaaaa ttagaaatga tacgaacctc ataatttttc 480tttctcttat caaaacacca tctttgtatc tttataagcc tgttgccact atttttaatt 540gaaaatgatg cgtttgtctt atgttttctg tcctggagtt caacattatg acaatatgta 600tagtaaatta gtgatataca agacgtttgc aattcaagaa aaaaacttat aaactaatta 660atattatggt ccacggtgct acatattaac tcttgatggt tttatacatc ttttctacat 720gctaatatgc ttttaatatt gtagcctaac gttataattt gttttttctt aaagaaacag 780tatcttgaac gaatcttaac tatttctgta cttattcgat tttattcgat ttttatccgt 840gtaaaggcaa acgattatta tgtaacgacg ggcataaaaa gagtatcgat ttcctattcg 900gagaaaaaaa aaaagataaa aattggagtg tatgtatatt tcttgaattg agagtaatac 960aagattacgg tccaggtggc ggaatattat tggcaaggtc acaagaacct caaataactg 1020atctgaagag aaatataaat ccaaaagagg gtcgac 105619223DNAArtificial sequenceSingle strand DNA oligonucleotide 192cccttatctc tcagtcgacc ctc 2319321DNAArtificial sequenceSingle strand DNA oligonucleotide 193gaagagagga tatgtgtgaa g 2119424DNAArtificial sequenceSingle strand DNA oligonucleotide 194ttcaaaataa gcttctagac caga 2419520DNAArtificial sequenceSingle strand DNA oligonucleotide 195aagagatttt caaagtgtgg 201962027DNAArabidopsis thaliana 196gagagaaaag attgtgagat ttgagatcgg aggtgatggg agactctgaa gaccgtcgct 60ttggctttta tattagttgg cacgtgagag ggctttgtgt gagttttgac acgtggtgga 120ttataagtcg ttcaccaggt caaaagaatt tttaaccttg ttatggtgag gaagtgaaga 180ctttactatt ttgtctctta attgtccgtt ttctaggcta ttaataattt gtcttattgg 240tttagaaaac atttgttaat taatttccca taaaaataga agcttataat attgtctaga 300gattatattt tagatattta tcaccacaaa taaaataaaa taattgtcaa tctttttaaa 360cagatacttt tgaagaatat ccatactttt tgatattctt gtttagttat taaattaaat 420tatcagatat acctacgaac taatatggat ttatatattt cagttacact tttggtttta 480taacttgttg tcaacagaaa aataaaattg ttgtcaagac atttgaattt tagaaactaa 540cttattttgg ttaattaaaa ggtcaaaaga ttcaaaataa atttgtttct caaattttag 600tggtcaatat taaatttctg accaacaaaa atcacaaaac ctcagttttg atcatttatt 660attaattata taattgtgaa ttttgttttg atttaaggct ttttaataag ttaaaaagtt 720ttgtttcttg ttcgtttagg tttttttttt tttgttatac ttataatcag ttttagactt 780agaggaaatt gaacagttta gaatagtagg tctagctaac ctcttttttt ttggccggtc 840tacataacct tgcgaaggat agatctttca gctagcaatt taattcattt ctgcttacca 900ttgtttctta cttaaattag ttacattacc atcaatgtac ctcaattcgt gtgtgagcgt 960ttttaacaaa caaaaaaagt cgttcgtgag aattaaaaga tggggggata caaaaaccga 1020acaataattg aatacttttt gaccggagtg taacatcaat aaaggtgtta attagagaat 1080gtaattaggc tttttactaa cgggaataat aaattaaaaa ctgtcctcga tctactttac 1140tatgtatgga aggaacattc gcatgtggca ttgtgggaag ctgaatctca aaacttattt 1200taagttttga cattccttac acttatgaat atactatacg attttttttt tatcatcaat 1260atacggatta gtacattgat gataaaagaa accacggatg ataactatta ataattattt 1320tattatatga tgaaaatgat tatgcatttc acgaaatttc actaaaaaac aattattatg 1380aacaaattca ttttgtttat ctaataacaa taaaaatcat tggactttga ttttatacgt 1440cgtgggaagg tcgtcgaagc acgttgcgtt tgatcattgc atgcatcgtg aaaattccac 1500taaacatcgt cttttaaaaa aagaaacctt taaaacatta caaatggaac gtgaacctat 1560aaaatatgat aggtagatct cacactttat ttacagtatt aaacaatatg gaacattgac 1620gttaaattat tattttctac ttataacaat ttacacctcc caaaatttgg aaaggataaa 1680cccaacaagg caacaagtat cacaaatgta gctgaaatag atgggctttt aaagtttatg 1740gattgggccg tcatgaacac atattccata acataaccta attgggtgct ccgacttctt 1800ttcgcgccgc tcgcttgtac atgtcctctt cttcgacttc cagataaaat cgcttcctct 1860gtttttttcc gatctaaatt cacagctcat cgaaaatggg ctcacggcaa ggaccaccga 1920agcatcagaa caaattcgcc tgggttccca aagccggcgt caagatcaac gaaacggtaa 1980gctatttgct cggctatgag attaacgaaa ttgagtgagt actgtag 202719723DNAArtificial sequenceSingle strand DNA oligonucleotide 197atcaagggtc gacctacagt act 2319822DNAArtificial sequenceSingle strand DNA oligonucleotide 198tctcaaactg aacctatgaa ga 2219921DNAArtificial sequenceSingle strand DNA oligonucleotide 199cagagagaag aggatccgga g 2120022DNAArtificial sequenceSingle strand DNA oligonucleotide 200caacagagaa tgacaaagaa ga 222012819DNAArabidopsis thaliana 201aagaaaagat cgataacatg aagatctctt ctatctaaga aacaggtcag ttgatattca 60tcaactgttc caaatgtata ctagatatat atgcatagga gatatcttta tcaaaaaacc 120atgaagtaat ttcattgtta taacttataa gaattctttg gttttagtta ttcctaataa 180taataatcaa catccatctc aacgatgagg ttgagatgtt aatacatatc ttcctctgtt 240tacttttcca tattgcaact tgtgcatctc tcccctcttg agctgttgcg tgtggtccat 300ccaattcttt gtcatattta aaaaatgaat gctgacttgt acccaaccat gagacaaaac 360tctggctgct atattcttta aacttggtcc ctcttgcaac ttgttcatct ttctactcaa 420ttcactgatt cacgctttct ggacatgtga actaattaat acctcagtga tatcgaatag 480tgaatactga agccactgta cggtactgtt tgtgtcattg gagaaacttt aaggcttatg 540ttaaggtctt tcaggtagaa attcgatttt aagtatcaca gtagattaat aaataaatgt 600agtcgataga tttaggtcct cttgtcttcc caaatagtgt actctgaata aaccgaaagg 660acaagaactt tgtttctaga accttaagct ctttaagaca agagaaaacg cagaagttcc 720attgttacag gaactcttta gtacatattt tgcaagagtt cttttcagta cactagtcta 780acaggttctt ggctctatac atgatgcttc acatacttaa gatattaacc tatatatact 840aattaaacat cactattccc ccattagttt gatgacgatg atgaagtact tgttgttgtt 900ccttgaggct gtggtacatc ggttctcctc ctttttcggc atgaattgac cggagcatca 960tactttccgg catccaaagg aaagttgaga acagcttttc ttcccctgag cttaaaagct 1020gcatagtcgt aagcccttgc agcatcaata tcactctcaa aagtgcctaa ccaaatcctg 1080gatcctttct ttgccggatc tcgaatctct gctgcaaatt tcccccatgg cctccttctc 1140acgcctctgt aatgtctcgt ttcttcaaac ctctttgttt ttttccggtt tgagacagtc 1200tcaacctcag gtgacgttgt tgttgatgat gatgatgatg attctgcttc catttgcaga 1260atctcttgga cataggaatc tggatcaaga acaggtgaac taggttccag tttcggaact 1320gggttaaagg gttctagaga ccagagtccg gagacaaaag cagtatcatc aaagacaaaa 1380tcttcaatga aaccatcagg gatcatcaag tcttcaaata gatgtttctg tataacatcc 1440aaatcagagc tttcctcaaa agtctccatt tcttcctctc tcttttttct ttagacaaga 1500caggagaata agaaaaactg caagtggtgt ttgaagaaaa agttttgatg atattgttgg 1560ctatataaag aaaggaatcc taaacatgtg ttaacgcagc catgggtgag gtgtcaaaag 1620tctctctctg tgtctctctg gtttaactct gtggggccaa gtcttatcca ttaaacattt 1680atggaggcaa cttaagatat tttgtcagga cccttcaagt tgtgccaact tgatcttgtc 1740tatgatgctg acaaatttca ctaacatcca ttttattcct ctagagttta aaataccttg 1800agctacccat ggttcgaatc ctaagctgaa tgctaacaaa atggtgatta ttttttttaa 1860ctagaatttt gattgagttg gttaaggacg taggttcatt tgaaatttta aatctaaaac 1920ataacacaaa ccaaaaccaa aaagacttga actactagtg tttataatcg taacttaagt 1980ctttaaaagc caatctctca aaagtttttt cttttttttt tttatcttaa aagttttatg 2040ataagattga tatatgattt tcgtagtagt aatgactcac taggtaagct cttaaatatc 2100aaaagatatt ttgcatattc acattcgagt aaaaagataa gaagataatg actttcactc 2160gaataaaaag gagagacaaa ttcatcaaat tgcttgtctt gtagggttgt cttgctagga 2220tatgatttga agcaacttga tatttctttg tttctacata acttcgtata gggctccaca 2280tatataataa ccaaacctta ccctcttgct cagttgcttg acaattatac tcctaatctc 2340ataatctttt ataatagcat gtaagataat attaattatt tacttttatt gatgctttgt 2400agataatctt cgacagcatt atccatttga ttggtgtttt ccactattga aattttgaat 2460ttgtttagat ttgtatgtat ttttaactaa ttaattgtct tttcgttgca cactattttt 2520ttatagctcc gatttacttt ttcctgatcc aattttataa tctattgact atttagcaga 2580tatgaagtgt ttagatatgg acttaacgaa actgatgact aagaatgttt atacaatcaa 2640taaatttata acatcaacaa atacaaaatt aaatttatat tttcaacatc caaatattct 2700actaaaaaaa ataatgaata aaatgattgg tactaattaa actacttatt tgatatttgc 2760acactaccgc tacctttata ttatacaaga ataaatgaaa tcatgagagt gacgcaagt 2819202428DNAArabidopsis thaliana 202ggatcctacg aaagtgagat ttgaccgaat aaccaggaag tactgtccct aatccatgaa 60tcgtcttcag cttcggctgc agagtaatgg acgtgatcgt cgacgacgac gagagagcaa 120tcgccattgt tgcttccaga gaaagctgaa aataataata atcccaattt aaaatcgaaa 180tcgattttct cataccgttg gttaatctcg tggagttggg ttattacacg tgtcagatga 240tgtaaccatg atctcagaga aaaagtcaca tgccacgtca gttaacttta gggcaaaatg 300ggaaaagaat ctaaagagca tatgttcgtg cacgttcttg tttagggtaa gctcaaagct 360caagccgctt ctatctctct acatttctct ttctgcaatg gcgagattag tgcgtgtggc 420taggatcc 4282031358DNAArabidopsis thaliana 203aagctttttc tctgcgaatt tctggaacca atcaaatcaa atttgtctct tttgtttatt 60gtcgactttt ctgttttttt ctgttctggt attattcctc caagggactc ggaccggatg 120gcaaaacttg accactttgc tcctggttca ggttgcggtt catggtcaac cttagacccg 180acctatccgt ttcgttgatt tcattaatta gtctgcgttt tcttgggtgg agtgcagaca 240gattttcttc tgcagtaggc gttaatccga taggctcttg ttgggcctca aatagttcag 300taaacttttc gtggggcttt tagtatagcc catgtattaa taacaatatt acacttggga 360aatgacaaaa aaaaaaaaga gaatgaagcg gtactcttat atcaaaaaaa catattgtat 420atcttcgaat atgatgcaac tcatgcaaca acaatactag taggctacat gtattgctcc 480atttaattac atataactta atattctaat tcataaactt tcttttaatt atatatttta 540tgtaagtttt aaatattgaa aaaaaaaaaa gttttaaata ttgaaacatg ataagttttt 600acatccattt attataaaaa aaatagtgat gatgatgatc aaaattttga gtacatttta 660gagtgtttta acttttacat ttgttgttac aattgttatg agtctgatat ttcaaatttc 720gttttcaaag aaaaatcctg agtttacctt aaaagattaa agccagtttt taagaaataa 780gtagaaaaat atcaaaccag acctagctga accaaaaatt atacaaaatc tagaccggat 840taaaccggct acccgacgaa tatgcctagt aaaagtgtcg tcatcggaaa agaatctttt 900acatggctga aaccgcaaat acgatcttca agagagcaac ataaaaatac ttgtcaaata 960agtaaagaaa ataagacact caatatccac actcccaaac catgaaaata tgaatagaaa 1020tctcaatgag ccaatcagag gccagcaaag tccatctcat tgtcccaagc ggatatacat 1080ccgacaaaac tcaacctcac aagtagactc tcccttcttc cgtaactatt cgtccacgtg 1140tccttccctc tcaccactta ccttcaaaac caacgcttct tttttagttc cttggtccga 1200agcgtttacc gatgagagaa tcataaactc ccacttggag ctcaaaaagt gtaagagaca 1260accaacaaaa aacgattcat ctcttctcct atcctctcct cttcgaattc aacgtttgga 1320gaatccagca gccgcaaaat ggcttcgctt gtggatcc 135820424DNAArtificial sequenceSingle strand DNA oligonucleotide 204gagacaaaaa gctttttctc tgcg 2420521DNAArtificial sequenceSingle strand DNA oligonucleotide 205tcgcagaagt tgttgtaagt g 2120623DNAArtificial sequenceSingle strand DNA oligonucleotide 206gtgaatggag gatccacaag cga 2320721DNAArtificial sequenceSingle strand DNA oligonucleotide 207ttacatactg agggaagctc g

2120824DNAArtificial sequenceSingle strand DNA oligonucleotide 208gttggttcgt cgactagaga aggt 2420928DNAArtificial sequenceSingle strand DNA oligonucleotide 209ttggatccgg gaggcaatga tgctttag 28210470DNAArabidopsis thaliana 210aagcttagaa gctaaaagaa gccgcgaaga attgtgaaga agaaggaaag tttccattat 60tgccttttat tttattttat ttaataattt aagggttttt gattttaaaa tgaataataa 120taataaatac aaaaaagaaa ggacagaagg aaggagtgat gtgtggtaga gagagacagt 180tcaccgtcgg cgagtccagc tggcggtggt gggagcccac cgtgtcacct taatcatcgc 240tgcgctgccc tgtctttttt ccattattaa tttttagcaa gaagaagact gggctttcta 300aattagttat taatgggctt tgggctttcg tggttagggt tgtgtagggg cttaatcgtc 360atttcggaga tagaataaac cctaatctcc atggatgggc tctccgatgt ttgtcttttt 420gatttttgaa atttgatttt caaaaataaa ctaaagcatc attgcctccc 47021130DNAArtificial sequenceSingle strand DNA oligonucleotide 211ttgtaagctt gcagggatac ggatgggtag 3021225DNAArtificial sequenceSingle strand DNA oligonucleotide 212aaatattgga tcctttgggg ttctc 252131569DNAArabidopsis thaliana 213aagcttgcag ggatacggat gggtagcttt caaaacttac atcatcttct gtttcttgag 60atcaactatt tttggagctt tgtctcaatc gtaccaaagg ataatggtcc tacctccttt 120tgcattctta actttatctt ctctacttat ttcttttttg ggatttttgg gggtattatt 180ttatcttttg tagatataca cattgattta ctacaaacgt atactactat ccatcttcaa 240ctcttcggaa tatgatttcg aaaaaactat gaagattaac gggtatctta aacatgttaa 300gatacaccgg acaattttca tttagaagaa ttgatatgca attaacaata aatagttgat 360gatcttttag ttttgaagat gtgcgttaag acttaagcgt gtggtaacaa ggtgggactc 420gggcaacgca aagccttgta gagtccactt gctcaacttg tctttctttt atctcttttc 480caagtctcaa gattcaatga actccgtgta acacaaacac gcccatagat gagctcattt 540ttggtatttc caatattgcc actccatgat aatatcatct agggatgggg ttcatttatt 600ttgaaatctc aacaaatctc gtcgattcta acacacatga ttgatttgtt tacttacttg 660aaagttggca actatctggg attaaaattt atctttttct actgctagct agaagcatct 720atatatgtta gcctaatacg tggaagatgt cattgctaat aatggctaaa gatgtgtatt 780aatttttctt cttttttcct tgaatttttg ttctttgaca taaactatgc tgtcaaaatg 840tgtagaatct ttttacataa atcattccct gttacacact aaaaggttca caacggacga 900ttgtattgga cttccagatc ataaaccatg caaaactgaa aaccacaaga ataattagtt 960ctaactttag aacgttcgta cgtgtttcat gttcaaaaag cgtcaattat aaaagttggg 1020aaattacttt tgagttttga catttctaag gacagtcaaa tatgacaaca ttgggatgca 1080acttaccttg tattaactta ttttgttata aaaccatata ttacatattt taaagggttg 1140ataaataatc aaatatacca aaacatagct tttcaatata tttgtaaaac acgtttggtc 1200tactagctaa ttatgagaac atttgttcaa tgcatgatta tctagtatct actagtggat 1260tatgaaaatt agatattttc attgcatgat tatcttccat atatagtgat aacatcaaaa 1320gaatctacac caattattgc attttttcat tatataataa gcactaaact gtaaaattat 1380attcagccac ccaaaccatg acaaatcacc ttaaaggctt aaacacataa cagccattac 1440gagtcacagg taagggtata atagtaaaga atcaatctat ataatatacg acccaccctt 1500tctcattctt tctggagagt aacatcgaga caaagaagaa aaactaaaaa agagaacccc 1560aaaggatcc 15692142000DNAArabidopsis thaliana 214ggttaaagaa tgatgattcg attatagcct caactagaag atacgtgtag tgcaggtgtg 60tagttaactg gtggtagtgg cagacaacca gattaggagt taaataaagc ctttagattt 120gagagattga aatattcgat tggaaccttt ctagattttt acagccatct aaaattagat 180gcagatcacc tactaccatt caaaaatgaa caaaataatt tcatttacat tttcctagca 240taagatataa taataaaata gtgctcattt taattacttt ttctaaatat tttcgttatt 300ttaaattttg cttgtctata ctctacagct catttaataa cggaaacaaa aataattgca 360gggatacgga tgggtagctt tcaaaactta catcatcttc tgtttcttga gatcaactat 420ttttggagct ttgtctcaat cgtaccaaag gataatggtc ctacctcctt ttgcattctt 480aactttatct tctctactta tttctttttt gggatttttg ggggtattat tttatctttt 540gtagatatac acattgattt actacaaacg tatactacta tccatcttca actcttcgga 600atatgatttc gaaaaaacta tgaagattaa cgggtatctt aaacatgtta agatacaccg 660gacaattttc atttagaaga attgatatgc aattaacaat aaatagttga tgatctttta 720gttttgaaga tgtgcgttaa gacttaagcg tgtggtaaca aggtgggact cgggcaacgc 780aaagccttgt agagtccact tgctcaactt gtctttcttt tatctctttt ccaagtctca 840agattcaatg aactccgtgt aacacaaaca cgcccataga tgagctcatt tttggtattt 900ccaatattgc cactccatga taatatcatc tagggatggg gttcatttat tttgaaatct 960caacaaatct cgtcgattct aacacacatg attgatttgt ttacttactt gaaagttggc 1020aactatctgg gattaaaatt tatctttttc tactgctagc tagaagcatc tatatatgtt 1080agcctaatac gtggaagatg tcattgctaa taatggctaa agatgtgtat taatttttct 1140tcttttttcc ttgaattttt gttctttgac ataaactatg ctgtcaaaat gtgtagaatc 1200tttttacata aatcattccc tgttacacac taaaaggttc acaacggacg attgtattgg 1260acttccagat cataaaccat gcaaaactga aaaccacaag aataattagt tctaacttta 1320gaacgttcgt acgtgtttca tgttcaaaaa gcgtcaatta taaaagttgg gaaattactt 1380ttgagttttg acatttctaa ggacagtcaa atatgacaac attgggatgc aacttacctt 1440gtattaactt attttgttat aaaaccatat attacatatt ttaaagggtt gataaataat 1500caaatatacc aaaacatagc ttttcaatat atttgtaaaa cacgtttggt ctactagcta 1560attatgagaa catttgttca atgcatgatt atctagtatc tactagtgga ttatgaaaat 1620tagatatttt cattgcatga ttatcttcca tatatagtga taacatcaaa agaatctaca 1680ccaattattg cattttttca ttatataata agcactaaac tgtaaaatta tattcagcca 1740cccaaaccat gacaaatcac cttaaaggct taaacacata acagccatta cgagtcacag 1800gtaagggtat aatagtaaag aatcaatcta tataatatac gacccaccct ttctcattct 1860ttctggagag taacatcgag acaaagaaga aaaactaaaa aagagaaccc caaagaatcg 1920aatatttatt atttcgcccc gaagattcta tttctgatca tttacacccc taaaaagagt 1980agagctttcg tgaagccacc 2000


User Contributions:

comments("1"); ?> comment_form("1"); ?>

Inventors list

Agents list

Assignees list

List by place

Classification tree browser

Top 100 Inventors

Top 100 Agents

Top 100 Assignees

Usenet FAQ Index

Documents

Other FAQs




Patent applications by Ezekiel Golan, Tel-Aviv IL

Patent applications by Gil Ronen, Emek Hefer IL

Patent applications by Hagai Karchi, Moshav Sitriya Doar-Na Emek Soreq IL

Patent applications by Larisa Rabinovich, Rishon-Lezion IL

Patent applications by Naama Zeliger, Moshav Mechora IL

Patent applications by Noa Savir, Givat Brenner IL

Patent applications by Rafael Meissner, Rechovot IL

Patent applications by Evogene Ltd.

Patent applications in class METHOD OF INTRODUCING A POLYNUCLEOTIDE MOLECULE INTO OR REARRANGEMENT OF GENETIC MATERIAL WITHIN A PLANT OR PLANT PART

Patent applications in all subclasses METHOD OF INTRODUCING A POLYNUCLEOTIDE MOLECULE INTO OR REARRANGEMENT OF GENETIC MATERIAL WITHIN A PLANT OR PLANT PART


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
People who visited this patent also read:
Patent application numberTitle
20150284805MITOCHONDRIAL MUTATIONS AND REARRANGEMENTS AS A DIAGNOSTIC TOOL FOR THE DETECTION OF SUN EXPOSURE, PROSTATE CANCER AND OTHER CANCERS
20150284804Prognostic Method for Individuals with Prostate Cancer
20150284803METHODS FOR DETERMINING THE CAUSE OF SOMATIC MUTAGENESIS
20150284802ncRNA AND USES THEREOF
20150284801METHODS FOR ASSESSING LIVER PATHOLOGIES
Images included with this patent application:
NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and imageNUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and image
NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and imageNUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and image
NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and imageNUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and image
NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and imageNUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and image
NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and imageNUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME diagram and image
Similar patent applications:
DateTitle
2009-11-05Nucleotide sequences encoding ramosa3 and sister of ramosa3 and methods of use for same
2010-11-11Nucleotide sequences mediating plant male fertility and method of using same
2010-12-09Nucleotide sequences mediating plant male fertility and method of using same
2011-05-05Nucleotide sequences mediating plant male fertility and method of using same
2011-06-30Nucleotide sequences encoding ramosa3 and sister of ramosa3 and methods of use for same
New patent applications in this class:
DateTitle
2016-05-26Kits comprising plus-sense single stranded rna viral vectors and methods for producing polypeptides using the kits
2016-05-19Brassica engineered to confer herbicide tolerance
2016-05-19Plants having one or more enhanced yield-related traits and a method for making the same
2016-05-19Novel genes involved in biosynthesis
2016-05-19Poaceae plant whose flowering time is controllable
New patent applications from these inventors:
DateTitle
2016-05-19Methods of increasing abiotic stress tolerance and/or biomass in plants
2015-07-09Polynucleotides and polypeptides involved in plant fiber development and methods of using same
2014-12-25Isolated polynucleotides and polypeptides and methods of using same for increasing plant utility
Top Inventors for class "Multicellular living organisms and unmodified parts thereof and related processes"
RankInventor's name
1Gregory J. Holland
2William H. Eby
3Richard G. Stelpflug
4Laron L. Peters
5Justin T. Mason
Website © 2018 Advameg, Inc.